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Abstract
Management of biliary tract cancer remains challenging. 
Tumors show high recurrence rates and therapeutic 
resistance, leading to dismal prognosis and short 
survival. The cancer stem cell model states that a 
tumor is a heterogeneous conglomerate of cells, in 
which a certain subpopulation of cells - the cancer 
stem cells - possesses stem cell properties. Cancer 
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stem cells have high clinical relevance due to their 
potential contributions to development, progression and 
aggressiveness as well as recurrence and metastasis of 
malignant tumors. Consequently, reliable identification 
of as well as pharmacological intervention with cancer 
stem cells is an intensively investigated and promising 
research field. The involvement of cancer stem cells 
in biliary tract cancer is likely as a number of studies 
demonstrated their existence and the obvious clinical 
relevance of several established cancer stem cell 
markers in biliary tract cancer models and tissues. In 
the present article, we review and discuss the currently 
available literature addressing the role of putative 
cancer stem cells in biliary tract cancer as well as the 
connection between known contributors of biliary tract 
tumorigenesis such as oncogenic signaling pathways, 
micro-RNAs and the tumor microenvironment with 
cancer stem cells.
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Core tip: Using a xenograft model, researchers suc-
cessfully demonstrated that as few as ten of a specific 
subpopulation of biliary tract cancer cells had the 
potency to (serially) establish and recapitulate biliary 
tract cancer in immunodeficient mice. Furthermore, 
expression of established cancer stem cell markers, 
cancer stem cell-related signaling pathways and micro-
RNAs was reported in biliary specimens and cell lines - 
in most cases associated with clinical outcome. Based 
on these results, the existence of cancer stem cells in 
biliary tract is well-founded and potentially harbors new 
options for development of therapeutic strategies.
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INTRODUCTION
General aspects of cancer stem cells
In 1994, Lapidot et al[1] identified a subpopulation 
of cells, characterized by a specific set of surface 
markers that was able to initiate acute myeloid 
leukemia in mice. Since then, numerous of such 
tumor-initiating cells were identified in most solid 
tumors[2]. These tumor-initiating cells, also referred to 
as cancer stem cells (TICs or CSCs) have the ability 
to self-renew as well as to differentiate into different 
lineages - traits that they share with (adult) stem 

cells. Further similarities between tumor-initiating cells 
and normal adult stem cells include the reliance on 
certain highly conserved embryonic pathways (such 
as Hedgehog (Hh), Nanog and Wnt), a specialized 
metabolism (preferential oxidative glycolysis), enhanced 
protection against DNA damage and oxidative stress, 
a specific epigenetic profile (e.g., abnormal polycomb 
repressive complexes activity, see below) as well as 
the expression of specific surface markers (reviewed 
in[2]). The specific abilities and profiles of CSC may 
at least in part explain some of the common clinical 
problems seen when dealing with cancer. CSCs are 
slow-cycling cells that often are in a quiescent state. 
Common chemotherapeutics target proliferating, fast 
cycling cells, thereby erasing the bulk of the tumor 
while not affecting CSCs - a phenomenon resulting in 
tumor recurrence. Moreover, CSCs strongly express 
drug efflux pumps, contributing to the well-known 
chemoresistance of these cells[2-5]. 

Currently, two main models are discussed regarding 
the origin of CSCs[6]. In the “stochastic model”, each 
cancer cell is biologically equivalent and unpredictably 
may acquire a CSC phenotype depending on diverse 
stochastic events from inside the cells (via genetic and 
epigenetic changes) as well as from the surrounding 
environment. The second model called “hierarchic 
model” states that a tumor is, like solid organs, a 
hierarchically organized heterogeneous cell conglomerate 
in which only a small subset of cells - the CSC - have the 
ability to self-renew and to give rise to daughter cells of 
various differentiation, whereas the majority of cancer 
cells that form the bulk of the tumor cannot achieve CSC 
traits. Besides these two main models, a third possible 
origin of CSC is currently discussed in the literature, 
namely de-differentiation of already committed cells - 
a phenomenon that was observed in different tumor 
entities and that is likely to play a role in biliary tract 
cancer (BTC) as discussed later in this article[7-10].

