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ABSTRACT In 1953, investigators at the Rocky Mountain Laboratories in Hamilton,
MT, described the isolation of a spotted fever group Rickettsia (SFGR) species from
Dermacentor parumapertus ticks collected from black-tailed jackrabbits (Lepus califor-
nicus) in northern Nevada. Several decades later, investigators characterized this
SFGR (designated the parumapertus agent) by using mouse serotyping methods and
determined that it represented a distinct rickettsial serotype closely related to Rick-
ettsia parkeri; nonetheless, the parumapertus agent was not further characterized or
studied. To our knowledge, no isolates of the parumapertus agent remain in any
rickettsial culture collection, which precludes contemporary phylogenetic placement
of this enigmatic SFGR. To rediscover the parumapertus agent, adult-stage D. paru-
mapertus ticks were collected from black-tailed jackrabbits shot or encountered as
roadkills in Arizona, Utah, or Texas from 2011 to 2016. A total of 339 ticks were col-
lected and evaluated for infection with Rickettsia species. Of 112 D. parumapertus
ticks collected in south Texas, 16 (14.3%) contained partial ompA sequences with the
closest identity (99.6%) to Rickettsia sp. strain Atlantic rainforest Aa46, an SFGR that
is closely related or identical to an SFGR species that causes a mild rickettsiosis in
several states of Brazil. A pure isolate, designated strain Black Gap, was cultivated in
Vero E6 cells, and sequence analysis of the rrs, gltA, sca0, sca5, and sca4 genes also
revealed the closest genetic identity to Rickettsia sp. Atlantic rainforest Aa46. Phylo-
genetic analysis of the five concatenated rickettsial genes place Rickettsia sp. strain
Black Gap and Rickettsia sp. Atlantic rainforest Aa46 with R. parkeri in a distinct and
well-supported clade.

IMPORTANCE We suggest that Rickettsia sp. Black Gap and Rickettsia sp. Atlantic
rainforest Aa46 represent nearly identical strains of R. parkeri and that Rickettsia sp.
Black Gap or a very similar strain of R. parkeri represents the parumapertus agent. The
close genetic relatedness among these taxa, as well as the response of guinea pigs
infected with the Black Gap strain, suggests that R. parkeri Black Gap could cause
disease in humans. The identification of this organism could also account, at least in
part, for the remarkable differences in severity ascribed to Rocky Mountain spotted
fever (RMSF) among various regions of the American West during the early 20th
century. We suggest that the wide variation in case fatality rates attributed to RMSF
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could have occurred by the inadvertent inclusion of cases of milder disease caused
by R. parkeri Black Gap.

KEYWORDS Dermacentor, RMSF, Rickettsia, Rickettsia Atlantic rainforest, Rickettsia
parkeri, tick-borne pathogens

The earliest reports of Rocky Mountain spotted fever (RMSF), a tick-borne bacterial
infection caused by Rickettsia rickettsii and among the deadliest of all infectious

diseases in the Americas, also described a clinically similar but surprisingly less virulent
form of the disease. In contrast to the 65% case fatality rate (CFR) documented in the
Bitterroot Valley of western Montana, a far milder form of spotted fever was recognized
in the valleys of the Snake River and its tributaries in southern Idaho, where the CFR was
only approximately 5% (1). Low CFRs were also noted by physicians in adjacent western
states (2):

. . . in Eastern Oregon and along the Idaho and Nevada borders, it would cer-
tainly seem we had an interesting climatic variant of the celebrated pathologi-
cal curio of the Bitter Root Valley. Its chief difference from the latter is a most
fortunate one, and lies in the fact that its mortality is exceedingly low.

The remarkably wide spectrum of virulence attributed to R. rickettsii remains an en-
during mystery of RMSF. The recent identification of other pathogenic spotted fever
group Rickettsia (SFGR) species as causes of rickettsioses in the United States (3, 4)
suggests that some or many of the cases classified historically as RMSF were attrib-
uted to SFGR other than R. rickettsii (5).

In 1953, C. B. Philip and colleagues described the isolation of an SFGR species from
pooled samples of Dermacentor parumapertus ticks (the rabbit dermacentor) (Fig. 1)
collected from black-tailed jackrabbits (Lepus californicus) in northern Nevada (6). When
inoculated intraperitoneally into male guinea pigs (Cavia porcellus), strains of this
organism (designated the parumapertus agent) produced a self-limiting illness,
characterized by 1 to 2 days of a temperature of �40°C that was followed by scrotal
swelling, similar to the disease caused by SFGR species with lower levels of
virulence than R. rickettsii (6, 7). Additional isolates of the parumapertus agent were
subsequently obtained from pooled specimens of adult D. parumapertus ticks
collected in the Great Salt Lake Desert of western Utah from 1954 to 1957 (8) and from
an adult D. parumapertus tick collected in northern California in 1980 (9). By using a
microimmunofluorescence serotyping technique, investigators determined that the
parumapertus agent was a unique rickettsial serotype that was most closely related to
and that formed a minor subgroup with Rickettsia parkeri and Rickettsia sibirica (10, 11).
To our knowledge, no isolate of the parumapertus agent remains in any rickettsial
culture collection, precluding molecular-based phylogenetic placement of this enig-
matic SFGR species. Herein, we describe the likely rediscovery of the parumapertus
agent and consider some potentialities of its past and present influence on the ecology
and epidemiology of rickettsial diseases in the western United States.

