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Abstract

We consider a partially linear framework for modelling massive heterogeneous data. The major 

goal is to extract common features across all sub-populations while exploring heterogeneity of 

each sub-population. In particular, we propose an aggregation type estimator for the commonality 

parameter that possesses the (non-asymptotic) minimax optimal bound and asymptotic distribution 

as if there were no heterogeneity. This oracular result holds when the number of sub-populations 

does not grow too fast. A plug-in estimator for the heterogeneity parameter is further constructed, 

and shown to possess the asymptotic distribution as if the commonality information were 

available. We also test the heterogeneity among a large number of sub-populations. All the above 

results require to regularize each sub-estimation as though it had the entire sample size. Our 

general theory applies to the divide-and-conquer approach that is often used to deal with massive 

homogeneous data. A technical by-product of this paper is the statistical inferences for the general 

kernel ridge regression. Thorough numerical results are also provided to back up our theory.
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1. Introduction

In this paper, we propose a partially linear regression framework for modelling massive 

heterogeneous data. Let  be samples from an underlying distribution that 

may change with N. We assume that there exist s independent sub-populations, and the data 

from the jth sub-population follows a partially linear model:
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(1.1)

where ε has zero mean and known variance σ2. In the above model, Y depends on X through 

a linear function that may vary across all sub-populations, and depends on Z through a 

nonlinear function that is common to all sub-populations. The possibly different values of 

 are viewed as the source of heterogeneity. We also point out that the sample sizes in 

some sub-populations could be extremely high in reality. Note that (1.1) is a typical “semi-

nonparametric” model (Cheng and Shang, 2013) since we want to infer both commonality 

and heterogeneity components throughout the paper.

The model (1.1) is motivated by the following scenario: different labs conduct the same 

experiment on the relationship between a response variable Y (e.g., heart disease) and a set 

of predictors Z, X1, X2,...,Xp. It is known from biological knowledge that the dependence 

structure between Y and Z (e.g., blood pressure) should be homogeneous for all human. 

However, for the other covariates (e.g., certain genes), we allow their (linear) relations with 

Y to potentially vary in different labs. For example, the genetic functionality of different 

races might be heterogenous. The linear relation is assumed here for simplicity, and 

particularly suitable when the covariates are discrete.

Statistical modelling for massive data has attracted a flurry of recent research. For 

homogeneous data, the statistical studies of the divide-and-conquer method currently focus 

on either parametric inferences, e.g., Bag of Little Bootstraps (Kleiner et al., 2012), and 

parallel MCMC computing (Wang and Dunson, 2013), or nonparametric minimaxity (Zhang 

et al., 2013). The other relevant work includes high dimensional linear models with variable 

selection (Chen and Xie, 2012) and structured perceptron (McDonald et al., 2010). 

Heterogenous data are often handled by fitting mixture models (Aitkin and Rubin, 1985; 

McLachlan and Peel, 2004; Figueiredo and Jain, 2002), time varying coefficient models 

(Hastie and Tibshirani, 1993; Fan and Zhang, 1999) or multitask regression (Huang and 

Zhang, 2010; Nardi and Rinaldo, 2008; Obozinski et al., 2008). The recent high dimensional 

work includes Stäadler et al. (2010); Meinshausen and Bühlmann (2014). However, as far as 

we are aware, semi-nonparametric inference for massive homogeneous/heterogeneous data 

still remains untouched.

In this paper, our primary goal is to extract common features across all sub-populations 

while exploring heterogeneity of each sub-population. Specifically, we employ a simple 

aggregation procedure, which averages commonality estimators across all sub-populations, 

and then construct a plug-in estimator for each heterogeneity parameter based on the 

combined estimator for commonality. The secondary goal is to apply the divide-and-conquer 

method to the sub-population having a huge sample size that is unable to be processed in one 

single computer. The above purposes are achieved by estimating our statistical model (1.1) 

with the kernel ridge regression (KRR) method. The KRR framework is known to be very 

flexible and well supported by the general reproducing kernel Hilbert space (RKHS) theory 

(Mendelson, 2002; Steinwart et al., 2009; Zhang, 2005). In particular, the partial smoothing 

spline model (Wahba, 1990) can be viewed a special case. An important technical 
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contribution of this paper is that a (point-wise) limit distribution of the KRR estimate is 

established by generalizing the smoothing spline inference results in Cheng and Shang 

(2013). This theoretical innovation makes our work go beyond the existing statistical study 

on the KRR estimation in large datastes, which mainly focus on their nonparametric 

minimaxity, e.g., Zhang et al. (2013); Bach (2012); Raskutti et al. (2014).