EXPERIMENTAL IDENTIFICATION AND 
CHARACTERIZATION OF CANCER STEM 
CELLS
Identification and/or isolation of CSC based on 
their expression profile (surface markers, signaling 
pathways) as well as their functional characteristics 
represent powerful tools in cancer research. The ability 
of CSCs to form tumors in immunodeficient mice at 
very low cell numbers surrogates their high tumorigenic 
potential[2]. Besides in vivo xenograft experiments, also 
several in vitro techniques are used in CSC research. 
The clonogenic assay similarly addresses the higher 
tumorigenic potential of CSC. Here, very few cells 
(approximate range between 50-200 cells per cm2 - 
highly cell line-dependent) are seeded in a cell culture 
receptacle and the tumorigenic potential is evaluated 
by counting the number of growing colonies, each of 
them originating from a single cell clone representing 
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a potential CSC[11]. Anchorage-independent growth, 
i.e., the formation of tumor spheres in a non-adherent 
environment, is another well-established experimen-
tal approach used in CSC research[12]. Likewise, 
expression of aldehyde-dehydrogenase 1 (ALDH1) is 
considered as a functional CSC marker[13]. ALDH1 is a 
detoxifying enzyme that was shown to be up-regulated 
in cancer and associated with various CSC traits such 
as enhanced tumor growth and the potential of self-
renewal and differentiation[13-16]. Moreover, the so-
called side-population phenotype may signify a CSC 
population. Side-population cells are defined by their 
ability to excrete fluorescent dyes such as Hoechst 
33342 - this characteristic is based on the enhanced 
expression of efflux pumps in (cancer) stem cells[17,18]. 
Lastly, potential CSCs are identified and isolated based 
on their surface markers using fluorescence-activated 
cell sorting or by analysis of expression of established 
(cancer) stem cell genes.

BILIARY TRACT CANCER - CLINICAL 
BACKGROUND
BTC is a heterogeneous malignancy that arises from 
different locations within the biliary tree. It can be 
categorized into intrahepatic cholangiocarcinoma 
(IHC), extrahepatic cholangiocarcinoma (EHC), 
gallbladder cancer (GBC) and mixed hepatocellular-
cholangiocarcinoma (HCC-CC). Although BTC is 
generally a rare disease, it has high clinical significance 
due to its dismal outcome and limited therapeutic 
options[19,20]. Due to late diagnosis, for most patients 
only palliative treatment is possible; furthermore, 
the standard chemotherapeutic approach using a 
combination of cisplatin and gemcitabine results in 
median survival of approximately one year only[21]. 
Therefore, advances in understanding the underlying 
mechanisms of BTC development, progression and 
aggressiveness are of utmost importance for better 
management of this disease. BTC is characterized by 
high recurrence rates, formation of metastasis and 
high therapeutic resistance towards conventional 
chemotherapy regimens[19,20]. The involvement of 
CSC subpopulations in BTC is likely, however, the 
current literature is sparse. In this article, we discuss 
current studies on the role and impact of CSCs in BTC. 
Specifically, we focus on potential CSC markers and 
signaling pathways in BTC and the clinical consequences 
of their expression as well as on giving an overview 
of other aspects of BTC tumorigenesis such as miR 
expression and tumor microenvironment that can be 
linked to BTC CSCs. 

POTENTIAL ORIGINS OF BILIARY TRACT 
CANCER CELLS WITH STEM CELL-LIKE 
CHARACTER
Several hepatic cell types have been suggested to 

