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ABSTRACT Raccoons (Procyon lotor) are successful urban adapters and hosts to a
number of zoonotic and nonzoonotic pathogens, yet little is known about their hemo-
plasma infections and how prevalence varies across habitat types. This study identifies
hemotropic Mycoplasma species infection in raccoons from urban and undisturbed habi-
tats and compares hemoplasma infection in sympatric urban cats (Felis catus) from the
same geographic region. We collected blood from raccoons (n � 95) on an urban
coastal island (n � 37) and an undisturbed coastal island (n � 58) and from sympat-
ric urban cats (n � 39) in Georgia, USA. Based on 16S rRNA gene amplification,
62.1% (59/95) of raccoons and 17.9% (7/39) of feral cats were positive for hemo-
plasma. There was a greater percentage of hemoplasma-infected raccoons on the
undisturbed island (79.3% [46/58]) than on the urban island (35.1% [13/37]; �2 �

16.9, df � 1, P � 0.00004). Sequencing of the full-length 16S rRNA gene amplicons
revealed six hemoplasma genotypes in raccoons, including five novel genotypes that
were distinct from three known hemoplasma species identified in the sympatric
cats. In addition, the hemoplasma genotypes detected in raccoons were not iden-
tified in sympatric cats or vice versa. Although all six hemoplasma genotypes were
found in raccoons from urban and undisturbed islands, coinfection patterns differed
between sites and among individuals, with the proportion of coinfected raccoons
being greater in the undisturbed site. This study shows that raccoons are hosts for
several novel hemoplasmas and that habitat type influences infection patterns.

IMPORTANCE This study provides information about novel hemoplasmas identified
in raccoons (Procyon lotor), which can be used for assessments of the prevalence of
these hemoplasmas in raccoon populations and for future studies on the potential
pathogenic impacts of these hemoplasmas on raccoon health. Raccoons from the
undisturbed habitat had a higher prevalence of hemoplasma infection than urban
raccoons. There does not appear to be cross-species transmission of hemotropic my-
coplasmas between urban raccoons and feral cats. Raccoons appear to be hosts for
several novel hemoplasmas, and habitat type influences infection patterns.

KEYWORDS raccoons, Procyon lotor, feral cats, Felis catus, hemoplasmas, wildlife, 16S
rRNA gene, phylogenetic analysis, hemoplasma

Urbanization is a strong ecological driver that causes significant changes in the
composition of wildlife communities and in various intra- and interspecies inter-

actions (1). Ecological responses to urbanization can lead to changes in the dynamics
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of wildlife-parasite interactions and in patterns of pathogen transmission through mecha-
nisms such as loss of species diversity, changes in vector abundance, and increased
exposure to invasive species and their pathogens (2). Urban-adapted wildlife frequently
share anthropogenic food sources with other species and can live in close proximity to
other wild and feral/domestic animals (3). Resource use overlap in urbanized environ-
ments can increase direct and indirect contact within species and facilitate cross-
species transmission of pathogens between wildlife and animals, such as feral cats,
while providing opportunities for pathogens to adapt to novel host species and expand
their host range (2, 4, 5). In addition, smaller home range sizes, increased aggregation,
and high population densities of some wild animals in urban areas (3) can further
increase opportunities for contact between species and potentially increase cross-
species pathogen transmission.

The raccoon (Procyon lotor) is well known for its adaptability to urbanized habitats
and active interaction with domestic animals, such as cats and dogs (6). In urbanized
habitats, raccoons and feral cats (Felis catus) are often highly abundant, frequently
foraging in close proximity to one another on clumped anthropogenic food sources
(e.g., garbage and intentional feeding). Raccoons also harbor diverse pathogens shared
with or transmitted to other domestic and/or wild animals, such as canine distemper
virus, parvovirus, rabies virus, and Leptospira (6). Here, we used raccoons from urban
and undisturbed environments and urban feral cats as a study system to compare and
investigate hemotropic Mycoplasma species (so-called genotypes here) composition,
richness, coinfection patterns, and potential cross-species transmission.

Hemoplasmas (the common name for hemotropic Mycoplasma species) are facul-
tative intracellular erythrocytic parasites without a cell wall comprising a group of
noncultivable Mycoplasma species, including organisms formerly known as Haemobar-
tonella and Eperythrozoon species, which were reclassified as Mycoplasma species based
on phylogenetic analysis of their 16S rRNA gene sequences and deeper studies on cell
morphological properties (7–11). Hemoplasmas are causative agents of acute or chronic
infectious anemias in several mammalian species (7, 12, 13). Human infections with
hemotropic mycoplasmas and potential zoonotic transmission of these organisms have
also been reported (14–16). Animal infection with hemotropic mycoplasmas is usually
self-limiting and well controlled by immunocompetent animals; however, the estab-
lishment of clinically inapparent chronic bacteremia is possible in stressed, immuno-
suppressed, immunocompromised, and immunocompetent individuals (7, 14, 17). The
main hematological observation in hemoplasma-infected animals is mild or severe
anemia and positive Coombs tests, but infections can occur with or without alterations
in hematological parameters (13, 18). The intracellular life cycle of some hemotropic
mycoplasmas may explain the chronicity of hemotropic mycoplasma infections in their
natural hosts (19).

Several hemoplasma species have been reported from wild carnivores, including
Darwin’s foxes (Lycalopex fulvipes), black bears (Ursus thibetanus japonicus), Namibian
cheetahs (Acinonyx jubatus), Iriomote cats (Prionailurus bengalensis iriomotensis), Cali-
fornia sea lions (Zalophus californianus), Japanese badgers (Meles anakuma), raccoon
dogs (Nyctereutes procyonoides viverrinus), and Asian mongooses (Herpestes javanicus)
(18, 20–25). However, mycoplasma (including hemoplasma) infections of raccoons
(Procyon lotor) are poorly studied (26). In 1971, Haemobartonella procyoni was described
in raccoons from Maryland, USA (27). The morphology of the parasite resembled that
of Mycoplasma haemomuris (formerly Haemobartonella muris), and the microorganism
was found in association with the surface of host erythrocytes. The naturally infected
raccoons did not have any clinical signs or hematological abnormalities, although
infection prevalence was approximately 50%, and parasitemia persisted for 60 days of
observation (27).