RESULTS
Tick collections. A total of 339 adult D. parumapertus ticks were collected from

three western states from 2011 to 2016 (Table 1). These included 72 male and 28 female
ticks collected from 10 black-tailed jackrabbits from Skull Valley in Tooele County, UT,
from 2013 to 2016; 41 male and 24 female ticks collected from 10 black-tailed
jackrabbits within and adjacent to Dugway Proving Ground in Tooele County, UT, from
2011 and 2016; 55 male and 57 female ticks collected from 18 black-tailed jackrabbits
from multiple locations along Farm Road 2627 in Black Gap Wildlife Management Area
in Brewster County, TX, from 2013 to 2015; 30 male and 11 female ticks collected from
a black-tailed jackrabbit in Arivaca in Pima County, AZ, in 2016; and 16 male and 5
female ticks collected from a black-tailed jackrabbit on Ruby Road in Santa Cruz County,
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AZ, in 2016. Twenty-five (20%) of the female tick specimens were fully engorged. Most
ticks were found attached to the inner and outer aspects of the pinnae.

Molecular evaluation of ticks. Of 165 ticks collected from northwest Utah, 127
(77%) were infected by Rickettsia bellii, including 88 (78%) male and 39 (75%) female
ticks (Table 1). Rickettsia rhipicephali was detected in 29 (26%) and 16 (31%) of the male
and female tick specimens, respectively, of which 39 (85%) were coinfected with R.
bellii. A partial ompA sequence 98.2% and 99.4% identical to the corresponding R.
parkeri strain Maculatum 20T and Rickettsia sp. strain Atlantic rainforest Aa46 ompA
sequences, respectively, was detected in one male tick specimen collected in 2016 that
was also coinfected with R. bellii. Sixteen (14%) of 112 ticks collected from south Texas,
comprising 7 male and 9 female tick specimens, contained partial ompA sequences that
were identical to each other and 97.9% and 99.6% identical to the corresponding ompA
segments of R. parkeri Maculatum 20T and Rickettsia sp. Atlantic rainforest Aa46,
respectively. R. bellii was detected in 5 (9%) male and 6 (11%) female ticks. No infections

FIG 1 Specimens of adult female (left) and male (right) Dermacentor parumapertus ticks (the rabbit dermacentor). (Courtesy of James
Gathany [CDC].)

TABLE 1 Collection locations and rates of infection with Rickettsia species in Dermacentor parumapertus ticks collected from black-tailed
jackrabbits (Lepus californicus) in Utah, Texas, and Arizona, 2011 to 2016

Location Yr
No. of ticks
evaluated

No. (%) of ticks positive for a Rickettsia species

Rickettsia parkeri Rickettsia bellii Rickettsia rhipicephali

Dugway Proving Ground, Tooele County, UT 2011 6 0 4 (67) 1 (17)
2016 59 0 52 (88) 27 (46)

Skull Valley, Tooele County, UT 2013 70 0 53 (76) 12 (17)
2016 30 1 (3)a 18 (60) 5 (17)

Black Gap Wildlife Management Area,
Brewster County, TX

2013 8 0 1 (12) 0
2014 60 11 (18)b 6 (10) 0
2015 44 5 (11)b 4 (9) 0

Arivaca, Pima County, AZ 2016 41 0 34 (83) 0
Ruby Road, Santa Cruz County, AZ 2016 21 2 (10)c 21 (100) 0
aA partial (513 bp) ompA sequence 98.2% identical to the corresponding ompA sequence of R. parkeri Maculatum 20T, 99.0% identical to the corresponding ompA
sequence of Rickettsia sp. Black Gap, and 99.4% identical to the corresponding ompA sequence of Rickettsia sp. Atlantic rainforest Aa46.

bA partial (532 bp) ompA sequence 97.9% identical to the corresponding ompA sequence of R. parkeri Maculatum 20T and 99.6% identical to the corresponding ompA
sequence of Rickettsia sp. Atlantic rainforest Aa46.

cA partial (532 bp) ompA sequence 100% identical to the corresponding ompA sequence of R. parkeri Maculatum 20T.
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with R. rhipicephali and no rickettsial coinfections were identified in any of the speci-
mens from Texas. Of 62 specimens of D. parumapertus ticks obtained in southern
Arizona, 55 (89%) were infected with R. bellii, including 41 (89%) male and 14 (88%)
female ticks. No specimens were infected with R. rhipicephali; however, of the R.
bellii-infected ticks, two male tick specimens also contained partial ompA sequences
with 100% identity to the corresponding ompA segment of R. parkeri Maculatum 20T

and one female tick specimen contained a partial ompA sequence with 100% identity
to the corresponding ompA segments of “Candidatus Rickettsia andeanae.”

Isolation in cell culture. Initial attempts to cultivate Rickettsia species from D.
parumapertus ticks were hampered by repeated contamination with various envi-
ronmental bacterial species, including Bacillus cereus, Microbacterium paraoxydans,
Stenotrophomonas maltophilia, and a Lysinibacillus sp. The isolation protocol was
therefore modified by excluding the tick exoskeleton from the primary inoculum by
removing the internal organs with a 26-gauge hypodermic needle and by adding 5
�g/ml gentamicin sulfate to the culture medium for the first 48 h of incubation. One
rickettsial isolate was subsequently obtained in pure culture from a male tick collected
in Brewster County, TX, in 2015. Rare diplobacilli were identified by using acridine
orange stain 5 days after the cells were inoculated with minced tick tissues. A
rickettsial isolate, designated strain Black Gap, was established and successfully passed
6 times in Vero E6 cells. This isolate was deposited in the CDC Rickettsial Isolate
Reference Collection (WDCM 1093; CRIRC RPA035). Two isolates of R. bellii were also
obtained, including one from a male tick specimen collected from Utah (strain Skull
Valley; CRIRC RBE007) and one from a male tick specimen collected in Texas (strain
TX15-1; CRIRC RBE010). Three mixed isolates, each one containing both R. bellii and R.
rhipicephali, were obtained from three ticks coinfected with these two organisms,
collected in Tooele County, UT, and designated strains UT13-17, UT13-26, and UT13-34.