represent the origin of BTC CSC (summarized in 
Figure 1)[22]. Mature hepatocytes have the ability to 
de-differentiate into more pluripotent cells through 
mechanisms of cell plasticity and reprogramming, 
thereby acting as a population with stem cell traits[23]. 
IHC is categorized as a primary liver tumor and shows 
characteristics of both hepatocellular carcinoma 
and cholangiocarcinoma, suggesting a potential link 
regarding the cell of origin[24,25]. Evidence for mature 
hepatocytes being the source and quasi-CSC for IHC 
comes from two studies that showed that mature 
hepatocytes are able to transdifferentiate and form 
IHC[9,10]. In another study, it was shown that loss of 
tumor suppressor p53 contributes to dedifferentiation 
of hepatocytes into progenitor cells that can transform 
into IHC[26]. This is especially interesting, since loss of 
p53 is a major genetic characteristic of BTC[27]. Cells 
residing in the Canals of Hering, a hepatic stem cell 
niche, are another possible source of BTC-initiating 
cells[28]. Because the Canals of Hering represent the 
interface between the liver and the biliary system, 
residing stem cell populations may be (1) hepatic 
progenitor cells; (2) biliary progenitor cells; or (3) 
bi-potential progenitor cells, called hepatoblasts 
in humans and “oval cells” in rodents which have 
the ability to differentiate into hepatocytes and 
cholangiocytes[25,29-31]. There is evidence that IHC 
can originate from hepatic stem cells. Expression 
of α-fetoprotein (AFP), a protein expressed by 
fetal hepatocytes and hepatic progenitor cells, was 
demonstrated in IHC[32-34]. In addition, AFP expression 
was shown in BTC cell lines and these AFP-expressing 
BTC cells had characteristics of stem cells[35]. Of note, 
IHC subtypes that were identified to have a hepatic 
stem-like gene signature had very poor prognosis, 
underlining not only the connection between hepatic 
stem cells and IHC, but also the clinical relevance 
and consequences[36]. The peribiliary glands were 
also described as a source of biliary stem cells as 
they are involved in normal biliary tissue turnover 
and repair[37,38]. BTC often occurs under (chronic) 
inflammatory conditions and it was shown that during 
primary sclerosing cholangitis, a chronic inflammation 
of the bile ducts, biliary tree stem cells are activated in 
the peribiliary glands[39]. It can be speculated that due 
to the chronic inflammation and concomitant constant 
activation of these normally quiescent stem cells, 
under these tumor-promoting conditions these cells 
become exposed to an environment that potentially 
causes malignant transformation - which is especially 
relevant taking into account the intrinsic longevity 
of these cells allowing for accumulation of malignant 
events which eventually may lead to a tumorigenic 
CSC phenotype. Moreover, p63, which is a homologue 
of p53 and also a stem cell marker of prostate gland 
and squamous cells was aberrantly expressed in 
IHC arisen from cirrhotic liver[40-42], underlining the 
connection between (chronic) inflammation and CSC 
in BTC.
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their potential to form spheres over several passages, 
indicating self-renewal potential. Furthermore, when 
injected into immunodeficient mice, as few as ten 
of these cells were able to generate tumors and 
this high tumorigenic ability was retained when re-
transplanted[43]. Gene expression analysis of these 
potential BTC CSCs revealed up-regulation of a number 
of genes including genes responsible for self-renewal 
and pluripotency (e.g., SOX2, BMI1, NOTCH1), drug 
resistance (e.g., ABCG2), surface markers (e.g., 
CD24, CD44, EpCAM) and metastasis[43] that are also 
expressed in regular stem cell populations. Another 
study by Wang et al[44] further supports the existence 
of CSCs in BTC: they demonstrated in xenograft 
experiments that the subpopulation of CD24+/CD44+/
EpCAMhigh cells harbor high tumorigenic potential 
compared to the CD24-/CD44-/EpCAMlow counterparts. 
Furthermore, they showed via serial in vivo passaging, 
that the expression profile of CD24/CD44/EpCAM 
remained stable comparable with the primary tumor. 
In addition, tumors resulting from injection of CD24+/
CD44+/EpCAMhigh cells contained both, CD24+/
CD44+/EpCAMhigh as well as phenotypically different 
cell populations, demonstrating the ability of CD24+/
CD44+/EpCAMhigh to self-renew and to produce 
heterogeneous daughter cell populations[44].

Expression of several of these established surface 
and general CSC markers was identified in BTC 
specimens and cells. As shown in Table 1, expression 
of these markers was generally associated with 
disadvantageous clinico-pathological characteristics 
and shorter disease-free and overall survival. 
In addition, several in vitro studies investigated 
downstream targets and processes that are directly 
connected with the expression of these CSC markers in 
BTC. Resistance to anti-tumor treatments is a hallmark 
of cancer and CSCs and caused by up-regulation of 
genes responsible for drug efflux and DNA repair[4]. 
Nakashima and colleagues demonstrated an increase 
of proportion of CD24+/CD44+ cells in gemcitabine-
resistant BTC cells and showed that genes of the 
BRCA/Fanconi repair pathway was over-expressed 
here, thus connecting the observed chemoresistance 
in these CSCs with a particular repair pathway[45]. 
Expression of the drug efflux pump ABCG2 is another 
mechanism of cells to gain therapeutic resistance and 
also an established CSC marker[46]. In BTC, ABCG2 
was shown to be over-expressed in BTC tumor spheres 
and in CD44+/CD133+ cells, making it a candidate 
for pharmacological intervention in putative BTC 
CSCs[43,47,48].

Chemokine receptor 4 (CXCR4) plays an important 
role in repair and regeneration of tissue in adults and 
was also identified as a surface marker of (cancer) 
stem cells[49]. Using a comprehensive gene analysis 
array, Leelawat et al[50] compared the expression 
profile of CD24+ and CD24- BTC cells and found 
enhanced expression of CXCR4 in the CD24+ 

In general, these studies suggest that there may 
not be one BTC CSC population but rather several 
different CSC populations, which in turn mirrors the 
heterogeneity of BTC and makes targeted and per-
sonalized (CSC-based) therapy very challenging and a 
demanding aim in the future.