The objectives of this study were (i) to identify hemotropic mycoplasmas in raccoons
and compare infection prevalence, genotype richness, and coinfection patterns in raccoons
on an urban and an undisturbed barrier island, and (ii) to evaluate the possibility of
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cross-species transmission of hemoplasmas between urban raccoons and sympatric
feral cats.

RESULTS
PCR amplification of hemoplasma sequences from blood samples. Primary screen-

ing using the HBT-F and HBT-R primers for amplification of the 16S rRNA gene
sequences demonstrated that 62.1% (59/95) of raccoons were PCR positive for hemo-
plasma DNA. These previously published universal primers amplified the partial 16S rRNA
gene of Mycoplasma spp. and were successfully used for differentiating hemoplasma-
positive and hemoplasma-negative animals. In 2012, the International Committee on
Systematics of Prokaryotes (ICSP) subcommittee on the taxonomy of Mollicutes agreed
the recommendation to require the full-length 16S rRNA gene sequences in papers
describing new hemoplasmas (28). Based on this recommendation, we generated the
full-length 16S rRNA gene sequences and used them for construction of our phyloge-
netic trees. To amplify of the full-length 16S rRNA genes of hemoplasmas present in
blood samples of raccoons and cats, we designed new primers based on available
sequences in GenBank (see Materials and Methods). Using these new primers for eight
individual 16S rRNA-based PCRs (16S-PCR-1 through 16S-PCR-8), we successfully am-
plified the individual full-length rRNA genes of each hemoplasma present in the
raccoon blood DNA samples (Table 1). Five of these eight primer pairs produced the
full-length 16S rRNA amplicons from hemoplasma-positive raccoons (16S-PCR sets 1, 2,
3, 5, and 8 [Table 1]). In contrast, only three primer pairs amplified the full-length 16S
rRNA amplicons from hemoplasma-positive cats (16S-PCR sets 5 to 7), i.e., the primers
designed for Mycoplasma haemofelis, “Candidatus Mycoplasma turicensis,” and “Candi-
datus Mycoplasma haemominutum,” respectively. The 16S primer pairs 6 and 7 did not
generate any amplicons from hemoplasma-positive raccoons. The 16S primer pair 5,
which was designed to amplify the full-length 16S rRNA genes of both M. haemofelis
and Mycoplasma haemocanis, was the only set that worked with both raccoons and
cats. The 16S primer pair 4, which was designed to amplify the full-length 16S rRNA
gene of Mycoplasma suis, did not generate any amplicons from either raccoons or cats.

Based on our full-length 16S rRNA PCR analyses, only 54.7% of raccoons (versus
62.1% with the HBT-F and HBT-R primers) were hemoplasma positive. The difference
(54.7% versus 62.1%) between our new primers and HBT-F/R primers can be attributed
to (i) the difference in the length of amplicons (1,400 to 1,460 bp versus 595 to 620 bp,
respectively), (ii) the possible difference in hemoplasma DNA load in blood among the
raccoons, which could affect the efficiency of amplification of the full-length 16S rRNA
sequences, (iii) the degree of optimization of our PCR conditions for these new primers,
and/or (iv) a combination of these factors.

Six hemotropic mycoplasma sequences (genotypes) with partial identity with the
16S rRNA gene sequences of known hemoplasma sequences (available in GenBank)
were detected in raccoon populations (Table 1; see also Table S2 in the supple-
mental material). Except for two M. haemocanis/M. haemofelis-like raccoon hemoplas-
mas (called raccoon hemoplasma genotypes 1 and 5), which had 96 to 97% nucleotide
sequence identity with each other in their 16S rRNA genes, the other hemoplasma
sequences (genotypes 2 to 4 and 6) detected in raccoons demonstrated lower levels of
genetic similarity (�86 to 96%) among these genotypes and to other known hemo-
plasma species (Tables 1 and S2).

Raccoon hemoplasma genotypes 1 and 5 were amplified from independent raccoon
blood samples using the primers designed to amplify the full-length 16S rRNA gene of
M. haemocanis/M. haemofelis. Genotype 5 (GenBank accession no. KF743706) had only
96 to 97% nucleotide sequence identity with M. haemocanis/M. haemofelis and geno-
type 1, whereas genotype 1 (GenBank accession no. KF743705) had 99% nucleotide
similarity to M. haemocanis/M. haemofelis (Tables 1 and S2). When amplification from
the rpoB and gyrB genes was attempted on all the raccoon samples positive for these
two M. haemocanis/M. haemofelis-like hemoplasma genotypes (PCR-A to -D primer sets
for rpoB [PCR-A to -C] and PCR-D set for gyrB [Table S1]), amplification from the rpoB
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gene was unsuccessful for both genotypes of M. haemocanis/M. haemofelis-like raccoon
hemoplasmas, and amplification from the gyrB gene was possible only for genotype 1
and not for genotype 5. Sequence analysis of the amplified gyrB genes (GenBank
accession no. KF743740 to KF743744) and their deduced protein sequences demon-
strated low identity (73 to 75% nucleotide and 87 to 88% amino acid) with both M.
haemocanis and M. haemofelis. Thus, these M. haemocanis/M. haemofelis-like spp.
(genotypes 1 and 5) detected in raccoon blood samples were unlikely to belong to the
known species M. haemocanis or M. haemofelis but were closely related to them

TABLE 1 Hemotropic mycoplasmas detected in raccoons

GenBank
accession no.a Sample ID

Hemoplasma genotype
detected in raccoons

Primer set used for full-length
16S rRNA amplification
(see Table S1)

Sequence homology to other hemoplasmas
(GenBank accession no.)