Molecular characterization of Rickettsia sp. strain Black Gap. The complete
sequences of five rickettsial genes (rrs, gltA, sca0, sca5, and sca4) were amplified and
sequenced from DNA extracted from cell cultures for Rickettsia sp. Black Gap and
Rickettsia sp. Atlantic rainforest Aa46. The resultant sequences were compared to the
sequences of established Rickettsia species using BLASTn analysis (Table 2) and were
also compared to each other and to the sequence of the type strain of R. parkeri (Table
3). To identify the relationship of Rickettsia sp. Black Gap and Rickettsia sp. Atlantic
rainforest Aa46 to other established Rickettsia species, a phylogenetic analysis was

TABLE 2 Comparisons of genetic identities of Rickettsia sp. Black Gap and Rickettsia sp. Atlantic rainforest Aa46 to established Rickettsia
species in GenBank

Locus and species (GenBank accession no.)

Established Rickettsia species
with closest BLASTn result
(GenBank accession no.)

No. of identical bases/
no. of bases compared
(% identity)

rrs
Rickettsia sp. Black Gap (KY124256) R. parkeri Portsmouth (CP003341) 1,387/1,390 (99.8)
Rickettsia sp. Atlantic rainforest Aa46 (KY113108) R. parkeri Portsmouth (CP003341) 1,353/1,356 (99.8)

gltA
Rickettsia sp. Black Gap (KY124257) R. sibirica Novosibirsk (KU310587) 1,047/1,048 (99.9)
Rickettsia sp. Atlantic rainforest Aa46 (KY113109) R. sibirica Novosibirsk (KU310587) 1,047/1,048 (99.9)

sca0
Rickettsia sp. Black Gap (KY124258) R. africae ESF-5 (CP001612) 586/590 (99.3)
Rickettsia sp. Atlantic rainforest Aa46 (KY113110) R. africae ESF-5 (CP001612) 588/590 (99.7)

sca5
Rickettsia sp. Black Gap (KY124259) R. africae ESF-5 (CP001612) 4,800/4,846 (99.1)
Rickettsia sp. Atlantic rainforest Aa46 (KY113111) R. africae ESF-5 (CP001612) 4,813/4,846 (99.3)

sca4
Rickettsia sp. Black Gap (KY124260) R. parkeri Portsmouth (CP003341) 2,927/2,956 (99.0)
Rickettsia sp. Atlantic rainforest Aa46 (KY113112) R. parkeri Portsmouth (CP003341) 2,931/2,956 (99.2)
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performed using the concatenated sequences of the five sequenced loci. Maximum
likelihood phylogenetic analysis (Fig. 2) confirmed the genetic comparison data and
indicated that Rickettsia sp. Black Gap and Rickettsia sp. Atlantic rainforest Aa46 were
most closely related to each other and to R. parkeri.

Infection of guinea pigs. A total of eight guinea pigs were inoculated intraperito-
neally with Rickettsia sp. Black Gap in two separate experiments. In the first experiment,
two guinea pigs were each inoculated with 0.25 ml of the rickettsial suspension (3.5 �

107 genomic copies) and two other guinea pigs were each inoculated with 2.5 ml
(3.5 � 108 genomic copies). Three of these animals developed a fever (maximum
temperature [Tmax] � 39.8 to 40.3°C) that began on day 3 or 4 postinoculation and that
persisted for 1 to 2 days, and three animals developed scrotal swelling and erythema
that began on day 4 postinoculation and that persisted for 3 to 5 days. All animals
remained active, and none died during the study period. In the second experiment, all
four animals inoculated with 1 ml (1.9 � 108 genomic copies) of Rickettsia sp. Black Gap

TABLE 3 Comparisons of selected genetic loci among Rickettsia sp. Black Gap, Rickettsia parkeri Maculatum 20T, and Rickettsia sp. Atlantic
rainforest Aa46

Locus
Sequence
length (bp)

No. of base differences/% sequence identity

Rickettsia sp. Black Gap and Rickettsia
sp. Atlantic rainforest Aa46

Rickettsia sp. Black Gap and
R. parkeri Maculatum 20T

R. parkeri Maculatum 20T and Rickettsia
sp. Atlantic rainforest Aa46

rrs 1,390a 1/99.9 3/99.8 3/99.8
gltA 1,048 2/99.8 2/99.8 2/99.8
sca0 590 2/99.7 13/97.8 11/98.1
sca5 4,846 27/99.4 53/98.9 42/99.1
sca4 2,956 10/99.7 37/98.7 33/98.9
aA total of 1,356 bp was amplified from Rickettsia sp. Atlantic rainforest Aa46.

FIG 2 Phylogenetic relationship of Rickettsia sp. Black Gap to other spotted fever group Rickettsia taxa determined using
concatenated sequences of the rrs, gltA, sca0, sca5, and sca4 genes. Homologous sequence data for validated species of
SFGR and Rickettsia felis were obtained from GenBank (www.ncbi.nlm.nih.gov/GenBank). The evolutionary history was
inferred using the maximum likelihood method. Positions containing gaps or missing data were eliminated, leaving a total
of 10,466 nucleotides in the final data set. The scale bar is in units of the number of base substitutions per site. Bootstrap
values for 1,000 replicates are displayed at the nodes.
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developed a febrile response (Tmax � 39.7 to 40.3°C) within 3 to 8 days postinoculation.
Two animals were febrile for 1 day, one animal was febrile for 2 consecutive days, and
one animal demonstrated an intermittent febrile response on days 3, 8, and 10
postinoculation. Mild to moderate scrotal swelling and erythema of the overlying skin
were identified in each of the infected animals beginning on days 4 to 6 postinocula-
tion and persisted for 1 to 5 days (Fig. 3). There was no evidence of fever or scrotal
swelling in the guinea pigs inoculated with noninfected Vero E6 cells (Fig. 3). The mean
percent weight gains for the infected and control animals were 21.5 and 21.0%,
respectively. Infected animals remained active, and none died during the study period.