CANCER STEM CELL MARKERS 
IN BILIARY TRACT CANCER - AN 
OVERVIEW
Limiting dilution cell transplantation assay in 
immunodeficient mice is a method to determine 
tumorigenic potential of cancer cells. CSCs, by their 
nature, harbor high tumorigenic potential, meaning 
that only few of these cells are able to form a 
heterogeneous tumor. Raggi et al[43] isolated BTC 
cells with sphere formation potential from parental 
BTC cells and demonstrated that these cells retained 

Putative origin of BTC cancer stem cells
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Figure 1  Cancer stem cells in biliary tract cancer. Biliary tract cancer stem 
cells are thought to originate from various subpopulations of healthy cells that 
harbor stem cell or stem cell-like traits. Currently available data on clinical biliary 
tract cancer (BTC) specimens revealed up-regulation of established cancer 
stem cells (CSC) cell surface and functional markers as well as aberrant activity 
of signaling pathways and micro-RNA species. Expression of CSC markers and 
stemness factors in BTC tissues is associated with diverse unfavorable clinico-
pathological features and poor prognosis. See text for details.
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subpopulation. Drug-based inhibition of CXCR4 using 
AMD3100 suppressed migration and invasion of 
BTC cells, and this effect was only observable in the 
CD24+ CSC subpopulation[50]. Interestingly, AMD3100 
treatment also reduced sphere formation potential of 
BTC cells in another study, further connecting CXCR4 
expression with stem cell characteristics[51]. RNA 
interference-mediated knockdown of CXCR4 in an IHC 
model inhibited proliferation and colony formation in 
vitro as well as tumorigenicity in vivo[52].

Cardinale et al[53] demonstrated in xenograft 
experiments that CD13+/CD90+ BTC spheroids 
were highly tumorigenic. Interestingly, these two 
surface molecules are established CSC markers that 
also play a role in liver cancer, further confirming 
that hepatocellular carcinoma and BTC may share a 
common origin or CSC subpopulation[54-57].

As mentioned above, CSC can also be identified via 
functional characteristics such as ALDH1 expression[13]. 
Using a BTC cell model, Shuang et al[58] demonstrated 
that, in contrast to ALDH- cells, ALDH+ cells were able 
to form tumor spheres. In addition, epithelial markers 
were reduced in ALDH+ cells, whereas mesenchymal 
markers were strongly expressed - connecting this 
cell population to epithelial-to-mesenchymal transition 
(EMT), a process that is closely related to CSC as 
discussed later in this article[58,59]. 

It is well established that deregulated epigenetic 
events play a huge role in transformation of cells 
towards a malignant phenotype. The polycomb 
repressive complexes (PRC) 1 and 2 are multi-
protein epigenetic regulators which are known to be 
aberrantly active in cancer and essential for CSC to 
maintain their stemness character[60]. Several studies 
indicate a pivotal role of PRC1 and 2 in development 
and progression of BTC (as reviewed in[61]). BMI1, 
which was shown to be expressed in BTC patient 
samples (Table 1), is a core component of the PRC1 
and recently it was demonstrated in BTC cells, 
that pharmacological inhibition of BMI1 resulted in 

reduction of ALDH+ cells and diminished formation 
of tumor spheres[62]. Moreover, in another study, 
BMI1 was found to be significantly higher expressed 
in BTC cells positive for CD133 and OCT3/4, further 
suggesting BMI1 as a CSC marker in BTC[63]. 

Regarding the pluripotency markers NANOG, 
OCT3/4 and SOX2[64], only few studies investigated 
their expression and associated outcomes in clinical 
BTC samples. However, several in vitro and in vivo 
studies suggest a pivotal role of these pluripotency 
markers in BTC CSC. In CD133+ spheres derived from 
GBC cells, OCT4 and NANOG were highly expressed 
and these cells also showed higher resistance to 
chemotherapeutics[65]. In line with these findings, two 
other studies found that in tumor spheres derived from 
BTC cells, stem cell markers such as CD133, NANOG, 
SOX2, SALL4 and OCT4 were up-regulated[53,66]. In 
addition, these spheres over-expressed ABCG2 and 
were resistant to cisplatin and additionally displayed 
high tumorigenic potential when injected into nude 
mice[66]. More evidence for SOX2 being a potentially 
relevant factor in BTC cells with stem cell character 
was presented in another study where the authors 
showed that artificially over-expression of SOX2 
enhanced proliferative capacity, apoptosis resistance 
and migration and invasion potential[67].

RELEVANCE OF STEMNESS PATHWAYS 
IN BILIARY TRACT CANCER STEM CELLS
Several signaling pathways are involved in generation 
and maintenance of CSCs, including the embryonic 
signaling cascades NOTCH, Wnt and Hh as well as the 
interleukin-6 (IL-6)-JAK/STAT cascade and the mTOR 
pathway (for detailed pathway descriptions see[5,83,84]). 
Of note, these embryonic signaling pathways are also 
involved in basic cholangiocyte differentiation[85]. 