KC920443 PRLO50 3 16S-PCR-1 96% to “Candidatus Mycoplasma
erythrodidelphis” (AF178676)KC920441 PRLO49

KC920447 PRLO72
KC920446 PRLO84
KC920445 PRLO62
KC920444 PRLO57
KC920442 PRLO42
KC920448 PRLO53
KC920440 PRLO25
KC920439 PRLO96

KF743729 PRLO102 2 16S-PCR-3 92–93% to “Candidatus Mycoplasma
haemozalophi” (GU905012) and
“Candidatus Mycoplasma haemolamae”
(AF306346)

KF743724 PRLO88
KF743727 PRLO92
KF743722 PRLO86
KF743713 PRLO56
KC936280 PRLO87
KF743717 PRLO65

KF743726 PRLO91 4 16S-PCR-2 86–88% to raccoon hemoplasma genotypes
2 and 3, and to “Candidatus Mycoplasma
haemominutum,” M. wenyonii, and M. ovis

KF743711 PRLO46
KF743728 PRLO101
KF743721 PRLO84
KF743719 PRLO77
KF743718 PRLO74
KF743716 PRLO64

KF743706 PRLO24 5 16S-PCR-5 96–97% to M. haemocanis (AY529641)
(including M. haemocanis detected in
Japanese raccoon dog [AB848714] and
M. haemocanis/M. haemofelis-like sp.
detected in Japanese black bear
[AB725596]), to M. haemofelis (AF548631),
and to raccoon hemoplasma genotype 1

KF743734 PRLO_56HC
KF743715 PRLO62
KF743736 PRLO_103HC
KF743704 PRLO14

KF743710 PRLO44 6 16S-PCR-8 91–92% to raccoon hemoplasma genotype 5,
and to “Candidatus Mycoplasma
haemobos” (EF460765)

KF743733 PRLO_55HB
KF743707 PRLO33
KF743731 PRLO104
KF743720 PRLO80

KF743714 PRLO59 1 (M. haemocanis/M.
haemofelis-like sp.)

16S-PCR-5 99% to M. haemocanis (AY529641) and
M. haemofelis (AF548631)KF743709 PRLO40

KF743723 PRLO87
KF743735 PRLO_92HC
KF743732 PRLO_43SC
KF743705 PRLO21
KF743712 PRLO55
KF743725 PRLO90
KF743708 PRLO38
KF743730 PRLO103
aThe reference sequence for each hemoplasma genotype is indicated in bold. The numbering of raccoon hemoplasma genotypes (1 to 6) is based on their sequential
discovery.
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phylogenetically. All attempts to amplify rpoB gene sequences from the other raccoon
hemoplasma-positive samples using previously published primers designed for rpoB of
Mycoplasma spp. (29) failed to yield amplicons.

In feral cats on St. Simons island, M. haemofelis (n � 1), “Ca. Mycoplasma haemo-
minutum” (n � 5), and “Ca. Mycoplasma turicensis” (n � 1) were identified by the
full-length 16S rRNA gene amplification and sequencing; however, these species were
not detected in raccoons. The presence of M. haemofelis and “Ca. Mycoplasma haemo-
minutum” in cat blood was also confirmed by amplification and sequencing of their
partial rpoB genes (GenBank accession no. KF743746 to KF743751).

Phylogenetic analysis of the 16S rRNA genes. We used sequences of the 16S rRNA
genes to determine the phylogenetic relatedness of the hemoplasmas (genotypes) de-
tected in raccoons with those of other known hemotropic Mycoplasma species available in
GenBank (Fig. 1). No chimeras were detected from all 16S rRNA gene sequences generated
in this study. The dendrogram in Fig. 1 shows the inferred phylogenetic position of the
hemoplasma sequences identified in raccoons among known hemotropic Mycoplasma
species. The interspecies similarity of the 16S rRNA genes among the species in the
phylogenetic tree was also assessed (Table S2). The 16S rRNA-based phylogenetic
analysis and the interspecies similarity data showed that the raccoon hemoplasma
genotypes were phylogenetically related to known hemoplasma species, i.e., M. hae-
mocanis, M. haemofelis, “Candidatus Mycoplasma haemobos,” “Candidatus Mycoplasma
wenyonii,” Mycoplasma ovis, “Candidatus Mycoplasma haemocervae,” “Candidatus My-
coplasma erythrocervae,” “Candidatus Mycoplasma erythrodidelphis,” “Candidatus My-
coplasma haemolamae,” “Candidatus Mycoplasma haemozalophi,” and “Candidatus
Mycoplasma kahanei” (see Fig. 1). However, based on the low levels (i.e., �97%) of
sequence identity (29, 30) for five of the six raccoon hemoplasma genotypes (geno-
types 2 to 6), we believe these five genotypes represent novel hemoplasma genotypes
or putatively new hemoplasma species (see Fig. 1 and Table 1) not yet described in
other animal species.

The presence of regions of the low interspecies sequence similarity in the 16S rRNA
genes among these five novel raccoon hemoplasma genotypes (genotypes 2 to 6) and
the 16S rRNA genes of other hemoplasmas available in GenBank allowed us to design
the species-specific PCR primers (Fig. S3 to S7 show detailed sequence comparisons)
that can be used for qualitative detection of each hemoplasma genotype. In the current
study, we used these species-specific 16S rRNA primers to demonstrate selective
amplification of each hemoplasma genotype in raccoon samples that were coinfected
with different hemoplasma genotypes. No cross-amplification between raccoon hemo-
plasma genotypes or false-positive or false-negative amplifications were observed for
these species-specific primers when used in PCR assays on DNA from all hemoplasma-
positive and hemoplasma-negative raccoon blood DNA samples.

Prevalence of hemoplasmas in the studied animals in urban versus undis-
turbed ecosystems and coinfection. The proportion of raccoons infected with hemo-
tropic Mycoplasma spp. was 62.1% (95% confidence interval [CI], 51.5, 71.7%; n � 95),
with overall proportions of 35.1% (95% CI, 20.7, 52.6%; n � 37) on St. Simons Island
(developed habitat) and 79.3% (95% CI, 66.3, 88.4%; n � 58) on St. Catherines Island
(undisturbed habitat). Hemoplasma infection prevalence was 17.9% (95% CI, 8.1, 34.1%;
n � 39) in feral cats from St. Simons. Overall, infection rates with hemoplasma were
44.4% (95% CI, 28.3, 61.7%; n � 36) in female raccoons and 72.9% (95% CI, 59.5, 83.3%;
n � 59) in male raccoons.