Histopathological and immunohistochemical evaluation. Histological examina-
tion of tissues from guinea pigs euthanized at day 8 postinoculation revealed extensive
and focally transmural lymphocytic and histiocytic inflammatory cell infiltrates involv-
ing the fibrous and vascular tissues of the tunica vaginalis, tunica albuginea, and tunica
vasculosa of the testes in each of the four infected animals (Fig. 4A). In some animals,
the inflammatory infiltrates included moderate numbers of heterophils and were
accompanied by foci of hemorrhage, thrombosis, and vasculitis. Multifocal lympho-
histiocytic infiltrates were additionally observed in the interstitium of the testes in
two animals (Fig. 4B). Other pathological lesions common to all infected animals
included multifocal intraluminal deposits of mineralized material in collecting tubules
in the medullary rays of the kidneys and small, multifocal, perivascular foci of mixed
inflammatory cell infiltrates in the dermis of skin sampled from the pinnae. By using an
immunohistochemical stain, SFGR were identified in abundance in the inflamed tunics
surrounding the testes of each infected animal (Fig. 4C) and to a lesser extent within the
testicular interstitium of two animals. In two animals, SFGR were also identified within
the inflammatory lesions in the dermis of the pinnae. In one animal, rare immunohis-
tochemical staining was observed in a single focus in the lung, but immunohistochem-
ical staining was otherwise absent from the spleen, liver, kidney, and heart tissues of all
infected animals.

Histological examination of tissues from guinea pigs euthanized at day 14 postin-
oculation revealed mild to moderate lymphohistiocytic infiltrates of the tunics sur-
rounding the testes in each of the four infected animals, but the amount and extent of
inflammation were markedly reduced compared to the amount and extent of inflam-
mation observed at day 8. Focally abundant interstitial lymphohistiocytic infiltrates

FIG 3 (Right) Scrotal swelling and erythema of a male guinea pig (Cavia porcellus) 6 days following intraperitoneal
inoculation with Rickettsia sp. Black Gap. (Left) The normal appearance of the scrotum of control guinea pig
inoculated with noninfected Vero E6 cells.
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FIG 4 Histological appearance of guinea pig tissues at day 8 or 14 following intraperitoneal inoculation with Rickettsia sp. Black Gap. (A)
Abundant lymphocytic and histiocytic inflammatory cell infiltrates involving the fibrous and vascular tissues of the tunica vaginalis, tunica
albuginea, and tunica vasculosa in the testis of a guinea pig at day 8 postinfection (hematoxylin and eosin stain). Magnification, �20. (B)
Interstitial mononuclear inflammatory cell infiltrate in the testis of a guinea pig at day 8 postinfection (hematoxylin and eosin stain).
Magnification, �40. (C) Immunohistochemical localization of rickettsial antigens in the inflamed tunics of the testis of a guinea pig at day
8 postinfection (immunoalkaline phosphatase with naphthol fast-red and hematoxylin counterstain). Magnification, �100. (D and E)
Abundant interstitial inflammatory cell infiltrates involving a testis (D) and an epididymis (E) of guinea pigs at 14 days postinfection
(hematoxylin and eosin stain). Magnifications, �20. (F) Intraluminal mineralized debris in a renal tubule of a guinea pig at 14 days
postinfection. Hematoxylin and eosin stain; magnification, �100.
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were also observed in a testis of one animal (Fig. 4D) and an epididymis of another
animal (Fig. 4E). In each infected animal, mineralized debris was observed in the
collecting tubules of the kidneys (Fig. 4F), and small collections of predominantly
lymphohistiocytic infiltrates were seen in the dermis of the pinnae (Fig. 5). These
histopathological changes were absent from the tissues of the control animals. Im-
munohistochemical staining revealed sparse SFGR in the infiltrates around the testes
of each infected animal, as well as the interstitial infiltrates in a testis of one animal and
in an epididymis of another animal. SFGR were also evident by immunohistochemical
staining in multiple foci in the dermal infiltrates of the pinnae of two infected animals
(Fig. 5). No SFGR were identified by immunohistochemical staining in the lungs,
spleen, liver, kidneys, and heart tissues of any infected animal or in any of the
tissues of the control guinea pigs. At the time of necropsy, the spleens of infected
animals were enlarged by approximately 25% in comparison to those of the control
animals, with the mean spleen/body weight percentages being 0.16 and 0.12% for
infected and noninfected guinea pigs, respectively.

Serology. No antibodies reactive with any of the five rickettsial antigens were
detected in the serum samples from the infected guinea pigs at day 0 or 7 postinoc-
ulation. By day 14 postinoculation, each of the guinea pig serum samples reacted with
each of the five antigens at a reciprocal titer of �64. The geometric mean titers of
antibodies to antigens of R. africae, R. sibirica, R. parkeri, Rickettsia sp. Atlantic rainforest
Aa46, and Rickettsia sp. Black Gap were 108 (range, 64 to 128), 108 (range, 64 to 256),
181 (range, 128 to 512), 362 (range, 128 to 1,024), and 512 (256 to 1,024), respectively.
Neither of the control guinea pigs demonstrated antibodies reactive with any of the
rickettsial antigens at any time point.

DISCUSSION

In the course of these investigations, we identified and characterized a unique
SFGR associated with D. parumapertus ticks that we suggest represents the organ-
ism designated the parumapertus agent by rickettsiologists more than 60 years ago.
Furthermore, this bacterium shares the closest genetic identity with an SFGR respon-
sible for a relatively mild rickettsiosis in Brazil, previously referred to as Rickettsia sp.
Atlantic rainforest (12–15). The absence of an extant isolate of the parumapertus

FIG 5 (Left) Histological appearance of guinea pig pinna 14 days following intraperitoneal inoculation with Rickettsia sp. Black Gap,
demonstrating predominantly mononuclear inflammatory infiltrates in the superficial dermis (hematoxylin and eosin stain). Magnification,
�50. (Right) Immunohistochemical staining of Rickettsia sp. Black Gap antigens within mononuclear cells in the same inflammatory focus
(immunoalkaline phosphatase with naphthol fast-red and hematoxylin counterstain). Magnification, �100.
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agent precludes genetic comparison with Rickettsia sp. Black Gap; nonetheless, multiple
lines of evidence support the likely identity between these SFGR, including a direct
association with D. parumapertus ticks, the similar clinical responses of guinea pigs
following intraperitoneal inoculation, and similarities between historical and contem-
porary serological data determined from animal infection studies.