Several studies found deregulation of these 
signaling pathways in BTC specimens and corres-

Table 1  Surface and functional cancer stem cell markers in biliary tract cancer and their clinical consequences

Marker Tissue M R S TS Comment Ref

Surface stem cell markers
   CD24 CC, IHC ↑ ↑ ↓ [68-70]
   CD44 CC, EHC, IHC, peri-hilar CC, HCC-CC ↑ ↓ ↓differentiation, ↑recurrence [28,71-75]
   CD133 CC ↓ ↑ [28,63,71]
   CXCR4 GBC, IHC ↑ ↓ ↑ ↑vascular invasion [52,76]
   EpCAM IHC ↓ [28,77]
Functional stem cell markers
   ALDH1 EHC, IHC, perihilar CC ↑ ↓ [58,78]
   BMI1 EHC, HCC-CC, IHC, perihilar CC ↑in tumor specimens [71,79,80]
   NANOG EHC, IHC, perihilar CC
   NESTIN EHC, IHC, perihilar CC
   OCT3/4 GBC, CC ↑ ↓ ↑ ↑tumor size [63,81]
   SALL4 IHC ↑ ↓ ↑vascular and nerve invasion [82]
   SOX2 EHC, IHC, perihilar CC ↑ ↓ ↑ [71,74]

CC: Cholangiocarcinoma; EHC: Extrahepatic cholangiocarcinoma; GBC: Gallbladder cancer; HCC-CC: Combined hepatocellular-cholangiocarcinoma; IHC: 
Intrahepatic cholangiocarcinoma; M: Metastasis; R: Therapeutic resistance; S: Survival; TS: Tumor stage.
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ponding poor clinical outcome parameters (Table 2 
and Figure 1). In addition to these findings, in depth 
experimental approaches as well as experiments on 
pharmacological intervention of these pathways have 
shed more light on their roles in putative CSC in BTC. 
Treatment of cells with the NOTCH pathway inhibitor 
γ-secretase inhibitor (GSI) IX significantly decreased 
the CD24+/CD44+ subpopulation in a BTC cell line 
model[86]. Moreover, single treatment with gemcitabine 
increased the amount of CD24+/CD44+ BTC cells, 
whereas combined treatment with gemcitabine and 
GSI IX mitigated this effect[86]. In an interesting study 
by Zender et al[87] long-term artificial over-expression 
of Notch Intracellular Domain (NICD) 1 - an integral 
factor of the NOTCH signaling cascade - in mouse 
livers resulted in a cell population that, when injected 
into immunodeficient mice, was able to form BTC 
with features of hepatic progenitor cells. This not 
only demonstrates the involvement of the NOTCH 
signaling pathway in CSC, but also suggests a role of 
hepatic progenitor cells in the development of BTC. 
In the same regard, Ishii and coworkers published 
that NICD1 was expressed exclusively in BTC cells 
with CSC characteristics. Furthermore, treatment 
with GSI DAPT decreased the number of potential 
BTC CSCs[35]. Combined drug-based Hh and mTOR 
inhibition reduced viability and proliferation of BTC 
cells in vitro[88]. Intriguingly, combined treatment also 
reduced the number of ALDH+ cells as well as the 
expression of pluripotency factors NANOG and OCT4. 
Additional in vivo experiments also revealed diminished 
tumorigenic potential of the treated cells, indicating 
concerted action of the Hh and mTOR pathway in 
creation and /or maintenance of a CSC phenotype in 
BTC[88]. Constitutively β-catenin expression (mimicking 
active Wnt pathway) promoted self-renewal of hepatic 
progenitor cells and injection of these cells generated 
tumors with characteristics of HCC-CC[89]. 

Cellular plasticity of differentiation is discussed 
as a characteristic of CSC in BTC[90]. A phenomenon 
tightly connected to cellular plasticity and therefore 

to a CSC phenotype is the ability of cells to detach 
from the primary tumor and to gain access to the 
lymphatic and/or vascular system, i.e., the cells 
become invasive. In order to do so, these invasive 
and potentially stem cell-like cancer cells have to 
carve through the surrounding extracellular matrix. 
Matrix metallopeptidases (MMP) are enzymes that are 
centrally involved in the breakdown of the extracellular 
matrix. Active Wnt pathway was shown to directly 
up-regulate MMP expression in BTC cells, giving BTC 
cells the ability to gain invasive capabilities[91]. More 
evidence that the Wnt pathway influences the CSC 
phenotype in BTC comes from Zhao and coworkers: 
knockdown of the BTC CSC marker CXCR4 (Table 1) 
also caused inhibition of the Wnt pathway[52]. Direct 
causality of these events was proven by providing 
the ligand CXCL12, which resulted in activation the 
Wnt pathway and the respective downstream targets 
including CD44[52]. 