In univariate analyses, habitat and sex were significantly associated with hemo-
plasma infection in raccoons (habitat type, �2 � 16.9, df � 1, P � 0.00004; sex, �2 �

6.52, df � 1, P � 0.01); hemoplasma infection prevalence was greater in male raccoons
and on the undisturbed island. We also found a significant association between
hemoplasma infection and body mass (Mann-Whitney U test, W � 732, P � 0.01),
although habitat type and body mass were not correlated (Mann-Whitney U test, W �

927.5, P � 0.27). We found no significant association between host species (raccoon or
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 KC920445 PRLO62
 KC920442 PRLO42
 KC920446 PRLO84
 KC920447 PRLO72
 KC920441 PRLO49
 KC920443 PRLO50
 KC920444 PRLO57
 KC920448 PRLO53
 KC920440 PRLO25
 KC920439 PRLO96

Raccoon hemoplasma genotype 3

 AF178676 Candidatus M.erythrodidelphis
 KF743721 PRLO84
 KF743716 PRLO64
 KF743718 PRLO74
 KF743726 PRLO91
 KF743711 PRLO46
 KF743728 PRLO101
 KF743719 PRLO77

Raccoon hemoplasma genotype 4

 AF338269 Candidatus M.kahanei
 AB558897 Candidatus M.erythrocervae

 AY946266 M.wenyonii
 AY837724 uncultured Mycoplasma sp. from mosquito midgut
 AB558899 Candidatus M.haemocervae
 AF338268 M.ovis

 EU165512 Candidatus M.haemovis
 AY492086 M.suis

 KF743738 Candidatus M.haemominutum FC25
 KF743737 Candidatus M.haemominutum FC16
 U88564 Candidatus M.haemominutum
 KF743739 Candidatus M.haemominutum FC30

 AY383241 Candidatus M.haematoparvum
 AF306346 Candidatus M.haemolamae

 GU905012 Candidatus M.haemozalophi
 AB848713 Candidatus M.haemomeles
 KF743717 PRLO65
 KF743729 PRLO102
 KF743724 PRLO88
 KF743727 PRLO92
 KF743722 PRLO86
 KF743713 PRLO56
 KC936280 PRLO87

Raccoon hemoplasma genotype 2

 DQ157153 Candidatus M.turicensis
 AY831867 uncultured Mycoplasma sp. feline isolate

 AY171918 M.coccoides
 FJ667774 uncultured Mycoplasma sp. from capybara

 AB820288 Candidatus M.haemomacaque
 GU562823 uncultured Mycoplasma sp. from human

 HMU82963 M.haemomuris
 KF743731 PRLO104
 KF743720 PRLO80

 KF743733 PRLO 55HB
 KF743710 PRLO44
 KF743707 PRLO33

Raccoon hemoplasma genotype 6

 EF460765 Candidatus M.haemobos
 KF743736 PRLO 103HC
 KF743704 PRLO14
 KF743715 PRLO62
 KF743706 PRLO24
 KF743734 PRLO 56HC

Raccoon hemoplasma genotype 5

 KF743708 PRLO38
 KF743725 PRLO90
 KF743712 PRLO55
 KF743705 PRLO21
 KF743732 PRLO 43SC
 KF743735 PRLO 92HC
 KF743723 PRLO87
 KF743709 PRLO40
 KF743714 PRLO59
 AB725596 uncultured Mycoplasma sp. from bear
 AF548631 M.haemofelis

 M. haemocanis/M. haemofelis-like sp.
(Raccoon hemoplasma genotype 1)

 KF743730 PRLO103
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 AB848714 M.haemocanis from Japanese raccoon dog

 DQ522159 M.insons
 AF125879 M.cavipharyngis
 AF125878 M.fastidiosum

 NR 036946 M.bovis
 FJ226566 Mycoplasma LR5794100

75
100

100

99
52

56

100

55

53

100

69

71

100

68

100

100

88

98

93

67

99

91

100

100

91
65

100

98
100

99

64

100

100

100

98

76

57

55

100

100

100

63

0.05

FIG 1 Dendrogram showing phylogenetic relationships based on nucleotide sequence data for the 16S
rRNA gene among the hemoplasma genotypes detected in raccoons (Procyon lotor) with other hemo-
tropic Mycoplasma spp., and three nonhemotropic phylogenetically closely related Mycoplasma spp.

(Continued on next page)
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feral cat) and hemoplasma infection on the urbanized island (�2 � 2.89, df � 1, P �

0.09). The best-fit generalized linear model (GLM) associated with raccoon hemoplasma
infection included weight, habitat, and the interaction between weight and habitat
(Table S3). When the weight � urbanized habitat interaction was accounted for, the
urbanized habitat was less likely to be associated with hemoplasma infection (odds
ratio [OR], �0.34, P � 0.02) than the undisturbed habitat. Specifically, heavier raccoons
had greater odds of hemoplasma infection on the undisturbed island (OR, 1.3) but had
lower odds of infection on the urban island (OR, 0.21) (Fig. S1).

Coinfection of raccoons with multiple hemoplasma genotypes was observed at both
sampling sites: undisturbed habitat coinfection prevalence was 87% (40/46), and urban
habitat coinfection prevalence was 53.8% (7/13). Raccoons from the undisturbed
habitat had a significantly higher number of individuals coinfected with more than one
hemoplasma genotype than those from the urbanized habitat (�2 � 52.989, df � 1, P �

0.00001). The ratio of single infection to coinfection for the urban habitat was 1/1.2 and
was 1/5.7 for the undisturbed habitat. Hemoplasma genotype richness and infection
patterns in raccoons are shown in Table 2. At the population level, there was no
difference in overall hemoplasma genotype richness (both sites had a total richness of
6 hemoplasma genotypes identified). However, at the individual level, raccoons on St.
Simons Island (urban) had lower hemoplasma genotype richness than those on St.
Catherines Island (undisturbed) (Kruskal-Wallis test, �2 � 24.03, df � 1, P � 0.0001; GLM,
z � �5.88, df � 1, P � 0.0001).

The mean number of hemoplasma genotypes identified per infected raccoon was
1.85 (range, 1 to 4 genotypes) on the urbanized island and 2.93 (range, 1 to 6
genotypes) on the undisturbed island. There was a slight positive but nonsignificant
correlation between hemoplasma genotype richness and individual raccoon body
weight (Spearman rank correlation, rho � 0.25, P � 0.06). Although raccoons at both
sites had coinfections ranging from 2 to 4 hemoplasma genotypes, coinfection with 5
to 6 genotypes was seen only in raccoons from the undisturbed site (Fig. S2). We also
observed varied composition of hemoplasma genotypes among raccoons; coinfections
with two to three hemoplasma genotypes were relatively evenly distributed. An
association plot (Fig. 2) showed positive associations for coinfection for raccoon
hemoplasma genotypes 2 and 3, 2 and 4, 2 and 5, and 3 and 4. Negative associations
of coinfection were seen between genotypes 2 and 6, as well as M. haemocanis/M.
haemofelis-like sp. (genotype 1) and genotype 2, and between M. haemocanis/M.
haemofelis-like sp. (genotype 1) and genotype 3.