Only one molecular algorithm to validate a rickettsial species using partial or complete
sequences of various rickettsial genes has been proposed (16). By this method, isolates
are not considered to represent a novel species if two or more of the rrs, gltA, sca0, sca5,
and sca4 gene sequences have identities equal to or greater than 99.8, 99.9, 98.8, 99.2,
and 99.3%, respectively, to the sequences of the genes from another validated rickett-
sial species. By these criteria, neither Rickettsia sp. Black Gap nor Rickettsia sp. Atlantic
rainforest Aa46 represents a novel species. Rickettsia sp. Black Gap is 99.8% identical to
R. parkeri, 99.9% identical to R. sibirica, and 99.3% identical to R. africae for the rrs, gltA,
and sca0 genes, respectively. Rickettsia sp. Atlantic rainforest Aa46 is 99.8% identical to
R. parkeri, 99.9% identical to R. sibirica, 99.7% identical to R. africae, and 99.3% identical
to R. africae for the rrs, gltA, sca0, and sca5 genes, respectively. Phylogenetic analysis
using the concatenated sequences of these genes places Rickettsia sp. Black Gap and
Rickettsia sp. Atlantic rainforest Aa46 with R. parkeri in a well-supported clade that is
distinct from other SFGR species.

Philip and coworkers found that mice infected with the parumapertus agent
produced antibodies with a reciprocal titer to R. parkeri that was 25% of the titer of
antibodies to the homologous antigen (11). In the present study, IgG antibodies of
guinea pigs convalescing from infection from Rickettsia sp. Black Gap reacted with
antigens of R. africae, R. sibirica, R. parkeri, and Rickettsia sp. Atlantic rainforest Aa46 at
geometric mean titers that were approximately 20, 20, 35, and 70%, respectively, of the
geometric mean titer of antibodies to the homologous antigen. The composite sero-
logical and molecular data from this investigation indicate that Rickettsia sp. Black
Gap is nearly identical to Rickettsia sp. Atlantic rainforest Aa46 and represents a
unique strain of R. parkeri. Many other rickettsial taxa closely related to R. parkeri and
associated predominantly or exclusively with Amblyomma species ticks have been identi-
fied during the past decade. These include other rickettsial strains identical or nearly
identical to Rickettsia sp. Atlantic rainforest Aa46 (17–20), as well as several other SFGR
of undetermined pathogenicity (21–26).

The response of male guinea pigs to intraperitoneal inoculation with R. parkeri Black
Gap closely resembles the clinical characteristics elicited by the parumapertus agent, as
described by investigators during the 1950s (6, 8). Interestingly, the characteristics of
this nonlethal infection, manifested in most animals by a mild febrile period lasting a
few days and followed by mild to moderate swelling and erythema of the scrotum for
several days after the temperature has returned to normal, also resemble the
characteristics described after intraperitoneal inoculation of guinea pigs with R.
parkeri (27). In this study, infected animals also developed splenomegaly and prominent
lymphohistiocytic periorchitis that occasionally progressed to orchitis and epididymitis.
Evidence of the systemic dissemination of R. parkeri Black Gap was identified by the
detection of multifocal aggregates of SFGR in mononuclear inflammatory cells in the
pinnae of most infected guinea pigs. Surprisingly, rickettsiae persisted in this location
for at least 14 days following intraperitoneal inoculation of the organism. Investi-
gators previously noted the presence of rickettsial DNA in the pinnae of rodents
collected in the field (28) and in guinea pigs experimentally infected by tick bite or
intraperitoneal inoculation with R. parkeri, R. rickettsii, or Rickettsia slovaca (29). The
observation of rickettsial aggregates in the dermis of the pinnae also complements the
propensity of SFGR to multiply preferentially at temperatures slightly below normal
body temperatures (30), such as those observed in the skin of rabbit pinnae (31). As
noted in this study, the pinnae are also preferred sites of attachment by D. parumap-
ertus ticks. Collectively, these results suggest that pinnae could represent an important
and physiologically relevant site for the acquisition of SFGR by ticks and could provide
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a convenient source of samples that could be collected by nonlethal means from
wildlife species for surveys of active infection with SFGR.

We initially focused out collection efforts in Tooele County in western Utah on the
basis of historical records documenting the frequent occurrence of SFGR in specimens
of D. parumapertus ticks collected from this region. Studies of black-tailed jackrabbits
collected in western Utah from 1954 to 1957 identified serological reactivity to SFGR in
serum samples from 193 (25%) of 773 jackrabbits collected on or near Dugway Proving
Ground. Forty-six (14.7%) of 312 Ord’s kangaroo rats (Dipodomys ordii) and 10 (9.6%) of
104 white-tailed antelope ground squirrels (Ammospermophilus [Citellus] leucurus)
collected from the same location had antibodies reactive with SFGR. From the same
investigation, SFGR were detected in 97 (24%) of 398 pooled specimens of 19,717 adult
D. parumapertus ticks collected from black-tailed jackrabbits (8). In another study,
serum samples from 21 to 40% of black-tailed jackrabbits from collection sites in the
Great Salt Lake Desert in Utah from 1964 to 1973 had antibodies reactive with SFGR
species (32). Longitudinal studies conducted in the same region from 1967 to 1971
identified serological reactivity to SFGR in 13 to 31% of 5,828 black-tailed jackrabbits,
and the species D. parumapertus accounted for 2,657 (94%) of 2,834 ticks collected from
605 black-tailed jackrabbits. The causative agent was not isolated in culture, and
investigators speculated that serological reactivity was most likely attributable to an
SFGR other than a virulent strain of R. rickettsii (33).