Our theoretical studies are mostly concerned with the so-called “oracle rule” for massive 

data. Specifically, we define the “oracle estimate” for commonality (heterogeneity) as the 

one computed when all the heterogeneity information are given (the commonality 

information is given in each-subpopulation), i.e., 's are known (f0 is known). We claim 

that a commonality estimator satisfies the oracle rule if it possesses the same minimax 

optimality and asymptotic distribution as the “oracle estimate” defined above. A major 

contribution of this paper is to derive the largest possible diverging rate of s under which our 

combined estimator for commonality satisfies the oracle rule. In other words, our 

aggregation procedure can “filter out” the heterogeneity in data when s does not grow too 

fast with N. Interestingly, we have to set a lower bound on s for our heterogeneity estimate 

to possess the asymptotic distribution as if the commonality information were available, i.e., 

oracle rule. Our second contribution is to test the heterogeneity among a large number of 

sub-populations by employing the recent Gaussian approximation theory (Chernozhukov et 

al., 2013). The above results directly apply to the divide-and-conquer approach that deals 

with the sub-population with a huge sample size. In this case, the “oracle estimate” is 

defined as those computed based on the entire (homogeneous) data in those sub-populations. 

A rather different goal here is to explore the most computationally efficient way to split the 

whole sample while performing the best possible statistical inference. Specifically, we derive 

the largest possible number of splits under which the averaged estimators for both 

components enjoy the same statistical properties as the oracle estimators.

In both homogeneous and heterogeneous setting above, we note that the upper bounds 

established for s increase with the smoothness of f0. Hence, our aggregation procedure 

favors smoother regression functions in the sense that more sub-populations/splits are 

allowed in the massive data. On the other hand, we have to admit that our upper and lower 

bound results for s are only sufficient conditions although empirical results show that our 

bounds are quite sharp. Another interesting finding is that even the semi-nonparametric 

estimation is applied to only one fraction of the entire data, it is nonetheless essential to 

regularize each sub-estimation as if it had the entire sample.

In the end, we highlight two key technical challenges: (i) nontrivial interaction between the 

parametric and nonparametric components in the semi-nonparametric estimation. In 

particular, we observe a “bias propagation” phenomenon: the bias introduced by the 

penalization of the nonparametric component propagates to the parametric component, and 

the resulting parametric bias in turn propagates back to the nonparametric component. To 

analyze this complicated propagation mechanism, we extend the existing RKHS theory to an 

enlarged partially linear function space by defining a novel inner product under which the 

expectation of the Hessian of the objective function becomes identity. (ii) double 

asymptotics framework in terms of diverging s and N. In this challenging regime, we 
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develop more refined concentration inequalities in characterizing the concentration property 

of an aggregated empirical processes. These delicate theoretical analysis show that an 

average of s asymptotic linear expansions is still a valid one as .

The rest of the paper is organized as follows: Section 2 briefly introduces the general RKHS 

theory and discusses its extension to an enlarged partially linear function space. Section 3 

describes our aggregation procedure, and studies the “oracle” property of this procedure 

from both asymptotic and non-asymptotic perspectives. The efficiency boosting of 

heterogeneity estimators and heterogenous testing results are also presented in this section. 

Section 4 applies our general theory to various examples with different smoothness. Section 

5 is devoted to the analysis of divide-and-conquer algorithms for homogeneous data. Section 

6 presents some numerical experiments. All the technical details are deferred to Section 7 or 

Online Supplementary.

2. Preliminaries

In this section, we briefly introduce the general RKHS theory, and then extend it to a 

partially linear function space. Below is a generic definition of RKHS (Berlinet and 

Thomas-Agnan, 2004):

Definition 2.1

Denote by  a vector space of functions from a general set  to . We say that  is a 

reproducing kernel Hilbert space (RKHS) on , provided that:

(i)  is a vector subspace of ;

(ii)  is endowed with an inner product, denoted as , under which it 

becomes a Hilbert space;

(iii) for every , the linear evaluation functional defined by Ey(f) = f(y) is 

bounded.