DISCUSSION

The genus Mycoplasma currently comprises 20 hemotropic species (https://www
.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id�2093), and except for the well-
established species M. haemocanis, M. haemofelis, and M. haemomuris, all other 17

FIG 1 Legend (Continued)
(M. insons, M. fastidiosum, and M. cavipharyngis) and two not phylogenetically closely related Mycoplasma
species. The trees were constructed by the minimum evolution method in the MEGA 6 package.
Accession numbers are shown to the left of each organism name; strain or isolate names are also shown.

TABLE 2 Hemoplasma genotypes identified on developed (urban) and protected (undisturbed) islands

Hemoplasma genotype
detected in raccoons

Urban Undisturbed Total

% (n � 13) 95% CI % (n � 46) 95% CI % (n � 59) 95% CI

5 15.4 2.7, 46.3 58.7 43.2, 72.7 49.2 36.0, 62.4
1 (M. haemocanis/

M. haemofelis-like sp.)
61.5 32.37, 84.9 41.3 27.3, 56.7 45.8 32.9, 59.2

2 7.7 0.4, 3.79 56.5 41.2, 70.8 45.8 32.9, 59.2
3 30.8 10.4, 61.1 60.9 45.4, 74.5 54.2 40.8, 67.1
6 46.2 20.4, 73.9 32.6 20.0, 48.1 35.6 23.9, 49.2
4 23.1 6.16, 54.0 43.5 29.2, 58.8 39.0 26.8, 52.6
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hemoplasmas have the provisional taxonomic status “Candidatus,” as they are incom-
pletely described prokaryotes (29–31). Hemoplasmas infect different hosts and are able
attach to, and sometimes intracellularly invade, their erythrocytes (7, 10, 19). Hemo-
plasmas have not been cultured in vitro, and the detection of hemotropic mycoplasmas
using Romanowsky-Giemsa- and/or acridine orange-stained blood smears in combina-
tion with the PCR amplification of target hemoplasma genes is common laboratory
practice for diagnosing these infections in animals and humans (7, 10, 13, 14, 32–34).
However, the examination of stained blood films for hemoplasmas (not performed in
our study) has low sensitivity and specificity, and the absence of hemoplasma-like bodies
on blood film often does not correlate with the PCR results. Hemoplasma concentrations in
the blood of animals may also fluctuate during the course of a hemoplasma infection, and
the low concentrations may not be detected by microscopy (35), especially in immuno-
competent chronically hemoplasma-infected animals. Therefore, microscopic blood
film evaluation is occasionally omitted in multiple published studies on the investiga-
tion of hemoplasma infections in domestic or wild animals (20, 21, 36).

The reported prevalence of hemoplasma-infected animals in a variety of species
ranges from 0.5 to 56.7% (13, 18, 20, 34, 37). In this study, the PCR screening using the
HBT-F and HBT-R primers revealed that 62.1% of raccoons were hemoplasma infected.
The use of these published universal primers allowed us to successfully identify
hemoplasma-positive animals; however, the direct sequencing (i.e., without cloning
into a plasmid vector prior to the sequencing) of PCR products from animals coinfected
with different mycoplasma genotypes was complicated or impossible due to the
presence of the mixed PCR amplicons generated by these universal primers. The
primers amplify the partial 16S rRNA of 595 to 620 bp in size, and the difference in 25
nucleotides (nt) was indistinguishable on electrophoresis in a 1% agarose gel. Thus,
if the primers amplified the 16S fragment from animals coinfected with different
mycoplasma genotypes, it was impossible to discriminate them on a gel and to obtain
a clear sequence of them using the same HBT-F/R primers. To amplify all hemoplasmas
(genotypes), we designed and used new primers that allowed us to amplify all
genotypes separately and produce clear sequences from direct DNA sequencing of PCR
amplicons. The new primers were able to amplify full-length 16S rRNA gene sequences

FIG 2 Species cooccurrence matrix showing patterns of coinfection among the hemoplasma genotypes detected in raccoons. Results of
the genotype cooccurrence matrix represent the probability (P value) of the cooccurrence observed being greater or less than that
expected due to chance. Only significant P values (�0.05) are shown.
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of these hemoplasmas in raccoons in compliance with the recommendation of the
subcommittee on the taxonomy of Mollicutes that in 2012 agreed to require the full-length
16S rRNA gene sequences in papers describing new hemoplasmas (28). The use of
full-length 16S rRNA gene sequences for further phylogenetic analysis may be
especially necessary to distinguish between closely related bacterial species, and thus
the sequencing of the full-length 16S rRNA gene is desirable and usually required
when describing new species (38–40).

After the full-length 16S rRNA sequences for raccoon hemoplasmas were deter-
mined, HBT-F/R primers were retrospectively analyzed for their matching to the hemo-
plasma sequences (against all 6 detected genotypes). The reverse primer (HBT-R)
matched all genotypes with 100% identity. The forward primer (HBT-F) matched
genotypes 1, 5, and 6 with 100% identity; however, one mismatch (in bold) was present
in this region for all sequences of genotype 3 (HBT-F primer sequence, ATACGGCCCA
TATTCCTACG, versus the sequence of genotype 3, ATATGGCCCATATTCCTACG). Two
mismatches (in bold) were present in this region for all sequences of genotype 4 (HBT-F
primer sequence, ATACGGCCCATATTCCTACG, versus the sequence in genotype 4,
ATATGGCCCATATCCCTACG). Despite the presence of these mismatches between the
forward primer and the 16S rRNA sequences of genotypes 3 and 4, we did not observe
any negative impact on the results of our qualitative PCR with these universal primers.
However, for future studies of hemoplasma infections in raccoons using HBT-F/R
primers, we recommend introducing an ambiguous base (Y � C/T) at positions 4 and
14 of HBT-F, which may improve the sensitivity and yield of amplification of target
hemoplasmas, especially in tested samples with low DNA concentrations.