We found only one specimen of D. parumapertus infected with an SFGR closely
related to R. parkeri Black Gap among 165 adult ticks collected from 26 black-tailed
jackrabbits encountered from multiple locations in Tooele County from 2011 to
2016. Surprisingly, we identified infections with R. bellii in 77% of adult D. parumapertus
ticks collected in the same region of western Utah. These data suggest a shift in the
predominant rickettsial species within D. parumapertus ticks following the last period of
evaluation in this region during the 1970s. Similarly, we identified R. bellii in 89% of 62
D. parumapertus tick specimens from Arizona, where only 2 ticks contained the DNA of
R. parkeri. Several laboratory investigations have shown that ticks cannot simultane-
ously maintain separate species of Rickettsia by vertical transmission, as demonstrated
by the exclusion of transovarial transmission of R. rickettsii by Rickettsia peacockii in
Dermacentor andersoni ticks (34), R. rhipicephali by Rickettsia montanensis in Dermacen-
tor variabilis ticks (35), and R. rickettsii by R. bellii in Amblyomma dubitatum ticks (36).
This process, known as rickettsial interference, can alter the composition of the predom-
inant SFGR species in tick populations and is likely a dynamic occurrence. The decreased
prevalence of R. rickettsii and a simultaneous predominance of R. bellii were noted in D.
andersoni ticks from the western side of the Bitterroot Valley of Montana during the
latter part of the 20th century (37, 38). In this context, the high rate of infection with
R. bellii observed in the Utah and Arizona specimens of D. parumapertus ticks may
account for the relative absence of R. parkeri in these populations of ticks. Interestingly,
coinfections of ticks with R. bellii and R. rhipicephali were noted in approximately 24% of the
Utah D. parumapertus tick specimens. Culture and molecularly confirmed coinfections
of Dermacentor occidentalis ticks with these agents have been described previously,
albeit rarely (9, 39), and culture-confirmed coinfection of Amblyomma ovale ticks with
R. bellii and Rickettsia sp. Atlantic rainforest has been reported in Brazil (17).

The frequency and distribution of R. parkeri Black Gap in the western United States are
unknown. In the present study, the prevalence of R. parkeri Black Gap infections in D.
parumapertus ticks collected over several years at a single location in southwestern Texas
ranged from 0 to 18%, although more extensive evaluations are needed to better
determine the infection prevalence across the range of D. parumapertus ticks. From one
study of D. parumapertus ticks collected in west Texas, SFGR were detected in 4 (36.3%)
of 11 adult ticks by using a nonspecific hemolymph test (40). The role of black-tailed
jackrabbits in the distribution and maintenance of R. parkeri Black Gap is similarly
unknown, although antibodies reactive with antigens of SFGR have been detected in
approximately 5 to 40% of black-tailed jackrabbits sampled in California, Kansas, Texas,
and Utah (40–43).
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Dermacentor parumapertus ticks are distributed broadly across arid and semiarid
regions of the western United States, and they extend also into several northern and
central states of Mexico (44, 45). Adult D. parumapertus ticks predominantly parasitize
rabbits and hares, especially the black-tailed jackrabbit, although these ticks occasion-
ally attach to larger mammals, including coyotes (Canis latrans), cattle (Bos taurus), and
humans (46–48). Immature D. parumapertus ticks have a more eclectic host range that
includes at least 16 species of small mammals, although Ord’s kangaroo rats are the
host most commonly parasitized by larvae and nymphs (49–54).

In 1908, Maxey (55) noted that �40% of the cases of RMSF in Idaho occurred among
sheepherders in the sagebrush plains, valleys, and foothills in the southern third of the
state, a region that approximates almost identically the distribution of black-tailed
jackrabbits in Idaho (56). From 1909 to 1914, approximately 200 to 400 cases of RMSF
were reported each year from Idaho. The number of annual cases plummeted to
fewer than 50 by 1930, attributed predominantly to changing agricultural practices in
the Snake River Valley that included extensive replacement of sagebrush environments
by cultivated lands and aggressive control campaigns that specifically targeted and
markedly reduced the ground squirrel and jackrabbit populations in this region (57).
While there are no confirmed cases of disease in humans attributable to infection with
R. parkeri Black Gap, some published and anecdotal data document a disease in the
western United States similar to R. parkeri rickettsiosis. One early report of a mild
case of RMSF in a California patient described an illness that occurred approxi-
mately 1 week after the individual was exposed to the bite of an unknown
arthropod while cutting sagebrush in northern Nevada (58). The illness started with
the formation of a small pustule at the bite site and was followed a few days later by
a fever consisting of a temperature that rose to 103°F, intense headache, myalgia,
arthralgia, nausea, and a generalized petechial and maculopapular rash. Blood from the
patient was inoculated into male guinea pigs, and the animals developed scrotal
swelling but only a slight increase in temperature (58). More recently, cases of a
rickettsial disease characterized by multiple eschars, fever, rash, headache, arthralgia,
and myalgia have been identified sporadically in a few patients following travel to
mountainous regions of Colorado and New Mexico (CDC, unpublished data).