If  is a RKHS, by Riesz representation, we have that for every , there exists a 

unique vector, , such that for every . The 

reproducing kernel for  is defined as .

Denote , and  as the distribution of U (  and  are 

defined similarly). According to Definition 2.1, if  and , then we 

can define a RKHS  (endowed with a proper inner product ), in which 

the true function f0 is believed to lie. The corresponding kernel for  is denoted by K such 

that for any : . By Mercer theorem, this kernel function has the 

following unique eigen-decomposition:
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where μ1 ≥ μ2 ≥ ... > 0 are eigenvalues and  are an orthonormal basis in . Let 

 be the Fourier coefficient of f0 under the basis  (given the -inner 

product ). Mercer theorem together with the reproducing property implies that 

, where δij is the Kronecker's delta. The smoothness of the functions in 

RKHS can be characterized by the decaying rate of . Below, we present three 

different decaying rates together with the corresponding kernel functions.

Finite rank kernel—the kernel has finite rank r if  for all . For example, the 

linear kernel  has rank d, and generates a d-dimensional linear 

function space. The eigenfunctions are given by  for . The polynomial 

kernel K(z1, z2) = (1 + z1 z2)d has rank d + 1, and generates a space of polynomial functions 

with degree at most d. The eigenfunctions are given by  for .

Exponentially decaying kernel—the kernel has eigenvalues that satisfy 

 for some c1 c2 > 0. An example is the Gaussian kernel K(z1, z2) = 

exp(–|z1 – z2|2). The eigenfunctions are given by Sollich and Williams (2005)

(2.1)

for , where  is the  Hermite polynomial.

Polynomially decaying kernel—the kernel has eigenvalues that satisfy  for 

some ν ≥ 1/2. Examples include those underlying for Sobolev space and Besov space 

(Birman and Solomjak, 1967). In particular, the eigenfunctions of a ν-th order periodic 

Sobolev space are trigonometric functions as specified in Section 4.3. The corresponding 

Sobolev kernels are given in Gu (2013).

In this paper, we consider the following penalized estimation:

(2.2)

where λ > 0 is a regularization parameter and  is defined as the parameter space . 

For simplicity, we do not distinguish  from its associated function 

 throughout the paper. We 

call  as partially linear kernel ridge regression (KRR) estimate in comparison with 

the nonparametric KRR estimate in Shawe-Taylor and Cristianini (2004). In particular, when 
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 is a ν-th order Sobolev space endowed with , 

becomes the commonly used partial smoothing spline estimate.

We next illustrate that  can be viewed as a partially linear extension of  in the sense that 

it shares some nice reproducing properties as this RKHS  under the following inner 

product:

(2.3)

where  and . Similar as the kernel function Kz, we can 

construct a linear operator  such that  for any . 

Also, construct another linear operator  such that  for 

any m and . See Proposition 2.3 for the construction of Ru and Pλ.

We next present a proposition illustrating the rational behind the definition of . Denote 

 as the outer product on . Hence,  is an operator from  to .

Proposition 2.2

, where id is an identity operator on .

Proof—For any  and , we have

Since the choice of  is arbitrary, we conclude our proof.

As will be seen in the subsequent analysis, e.g., in Theorem 3.3, the operator 

 is essentially the expectation of the Hessian of the objective function (w.r.t. 

Fréchet derivative) minimized in (2.2). Proposition 2.2 shows that the inversion of this 

Hessian matrix is trivial when the inner product is designed as in (2.3). Due to that, the 

theoretical analysis of  based on the first order optimality condition becomes 

much more transparent.

To facilitate the construction of Ru and Pλ, we need to endow a new inner product with :

(2.4)
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for any . Under (2.4),  is still a RKHS as the evaluation functional is bounded 

by Lemma A.1. We denote the new kernel function as , and define a positive definite 

self-adjoint operator :

(2.5)

whose existence is proven in Lemma A.2. Since  and 

, we now have  by (2.4). We next define two 

crucial quantities needed in the construction:  and its Riesz representer 

 satisfying  for all . Here, we implicity assume Bk is 

square integrable. The existence of Ak follows from the boundedness of the linear functional 

 (by Riesz's representer theorem) as follows:

We are now ready to construct Ru and Pλ based on , Wλ, B and A introduced above, 

where B = (B1,..., Bp)T and A = (A1,...,Ap)T. Define  and 

.