Artificial activation of Hh pathway (via up-regulation 
of the ligand SHH) enhanced invasiveness of GBC cells 
and this effect was reversible via shRNA-mediated 
or drug-based (cyclopamine) intervention[92]. Further 
experiments showed that regulation of MMP expression 
via the Hh pathway was a potential underlying 
molecular mechanism of this observation[92]. In the 
same study, Hh pathway activation was associated 
with enhanced colony formation and this effect was 
reversed by RNA interference-mediated Hh pathway 
blockage. Finally, GBC cells with active Hh signaling 
harbored greater tumor-generating capability in vivo, 
underlining the importance of this pathway in BTC for 
several aspects connected with CSC characteristics[92].

BTC often develops under inflammatory conditions 
and in this regard, diverse cytokines such as IL-6 
are involved. It was shown that under chronic 
inflammatory conditions, neoplastic cholangiocytes 
are able to produce and secrete IL-6 in an autocrine 
loop, resulting in proliferation and induction of 
DNA damaging molecules such as reactive oxygen 
species and nitric oxide[24]. The JAK/STAT signaling 

Table 2  Overly active pathways associated with cancer stem cell-like phenotype in biliary tract cancer specimens

Pathway Component Tissue Outcome Ref.

Hh GLI1 GBC ↑ lymph node metastasis [92,100]
SHH CC, GBC ↑ grade (by trend) [92,100,101]
SMO GBC [92]

JAK / STAT STAT3 CC, IHC ↑ tumor size, ↑ metastasis, ↑ vascular invasion, ↓ survival, poor histological differentiation [102,103]
mTOR mTOR BTC ↓ survival [104]

pmTOR1 GBC ↓ survival [105]
NOTCH NOTCH 1 EHC poor histological differentiation, ↓ survival, ↑ tumor grade, ↑ Cyclin E [86,87]

NOTCH 2 EHC ↓ survival [86]
NOTCH 3 EHC ↓ survival, ↑ tumor grade, ↑ Cyclin E [86,87]
NOTCH 4 EHC [86]

HES-1 EHC ↓ survival [86]
Wnt β-catenin CC ↑ metastasis [91]2

1Phosphorylated mTor; 2In this study, no non-tumor control samples were used as control. CC: Cholangiocarcinoma; EHC: Extrahepatic cholangiocarcinoma; 
GBC: Gallbladder cancer; IHC: Intrahepatic cholangiocarcinoma. 
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cascade is one of the downstream pathways that is 
activated via inflammation-related cytokines in BTC 
development[93,94]. In an interesting study using GBC 
cells, Kong et al[95] isolated side-population cells and 
compared the functional and molecular characteristics 
of these potential CSCs with the non-side-population 
cells. They found enhanced expression of IL-6 and 
activated (i.e., phosphorylated) STAT3 in the side-
population cells. Intriguingly, these cells harbored 
multiple CSC traits: enhanced tumor sphere and 
colony formation potential, chemoresistance, the 
ability to generate both, side-population and non-side-
population cells and, finally, high tumorigenic potential 
in vivo[95]. Drug-based inhibition of STAT3 reduced 
growth and migration/wound healing potential of BTC 
cells[94]. Moreover, treatment of cells with the natural 
compound luteolin suppressed the activation of the 
IL-6-induced JAK/STAT3 cascade in BTC cells which 
resulted in diminished migration, wound healing and 
colony formation potential[96]. 

mTOR inhibition was directly connected to loss of 
CSC characteristics in BTC cell lines: treatment with 
rapamycin decreased migration, invasion as well as 
sphere formation potential[97]. Similar results were 
presented by two other studies in GBC cells[98,99]. Of 
note, activated mTOR pathway was found in highly 
proliferative and metastatic GBC cells[99].

MIRNAS AND THEIR ROLE IN 
REGULATION OF BILIARY TRACT 
CANCER STEM CELL CHARACTERISTICS
Micro-RNAs (miRs) are non-coding RNAs that regulate 
gene expression by binding and degradation of 
target mRNAs[106]. As recently reviewed, aberrant 
miR expression is involved in different aspects of 
BTC development and progression[107]. However, up 
to now, only few studies associated deregulated miR 
expression with CSC characteristics in BTC. The miRs 
let-7c/99a and 125b originate from the same gene 
cluster and were shown to be down-regulated in CC 
patient material, de-facto being tumor suppressor 
miRs[108]. Interestingly, expression of these miRs was 
reduced in tumor spheres derived from BTC cells and 
in addition, enforced expression of let-7c/99a and 
125b reduced the expression of CD133 and CD44 
in BTC cells as well as the potential to form tumor 
spheres[108]. Of note, in the same study, the Interleukin 
6 (IL-6) pathway, including IL-6 itself, its receptor IL-
6R and the downstream transcription factor STAT3 
were identified as targets of this particular miR cluster. 