New primers for amplification of the full-length 16S rRNA genes allowed us to detect
six hemoplasmas (genotypes) in raccoons with partial identity to the 16S rRNA gene
sequences of known hemoplasma species. Based on low levels (i.e., �97%) of sequence
similarity of these hemoplasma genotypes to other described hemoplasmas and the
mammalian host in which these genotypes were detected, we believe that five of these
six genotypes represent novel hemoplasma genotypes or putatively novel hemoplasma
species not yet described in other animal species.

Except for two raccoon hemoplasma genotypes, 1 and 5 (M. haemocanis/M. haemofelis-
like), which had 96 to 97% nucleotide sequence identity with each other in their 16S
rRNA genes, the other genotypes, 2 to 4 and 6, demonstrated genetic similarity of �86
to 96% among these genotypes and to other known hemoplasma species. Only the 16S
rRNA gene sequences of genotype 1 demonstrated 99% sequence identity to the 16S
rRNA gene of M. haemocanis and M. haemofelis. M. haemocanis and M. haemofelis by
themselves also have 99% sequence identity with each other in their 16S rRNA genes
and are indistinguishable by the 16S rRNA gene analysis, without the sequencing of
additional housekeeping genes, e.g., rpoB, gyrB, and others. To deeply identify geno-
type 1 as either M. haemocanis or M. haemofelis, we performed amplification of two
housekeeping genes (rpoB and gyrB). The amplification from the rpoB gene was
unsuccessful using different M. haemocanis/M. haemofelis rpoB-specific primers, and
only the gyrB gene was amplified for genotype 1; however, nucleotide sequence
analysis of the gyrB gene and the deduced protein sequences demonstrated low
similarities to both M. haemocanis and M. haemofelis. Thus, based on our results, we
decided that the genotype 1 detected in raccoons is unlikely to belong to the known
species M. haemocanis or M. haemofelis but were closely related to them phylogeneti-
cally.

Phylogenetic studies of the 16S rRNA gene of closely related Mycoplasma species
propose to use the arbitrary interspecies sequence similarity value of �97% as a
minimum level indicating a separate genetically distant species (29, 30, 41). Data based
on the expanded analysis of the 16S rRNA gene sequences of the species within the
family Mycoplasmataceae generally support this proposition (29). Nevertheless, at least
20 pairs of closely related well-established Mycoplasma species with 16S rRNA gene
similarity greater than 97% demonstrated serological, genetic, and ecological features
that defined them as individual species, despite the high percentage of similarity of
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their 16S rRNA genes (for details, see reference 29). Thus, the 16S rRNA sequence
identity of any new isolate of �98 to 99% may not be a clear indication that the
Mycoplasma species is the same or different. Similar examples exist and are well known
for some other closely related species with identical or nearly identical 16S rRNA
sequences (42), e.g., Bacillus and Listeria species (43, 44).

Although about 62.1% of the raccoons in thus study were infected with hemoplas-
mas, they appeared normal upon physical examination. The pathogenicity of the
detected hemoplasmas for the raccoons is unknown and should be investigated in the
future. From a taxonomic point of view, similar to cases of Eperythrozoon teganodes in
cattle (28) and Haemobartonella spp. in horses (33), the genetic relationship between
the previously studied hemoplasma-like species Haemobartonella procyoni in raccoons
of Maryland (27) and the hemoplasmas detected in raccoons this study is unknown,
because there is no known H. procyoni genetic material in any national or international
collection of microorganisms.

The three species of hemoplasma identified in feral cats on St. Simons Island have
been previously detected in blood samples from cats throughout the world, and the
overall proportion of infected cats (17.9%) was within the reported prevalence in cats
seen worldwide (16, 45–51). The most common hemoplasma species found in cats in
our study, “Ca. Mycoplasma haemominutum,” also appears to be the most common
hemoplasma species in cats across many different studies (50, 51). Our study detected
no evidence of cross-species hemoplasma transmission between feral cats and rac-
coons, despite the close proximity of feral cats and raccoons on St. Simons Island.

Interactions between pathogen prevalence, diversity, and anthropogenic distur-
bance, such as urbanization, can be positive, negative, or neutral, depending on the
type of environmental change and how it affects abundance, density, and/or contact
within and between host species, other coinfecting pathogens, and environmental
influences on host immunity and pathogen susceptibility (52–54). The proportion of
hemoplasma-infected raccoons was greater on the undisturbed than on the urban-
ized island, and the proportion of hemoplasma-infected raccoons in both locations was
higher than in urban cats. If hemoplasma transmission is population density depen-
dent, an increase in hemoplasma infection in urbanized habitats is expected (55, 56).
We did not see evidence of this, because trapping success on the urban island (0.41
animals/trap night) was higher than on the protected island (0.24 animals/trap night).
However, we did not perform mark-recapture studies for density estimation. Regardless, in
urbanized areas, raccoons may be more likely to enter traps due to greater habituation
and differing food preferences. Alternatively, hemoplasma transmission may be frequency
dependent, due to bites, scratches, licking (50), and potential vector-borne (flea/tick)
transmission. Assuming that hemoplasma infection can be vector-borne in wild raccoons,
as has been found in cats (10, 46), habitat-related differences in microclimate could
influence hemoplasma transmission. The prevalence of tick-borne diseases and tick
infestation rates in host species is often higher in natural habitats than in urban
environments (57, 58), related to insufficient host diversity to maintain complex tick life
cycles in urbanized areas (59).