The identification of R. parkeri Black Gap allows one possible explanation for the
dramatically different CFRs of RMSF observed in the western United States during
the early 20th century. From 1911 to 1914, Nevada reported 21 cases of RMSF with no
deaths (59), and in southern Idaho from 1926 to 1927, there were 70 cases of spotted
fever with only three deaths, for a CFR of 4.3%. By comparison, 41 (74.5%) of 55 cases
of RMSF reported in western Montana from 1915 to 1924 ended in death (60). More
than 50 cases of R. parkeri rickettsiosis have been documented in the United States,
Argentina, and Uruguay since the initial identification of its role as a pathogen of
humans in 2004 (3, 61–64). Since the discovery in 2010 of a rickettsial disease caused
by an SFGR identical or very similar to Rickettsia sp. Atlantic rainforest Aa46, there
have been four confirmed cases (12–15), and hundreds more are suspected (15, 20,
65) in several states in Brazil. Although U.S. and South American strains of R. parkeri
produce infections that are clinically similar to and frequently misdiagnosed as
RMSF, there are no known deaths attributed to infection with R. parkeri. In this
context, the remarkable disparity of CFRs among regions of the American West
during the early 20th century could have been caused, at least in part, by the
inclusion of cases of disease caused by R. parkeri Black Gap that produced a
nonlethal infection clinically similar to RMSF.

MATERIALS AND METHODS
Tick collection and processing. Adult D. parumapertus ticks were collected from black-tailed

jackrabbits shot or encountered as roadkills from multiple locations in Tooele County, UT, from 2011 to
2016, the Black Gap Wildlife Management Area in Brewster County, TX, from 2013 to 2015, and Santa
Cruz and Pima Counties, AZ, during 2016. Shooting of black-tailed jackrabbits was performed by
experienced hunters and wildlife biologists. These procedures were reviewed and approved by the
Institutional Animal Care and Use Committee at the Centers for Disease Control and Prevention (CDC;
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2532PADRABX and 2824PADRABX). Live ticks were removed from the jackrabbit carcasses by forceps
and identified to the species level by using a standard morphological key for Dermacentor species of the
western United States (66). The ticks were placed directly into 70% ethanol or stored as live specimens
for subsequent analyses. Voucher specimens from collection localities were deposited in the Mississippi
Entomological Museum, Mississippi State University, Starkville, MS (voucher numbers UT13-71011, 80-2t,
AZ16-711X1, and AZ16-711X2). Live specimens were transported to CDC, where these were washed
sequentially for 5 min each in 5% MicroChem Plus, 1.7% sodium hypochlorite, and 3% hydrogen peroxide
and received a final rinse in sterile distilled water. Individual ticks were transferred to a sterile petri dish
and bisected longitudinally using a sterile scalpel blade. One half was placed in 0.2 ml of sterile-filtered
Eagle’s minimum essential medium with Earle’s salts and 5% fetal bovine serum and then frozen at
�80°C, and the other half was processed for DNA extraction.

Molecular evaluation of ticks. Genomic DNA was extracted from frozen or ethanol-preserved tick
specimens by using a DNA minikit (Qiagen, Valencia, CA) and eluted in a final volume of 100 �l. Four
microliters from each extract was used as the template in each of two real-time assays designed to
amplify segments of the gltA gene of SFGR species (67, 68) and R. bellii (17, 69), as well as a heminested
PCR assay targeting a 532-bp segment of the ompA gene (70, 71) (Table 4). Amplicons obtained from the
ompA assay were sequenced in both directions by using a BigDye Terminator (v3.1) kit and an ABI 3130xl
genetic analyzer (Applied Biosystems, Carlsbad, CA). The sequences were assembled using the Se-
quencher (v5.1) program (Gene Codes, Ann Arbor, MI), aligned using the MEGA (v6.05) program (72), and
compared with existing sequences in GenBank using BLAST analysis.

Cell culture isolation. Individual tick halves that matched the corresponding PCR-positive segments
were thawed, transferred to a sterile petri dish, and minced with a sterile scalpel blade. The inoculum
was subsequently placed onto a semiconfluent monolayer of Vero E6 cells in a T25 tissue culture flask
containing 5 ml Eagle’s minimum essential medium with Earle’s salts, 500 mmol L-glutamine, and 10%
heat-inactivated fetal bovine serum with 10 units/ml penicillin, 10 �g/ml streptomycin sulfate, and 0.25
�g/ml amphotericin B. The cultures were incubated at 32°C in a humidified 5% CO2-in-air atmosphere.
The medium was replaced after 24 h with 5 ml of fresh medium containing the same antibiotics indicated
above and again 24 h later with medium without antibiotics. The cell culture medium was thereafter
replaced approximately every 5 days. Cultures were monitored for evidence of infection by examining
cytospin preparations of cells fixed in methanol and stained with a 0.1-g/liter solution of acridine orange
(Becton, Dickinson and Company, Sparks, MD).

Molecular characterization of rickettsial isolates. The complete sequences of the 16S rRNA (rrs),
gltA, ompA (sca0), ompB (sca5), and gene D (sca4) genes were amplified from DNA extracted from the cell
culture isolate, as well as from an isolate of Rickettsia sp. Atlantic rainforest Aa46 (18), kindly provided by
Marcelo Labruna, using the primers described in Table 4 and the thermocycler conditions described
previously (16), with the exception of the gltA PCR, which was modified to use an annealing temperature

TABLE 4 Loci, primers, and probes used in molecular assays in this study

Locus PCR assay Primer or probe sequencea (5= ¡ 3=) Amplicon size (bp) Reference

gltA Real-time TCG CAA ATG TTC ACG GTA CTT T 74 67
TCG TGC ATT TCT TTC CAT TGT G 67
FAM-TGC AAT AGC AAG AAC CGT AGG CTG GAT G-BHQ1 68

gltA Real-time ATC CTG ATT TGC TGA ATT TTT T 338 17
TGC AAT ACC AGT ACT GAC G 17
FAM-ATG ATG TTT GCC ACA CCT TGT GAA AA-BHQ1 69

sca0 Conventional ATG GCG AAT ATT TCT CCA AAA 590 70
GTT CCG TTA ATG GCA GCA TCT 71