MiR21 is a potent oncogenic miR in BTC with 
several established targets that contributes to 
disadvantageous clinical outcome[107]. Zhang et al[109] 
published that miR21 is necessary for survival of 
CD24+ cells in primary liver cancer, indicating a role of 
miR21 in the CSC phenotype in BTC. 

Although the number of studies regarding miRs 

and CSC in BTC is limited as of today, the overlap 
between described deregulated miRs in BTC and 
the role of these miRs in CSC of other tumor types 
strongly suggests a role of these miRs also in CSC 
of BTC. For example, miR200b is down-regulated 
in BTC samples, resulting in shorter survival[110]. In 
lung adenocarcinoma, reduced miR200b expression 
was shown to be a marker of CSC and, interestingly, 
restoration of miR200b expression resulted in loss of 
CSC maintenance and chemoresistance[111]. MiR145 
is another miR species that was found to be down-
regulated in BTC specimens and associated with 
poor survival[112]. Likewise, in lung adenocarcinoma 
tissues, miR145 was found to be down-regulated and 
negatively correlated with expression of OCT4[113]. 
Moreover, forced expression of miR145 in lung cancer 
initiating cells markedly reduced CSC features in vitro 
and in vivo[113]. In prostate cancer, miR34a was down-
regulated in the CD44+ CSC subpopulation and the 
down-regulation of this miR species was also measured 
in BTC samples and correlated with advanced clinical 
stage, lymph node metastasis and poor survival[114,115].

BRIEF OUTLOOK ON BILIARY TRACT 
CANCER STEM CELLS AND TUMOR 
MICROENVIRONMENT
CSCs are thought to reside in specific environments 
called stem cell niches. The CSC niche consists of 
various cell types and structures including immune 
cells, mesenchymal (stem) cells, fibroblasts, vascular 
network, soluble factors and extracellular matrix 
components and has the function to preserve the 
exclusive features of CSC as well as to protect them 
from therapeutic intervention[116]. By creating a 
suitable tumor microenvironment (TME), the CSC 
niche plays an outstanding role in development and 
progression of cancer, essentially supporting tumor 
growth in multiple aspects. On the other hand, CSCs 
also support their TME for example by inducing the 
expression of survival genes[116]. Data regarding CSC 
niches and TME in BTC are very limited, however, 
the TME likely contributes to angiogenesis, invasion, 
metastasis, therapeutic resistance, maintenance of 
CSC niche and survival of CSC also in BTC[117]. In 
an interesting study, Raggi et al[43] demonstrated 
the importance of the interaction between BTC cells 
and macrophages for tumor development. Medium 
gathered from BTC cells with CSC characteristics 
(spheres) activated CD14+ macrophages and shifted 
their phenotype towards CD163+ so-called tumor-
associated macrophages (TAM) which harbored high 
invasive capacity accompanied by expression of the 
matrix-remodeling gene MMP2. In the same study, 
CD163+ macrophages were found at the tumor front 
in BTC samples, suggesting the importance of these 
immune cells in progression of BTC. Moreover, the 
levels of TAMs were associated with poor prognosis of 
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BTC patients[118-120]. Evidence that BTC CSCs not only 
are able to activate TAMs but also to chemo-attract 
them was shown via chemotaxis experiments, in which 
CD14+ strongly migrated towards medium derived 
from BTC spheres[43]. 

Mesenchymal stem cells (MSCs) are multipotent 
adult stromal stem cells that have the ability to 
generate diverse types of connective tissue[121]. They 
produce a wide range of cytokines and chemokines, 
thereby strongly communicating with their near and 
far environment. Several studies demonstrated that 
MSCs not only support tumor growth and CSC as a 
part of the TME, but also that MSC actively migrate 
towards tumor sites[122]. Regarding BTC, media from 
MSCs increased migration, invasion, proliferation, 
chemoresistance and colony formation potential of BTC 
cells in vitro[91]. Moreover, media from MSCs activated 
Wnt/β-catenin signaling as well as MMP expression. 
In a xenograft model, the authors also demonstrated 
that injection of BTC cells together with MSCs resulted 
in significantly larger tumors[91]. Recently, it was 
shown that media derived from BTC cells enhanced 
the migratory potential of MSC as well as the release 
of IL-6[123]. On the other hand, culture media derived 
from these “activated” MSCs significantly increased 
proliferation of BTC cells as well as the amount of 
pSTAT3. This effect was completely blocked by the 
addition of an anti-IL-6 antibody. This is especially 
interesting because of the well-known role of the IL-6/
JAK/STAT cascade in CSCs (see above), thus indicating 
that MSC can directly support CSCs in BTC. Further 
evidence that MSCs may directly interact with CSC 
comes from the fact that MSCs secrete CXCL12, the 
ligand of the putative BTC stem cell surface marker 
CXCR-4 (Table 1)[121]. 