The best-fit GLM showed a positive relationship between heavier animals and hemo-
plasma infection in undisturbed habitats, whereas heavier animals in urban habitats had
lower odds of infection. Although associations between sex and hemoplasma infection
were male biased and marginally significant in univariate analyses, sex was not a significant
predictor of hemoplasma infection in our best-fit GLMs. The positive association between
body weight and hemoplasma infection in the undisturbed habitat could be related to
host age; although we did not determine the age of captured raccoons, larger indi-
viduals were likely to be older and may have had increased exposure to ectoparasites
(if arthropod-borne transmission is a dominant mode of transmission) or higher ecto-
parasite infestation. The observation of a positive relationship between weight and
hemoplasma positivity in the undisturbed environment might suggest that heavier
animals may have greater contact with other infected animals or vectors. For the
opposite result in an urban habitat, supplemental feeding (garbage and deliberate feral
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animal feeding by residents) on St. Simons Island might have led to higher tolerance
by raccoons toward conspecific animals, which may reduce aggressive (60) behavior,
reducing the likelihood of fighting and hemoplasma transmission through infected
blood or saliva. Higher food availability or quality in urban habitats (if raccoons were
being fed nutritionally rich supplements, such as cat food) could allow heavier raccoons
to mount a more successful immune defense against hemoplasma (61). Additional
routes of transmission for hemoplasmas, such as transplacental and transmammary
transmission (32), may also influence differences in hemoplasma prevalence, particu-
larly if one population has a different population age structure.

Differences in population management of raccoons between islands may influence
the prevalence of hemoplasma infection. Although there are no published data avail-
able on the relative population densities of raccoons on these two islands, raccoons are
routinely culled on St. Catherines Island to protect damage to sea turtle nests. Culling
may inadvertently increase the transmission of pathogens with frequency-dependent
transmission in part by increasing the birth rate, leading to an increase in susceptible
individuals in a population (62). However, further study is required to thoroughly
understand the epidemiology and mode of hemotropic mycoplasmas in raccoons in
order to pinpoint the causes for differences in infection rates between undisturbed and
disturbed habitats.

Coinfection with multiple hemoplasmas has been described in humans (16),
domestic animals (45, 63, 64), and wildlife (36). However, it remains unknown why
patterns of hemoplasma coinfection vary among raccoons and habitats. For instance,
negative cooccurrence of some hemoplasmas (Fig. 2) may be due to cross-immunity,
ecological interference, or differing contact networks (65) between raccoons in differ-
ent habitat types. One possible explanation for our results is that the protected island
offers a greater opportunity for within-species and cross-species hemoplasma trans-
mission due to contacts with a more diverse host community.

Horizontal transmission of hemotropic mycoplasmas in species other than raccoons
has been hypothesized to be potentially associated with blood-feeding arthropod
vectors, as well as direct transmission via infected blood (e.g., aggressive interactions
and injuries related to animal-to-animal contact, and contact with blood) (10, 66–68).
All these transmission routes may account for the widespread occurrence of hemo-
plasmas in the studied raccoon populations and require additional investigation.

To conclude, this study identified novel hemoplasma genotypes in raccoons and
provided new molecular tools to detect these species. We identified six hemoplasma
genotypes in raccoons that were phylogenetically related to hemoplasma species
previously reported in other mammalian hosts (see Fig. 1). Five of these six hemoplas-
mas appear to be novel hemoplasma genotypes (i.e., never previously reported or
deposited in GenBank). Future studies should (i) explore the probability of cross-species
transmission with additional samples from various sympatric host species and (ii)
evaluate the pathogenicity of hemoplasmas in raccoons, particularly using hematolog-
ical and immunological assays. The potential mechanism of intra- and interspecies
transmission of hemoplasmas and the drivers of its species composition in sympatric
host species remain to be elucidated.

Conclusion. This study provides information about novel hemoplasmas in raccoons
(Procyon lotor), which can be used for assessments of the prevalence of these hemo-
plasmas in raccoon populations. Raccoons from the undisturbed habitat had higher
hemoplasma infection rates than raccoons in a rural habitat. There does not appear to
be cross-species transmission of hemotropic mycoplasmas between urban raccoons
and feral cats.

MATERIALS AND METHODS
Field sites and study populations. Raccoons were live-trapped on two Georgia coast barrier islands,

St. Simons Island (31°9=40�N 81°23=13W) and St. Catherines Island (31°37=50�N 81°9=36.5W), which is
approximately 50 km north of St. Simons Island. St. Simons Island has complex ecosystems, including
ocean beach, salt marsh, maritime forest, and freshwater slough. In addition, St. Simons Island is one of
the most urbanized Georgia Barrier Islands, with a large resident human population and rapidly
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increasing residential developments (69). St. Catherines Island also has diverse habitats, including marsh,
deciduous and evergreen forest, palmetto scrub, and open savannah (70). St. Catherines is a protected
barrier island for scientific research, with no human development, residential areas, or domestic animals.
Adult feral cats were live-trapped on St. Simons Island as a part of spay/neuter program and physically
examined by local veterinarians; no information on the sex of these feral cats was recorded.

Sample collection. Raccoons (n � 95) were trapped in the spring and summer of 2012 along
trapping transects using 20 Tomahawk traps (Tomahawk Live Trap Company, Tomahawk, WI, USA).
Raccoons were anesthetized by intramuscular injection of ketamine (20 mg/kg of body weight; Aveco
Co., Fort Dodge, IA, USA) mixed with xylazine (4 mg/kg; Mobay Corp., Animal Health Division, Shawnee,
KS, USA). The body weight of each animal was measured, and their general physical health was evaluated
by local veterinarians. Approximately 3 ml of blood was collected from all animals (raccoons and cats) by
jugular venipuncture into vacuum tubes containing anticoagulant (EDTA) tubes. Blood samples from
feral urban cats (n � 39) were collected by local veterinarians as part of the physical examination for the
St. Simons Island spay/neuter program. Whole-blood samples in the EDTA tubes were stored at �20°C
until laboratory analysis. In total, we collected 37 and 58 raccoon blood samples from St. Simons Island
and St. Catherines Island, respectively. Institutional Animal Care and Use Committee (A2011 03-042-Y2-
A2) and Georgia Department of Natural Resources wildlife permits (29-WBH-12-100) were obtained
before sampling (71).

DNA extraction, PCR amplification, and sequencing of amplicons. Total DNA was extracted from
200 �l of blood from each individual using the DNeasy blood and tissue kit (Qiagen, Valencia, CA,
USA) or the Quick-gDNA MiniPrep kit (Zymo Research Corporation, Orange, CA, USA) according to
the manufacturers’ protocols and with standard clinical PCR laboratory precautions to avoid cross-
contamination. DNA samples were stored at �80°C until use.