Heminested AGT GCA GCA TTC GCT CCC CCT 532 70

rrs Conventional AGA GTT TGA TCC TGG CTC AG 1,462 75
ACG GCT ACC TTG TTA CGA CTT 75

Conventional CGA AAG CCT GAT CCA GCA AT 812 75
TAA GGG CCA TGA TGA CTT GA 75

gltA Conventional ATG ACT AAT GGC AAT AAT AA 1,047 76
CAT AAC CAG TGT AAA GCT G 76

sca5 Conventional CCG CAG GGT TGG TAA CTG C 2,929 77
CCG GCT ATA CCG CCT GTA GT 77

Conventional AAA CAA TAA TCA AGG TAC TGT 2,091 77
TTA GAA GTT TAC ACG GAC TTT T 77

sca4 Conventional ATG AGT AAA GAC GGT AAC CT 1,876 78
TAG TTT GTT CTG CCA TAA TC 78

Conventional CGA TGG TAG CAT TAA AAG CT 2,302 78
TCA GCG TTG TGG AGG GGA AG 78

aFAM, 6-carboxyfluorescein; BHQ1, black hole quencher 1.
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of 55°C. The PCR amplicons were sequenced, assembled, and aligned as described above. Nucleotide
sequences were concatenated in the following order: rrs, gltA, sca0, sca5, and sca4. Homologous
sequences from validated SFGR species and strains were obtained from NCBI (www.ncbi.nlm.nih.gov/).
Gaps were removed using the simple indel coding method (73), and the MEGA (v6.05) program was
utilized to infer the evolutionary history by the maximum likelihood method with the subtree-pruning-
regrafting algorithm. A total of 10,466 nucleotides were included in the final data set, and bootstrap
values were calculated for 1,000 replicates.

Infection of guinea pigs. Isolates from the fourth passage of R. parkeri Black Gap were cultivated in
Vero E6 cells and pelleted by centrifugation at 1,455 � g for 20 min. The supernatant was discarded, and
the cells were resuspended in sterile Snyder I medium. The inoculum was quantified as the rickettsial
copy number per milliliter by using serial dilutions of a quantified plasmid to calculate a standard
curve for a real-time PCR assay targeting the 23S rRNA gene of Rickettsia species (74). In two separate
experiments, 2- to 3-month-old male Hartley guinea pigs (Charles River Laboratories, Wilmington, MA)
were injected intraperitoneally with resuspended rickettsiae and monitored for 8 or 14 days. Noninfected
Vero E6 cells were processed in an identical manner, and a volume of the cell suspension equal to the
infectious inoculum was injected intraperitoneally into male guinea pigs of the same age. Animals were
provided food and water ad libitum and housed in a biosafety level 3 containment room maintained at
20 to 21°C and 30 to 50% relative humidity with a 12-h light and a 12-h dark photoperiod. Rectal
temperatures and scrotal appearance were monitored daily. A rectal temperature of �39.7°C was
considered a febrile response. Animals were euthanized, using CO2 gas, at 8 or 14 days postinfection. All
procedures were approved by the Institutional Animal Care and Use Committee at CDC (LEVGUEC2555).

Histopathological and immunohistochemical evaluation of tissues. Representative segments of
the lung, heart, liver, spleen, kidney, testes, and pinnae were placed in 10% neutral buffered formalin.
Fixed tissues were embedded in paraffin, and sections were cut at 4 �m. Sections were stained by
hematoxylin and eosin and by an immunoalkaline phosphatase technique using a hyperimmune
polyclonal rabbit antiserum sample diluted 1/500. This antibody cross-reacts with multiple species of
SFGR in formalin-fixed tissues (68).

Serology. In the second guinea pig experiment, serum samples were collected from each animal 1
day prior to inoculation and at 7 and 14 days postinoculation. All samples were tested for antibodies
reactive with antigens of R. parkeri Black Gap as well as those of R. parkeri Maculatum 20T, Rickettsia sp.
Atlantic rainforest Aa46, R. sibirica 246T, and Rickettsia africae Z9-HuT by using an indirect immunofluo-
rescence antibody technique. Antigens were prepared from rickettsiae cultivated in L929 cells and
pelleted by centrifugation at 1,455 � g for 20 min. The supernatant was discarded, and the cells were
resuspended in phosphate-buffered saline at pH 7.38 containing 1% bovine serum albumin and 0.01%
thimerosal. Infected cells were irradiated with 1 �106 rads and stored at �70°C until used. Thawed cell
suspensions were dotted onto glass slides, air dried, desiccated for 2 h, and fixed in acetone before
storage at �70°C. Serum samples were preabsorbed with noninfected L929 cells for 45 min at room
temperature. Samples were screened at an initial dilution of 1/16 and serially diluted to the endpoint. A
fluorescein isothiocyanate-labeled anti-guinea pig conjugate reactive with the heavy and light chains of
immunoglobulin G (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) was used at 1/100. Serum
from guinea pigs immunized with R. rickettsii and Coxiella burnetii served as positive and negative
controls, respectively.

Accession number(s). The GenBank accession numbers assigned to the sequences determined in
this study include KY124256 for rrs of R. parkeri Black Gap, KY124257 for gltA of R. parkeri Black Gap,
KY124258 for sca0 of R. parkeri Black Gap, KY124259 for sca5 of R. parkeri Black Gap, KY124260 for sca4
of R. parkeri Black Gap, KY113108 for rrs of Rickettsia sp. Atlantic rainforest Aa46, KY113109 for gltA of
Rickettsia sp. Atlantic rainforest Aa46, KY113110 for sca0 of Rickettsia sp. Atlantic rainforest Aa46,
KY113111 for sca5 of Rickettsia sp. Atlantic rainforest Aa46, KY113112 for sca4 of Rickettsia sp. Atlantic
rainforest Aa46, and KY271186 for ompA of Rickettsia parkeri UT16-13.
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