Epithelial-to-mesenchymal transition (EMT) is 
a process in which cells lose their epithelial traits 
and gain mesenchymal character, allowing them to 
detach from the primary tumor and subsequently to 
form secondary tumors. On molecular level, loss of 
epithelial markers such as E-Cadherin and enhanced 
expression of mesenchymal markers such as Vimentin 
can be observed during EMT[124,125]. Key factors that 
can initiate EMT include Slug, Snail and Twist, which 
are repressors of E-Cadherin[125]. The process of EMT 
is closely related to CSC phenotype. For example, 
several established CSC pathways such as Wnt, 
NOTCH and mTOR are involved in EMT and forced 
expression of EMT resulted in enrichment of CSC 
subpopulation (as reviewed in[126]). For BTC, Shuang 
et al[58] connected an EMT phenotype with CSC 
characteristics. They demonstrated that the ALDH+ 
subpopulation expressed low levels of E-Cadherin and 
high levels of the mesenchymal markers Vimentin 
and N-Cadherin. In another study, the authors 
recognized reduced expression of the ubiquitin ligase 
FBXW7 in BTC samples and found a correlation with 
the metastasis status[97]. Interestingly, the authors 
demonstrated via in vitro and in vivo experiments in 

BTC cells, that silencing of FBXW7 resulted in both, 
an EMT and a CSC phenotype: the epithelial marker 
E-Cadherin was found to be down-regulated, whereas 
Vimentin was up-regulated. Regarding CSC markers, 
silencing of FBXW7 increased the expression of OCT4 
and NANOG and enhanced tumor sphere formation 
capability of the tested BTC cells. Conversely, forced 
expression of FBXW7 reversed both, the EMT and the 
CSC phenotype[97]. Results from a study conducted by 
Matsushita and colleagues also suggests a role of the 
Hh pathway in EMT regulation in BTC: knockdown 
of the Hh pathway component SMO caused up-
regulation of E-Cadherin and down-regulation of 
Vimentin, accompanied by decreased invasive 
potential of these cells[92]. Lastly, Kong et al[95] 
demonstrated an EMT phenotype (high Vimentin and 
low E-Cadherin protein expression) in side-population 
CSCs in GBC, further connecting the EMT process with 
the CSC phenotype.

CONCLUSION
Although several studies suggest the existence of 
BTC-specific CSC, additional independent studies 
should verify these results in functional BTC models, 
especially in xenograft experiments. Furthermore, due 
to the heterogenic character of BTC, it should be taken 
into account that multiple CSC subpopulations with 
potentially different genetic background and surface 
marker profiles may exist. Involvement of classical 
stemness pathways and complexes such as Hh, Wnt, 
NOTCH and the PRCs as well as of diverse miR species 
in generation and maintenance of CSC in BTC is very 
likely. However, up to now, only few studies directly 
associated the ascertained role of these factors for 
BTC development with CSC characteristics (Table 2). 
Moreover, future studies should also concentrate on 
the role of the TME in the creation and maintenance of 
potential CSC niches in BTC. The CSC status is strongly 
dependent on the microenvironment, meaning that 
CSC traits may very well be not a static, but rather 
a dynamic phenomenon in which the TME and CSC 
niche play an absolutely pivotal role[127]. In this light, 
limitations of current in vitro and in vivo models should 
always be kept in mind, as (artificial) imitation of an 
environment as complex and as dynamic as the TME 
seems very challenging. Current clinical trials involving 
the CSC concept mainly include immunotherapies, use 
of CSCs as biomarkers, several CSC-targeted therapies 
(e.g., metformin, Hh or Notch inhibitors with/without 
concomitant chemotherapy). However, currently no 
studies are registered at clinicaltrials.gov specifically 
enrolling patients with BTC. In addition, future studies 
should also concentrate on the investigation of the role 
crosstalk between stemness pathways regarding BTC 
CSC as well as on the role of (chronic) inflammation in 
the formation and maintenance of a CSC phenotype 
in BTC, especially due to the fact that in BTC cells 
positive for CD133 or OCT3/4, enhanced levels of 
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inflammation-related DNA damage was observed[63].
Taken together, CSCs are promising and attractive 

targets for pharmacological intervention. Therefore, 
regarding BTC, after identification and validation of 
putative CSC populations, screening and testing of 
anti-CSC-targeting compounds in BTC models will be of 
great importance in order to develop new therapeutic 
strategies and approaches. 
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