The primary screening for the presence of hemoplasmas was performed by PCR using previously
published HBT-F and HBT-R universal primers for amplification of the partial 16S rRNA hemoplasma
genes (37). These primers amplify the 16S rRNA gene region from positions 313 to 332 to positions 889
to 908 based on the 16S rRNA gene reference sequence of M. haemofelis (accession no. AF178677) (37,
72). Based on our in silico PCR analysis (72) of these universal primers against the different mycoplasma
16S rRNA gene sequences available in the GenBank database, it was demonstrated that depending on
the target Mycoplasma spp., these primers produce PCR fragments with sizes of 595 to 620 bp. In
addition, these universal primers were successfully used for amplification of the partial 16S rRNA
hemoplasma genes in a few published studies (73–75).

A second aliquot of whole blood from each of the hemoplasma-positive samples was used to isolate
additional DNA for amplification of the full-length 16S rRNA gene, the RNA polymerase beta-subunit
gene (rpoB), and the DNA gyrase subunit B gene (gyrB) using PCR primers designed in this study (Table
S1). Eight primer pairs were designed to amplify the full-length 16S rRNA genes, three primer sets were
designed to amplify part of rpoB, and one primer set was designed to amplify part of gyrB based on
sequences of other known hemoplasma species available at GenBank (Table S1, 16S-PCR-1 through
16S-PCR-8, and PCR-A through PCR-D).

The 16S rRNA amplicons produced were directly sequenced (with and without cloning into a plasmid
vector) by Macrogen, and the rpoB and the gyrB amplicons were sequenced directly without cloning.
Prior to sequencing, PCR amplicons were purified by electrophoresis using 1.5% agarose gels and
extracted with the QIAquick gel extraction kit (Qiagen). Amplicons were sequenced with the same
primers used for PCR amplification and then with internal (walking) primers when needed. Cloned
amplicons were produced as described elsewhere (29), and 15 to 20 clones of the 16S rRNA gene PCR
products of each amplicon were sequenced and analyzed.

When the full-length 16S rRNA gene sequences of the hemoplasma genotypes of raccoons were
determined, species-specific 16S rRNA primers to selectively amplify each hemoplasma genotype
identified in raccoons were designed (see Table S1, 16S-PCR-9 through 16S-PCR-13). We used these
species-specific 16S rRNA primers to selectively identify each hemoplasma genotype in blood samples
from raccoons coinfected with different hemoplasma genotypes. The selectivity of these primers for each
hemoplasma genotype was demonstrated by gel electrophoresis (i.e., the presence of a single amplicon
band) and direct sequencing of amplicons.

The amplification mixture for all PCRs (for direct sequencing without cloning) contained 5 �l of 10�
HotStarTaq PCR buffer, 1.5 mM MgCl2, 200 mM dinucleoside triphosphate (dNTP) mixture, 1 mM each
primer, and 2.5 U of HotStarTaq Plus DNA polymerase (Qiagen) in a final volume of 50 �l, including 3 �l
of DNA template. The Vent DNA polymerase kit (New England BioLabs), which contains high-fidelity
thermophilic Vent DNA polymerase, was used for the amplification of PCR products for subsequent
cloning and sequencing using plasmid DNA. The absence of PCR inhibitors in isolated blood DNAs was
confirmed by PCR amplification of the Procyon lotor mitochondrial gene for 16S rRNA, as an extraction
positive control (76) (with primers F1-Animal and R1-Animal) on each sample and negative (no DNA
added) PCR control were run for each PCR assay. The DNA of M. haemocanis and “Ca. Mycoplasma
haemominutum” was used as a positive control for the PCRs with the primers PCR-A through PCR-D.

All PCRs in this study were conducted under the following conditions: a polymerase activation step
at 94°C for 5 min (or 15 min for HotStarTaq only), 40 cycles of 95°C for 30 s, 60°C for 60 s, and 72°C for
60 s, and a final extension at 72°C for 10 min. PCR products were detected by electrophoresis through
1% Tris-acetate-EDTA (TAE)–agarose gels containing ethidium bromide concentrations, followed by UV
visualization.

Phylogenetic analysis. The 16S rRNA sequences determined in this study were compared to those
available in the GenBank database using procedures, algorithms, and methods for phylogenetic tree
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inference, as described elsewhere (18, 29). To avoid the potential presence for chimeric sequences or
PCR-derived variants in the data set, all hemoplasma 16S rRNA PCR products for phylogenetic analyses
were directly amplified from blood DNA samples of raccoons and cats with two different DNA poly-
merases (HotStarTaq and Vent) and were directly sequenced without cloning (77, 78). All gene sequences
prior to the downstream phylogenetic analysis were subjected to the chimeric sequence analysis using
DECIPHER (79) and UCHIME (80). All sequences are deposited in GenBank and are publicly available.

Ecological data analysis. All statistical analyses were performed using R (http://cran.r-project.org)
(81). A descriptive analysis of the hemoplasma infection status of animals collected in each habitat type
was performed. For univariate analyses, we used Pearson’s chi-square tests to compare the frequency of
hemoplasma infection in raccoons in urban and undisturbed environments, raccoon sex and hemo-
plasma infection, raccoon hemoplasma coinfection and habitat type, and hemoplasma infection in urban
cats and raccoons. Additional univariate analyses included a Mann-Whitney U test to evaluate differences
between habitat type and raccoon body mass, hemoplasma infection and body mass, and habitat type
and body mass. A Kruskal-Wallis test and a generalized linear model (GLM) with Poisson errors were used
to evaluate associations between hemoplasma species richness in individual raccoons and body weight.
We used a global GLM with individual hemoplasma infection status (positive or negative) as a response
variable with a binomial error structure to identify factors that may affect mycoplasma prevalence (82).
Sex, habitat type, and body weight were included as explanatory variables alongside biologically
meaningful interactions between covariates. Using the R package AICcmodavg, we applied a stepwise
algorithm and calculated Akaike’s information criteria corrected for small sample sizes (AICc) to deter-
mine which set of covariates provided the best fit to the data. A species cooccurrence matrix was
calculated to evaluate if coinfecting putative hemoplasma species were negatively, randomly, or posi-
tively associated with one another within each host using the R package cooccur (83).

Accession number(s). All DNA sequences from this study were deposited in GenBank under the
accession numbers KF743704 to KF743751, KC920439 to KC920448, and KC936280.
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