Proposition 2.3

For any u = (x, z), Ru can be expressed as , where

Moreover, for any , Pλm can be expressed as , where

Notation—Denote ∥ · ∥2 and ∥ · ∥∞ as the Euclidean L2 and infinity norm in , respectively. 

For any function , let . We use ∥ · ∥ to denote the spectral norm 

of matrices. For positive sequences an and bn, we write  if there exists 

some universal constant constant c > 0 (c′ > 0) independent of n such that an ≤ cbn (an ≥ c
′bn) for all . We denote  if both  and . We define h as the inverse 

of , which is known to be the “effective dimension” of a kernel K 

 (Zhang, 2005). For any function space , define
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where  is an ∈-covering number of  w.r.t. supreme norm. Define the 

following sets of functions: , 

, 

.

3. Heterogeneous Data: Aggregation of Commonality

In this section, we start from describing our aggregation procedure and model assumptions 

in Section 3.1. The main theoretical results are presented in Sections 3.2–3.4 showing that 

our combined estimate for commonality enjoys the “oracle property”. To be more specific, 

we show that it possesses the same (non-asymptotic) minimax optimal bound (in terms of 

mean-squared error) and asymptotic distribution as the “oracle estimate”  computed when 

all the heterogeneity information are available:

(3.1)

The above nice properties hold when the number of sub-populations does not grow too fast 

and the smoothing parameter is chosen according to the entire sample size N. Based on this 

combined estimator, we further construct a plug-in estimator for each heterogeneity 

parameter , which possesses the asymptotic distribution as if the commonality were 

known, in Section 3.5. Interestingly, this oracular result holds when the number of sub-

population is not too small. In the end, Section 3.6 tests the possible heterogeneity among a 

large number of sub-populations.

3.1. Method and Assumptions

The heterogeneous data setup and averaging procedure are described below:

1. Obverse data (Xi, Zi, Yi) with the known label Li ∈ {1, 2,...,s indicating the sub-

population it belongs to, for i = 1,...,N. The size of samples from each sub-population is 

assumed to be the same, denoted by n, for simplicity. Hence, N = n × s.

2. On the j-th sub-population, obtain the following penalized estimator:

(3.2)
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3. Obtain the final nonparametric estimate1 for commonality by averaging:

(3.3)

We point out that  is not our final estimate for heterogeneity. In fact, it can be further 

improved based on f̄N,λ; see Section 3.5.

For simplicity, we will drop the subscripts (n, λ) and (N, λ) in those notation defined in 

(3.2) and (3.3) throughout the rest of this paper. The main assumptions of this section are 

stated below.

Assumption 3.1 (Regularity Condition)—(i) εi's are i.i.d. sub-Gaussian random 

variables independent of the designs; (ii)  for all k, and 

 is positive definite; (iii) Xi's are uniformly bounded by 

a constant cx.

Conditions in Assumption 3.1 are fairly standard in the literature. For example, the positive 

definiteness of Ω is needed for obtaining semiparametric efficient estimation; see Mammen 

and van de Geer (1997). Note that we do not require the independence between X and Z 
throughout the paper.

Assumption 3.2 (Kernel Condition)—We assume that there exist 0 < cϕ < ∞ and 0 < 

cK < ∞ such that  and supz K(z, z) ≤ cK.

Assumption 3.2 is commonly assumed in kernel ridge regression literature (Zhang et al., 

2013; Lafferty and Lebanon, 2005; Guo, 2002). In the case of finite rank kernel, e.g., linear 

and polynomial kernels, the eigenfunctions are uniformly bounded as long as Ƶ has finite 

support. As for the exponentially decaying kernels such as Gaussian kernel, we prove in 

Section 4.2 that the eigenfunctions given in (2.1) are uniformly bounded by 1.336. Lastly, 

for the polynomially decaying kernels, Proposition 2.2 in Shang and Cheng (2013) showed 

that the eigenfunctions induced from a ν-th order Sobolev space (under a proper inner 

product ) are uniformly bounded under mild smoothness conditions for the density of 

Z.

Assumption 3.3—For each . This is equivalent to

1The commonality estimator f̄N,λ can be adjusted as a weighted sum  if sub-sample sizes are different. In 
particular, the divide-and-conquer method can be applied to those sub-populations with huge sample sizes; see Section 5.
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Assumption 3.3 requires the conditional expectation of Xk given Z = z is as smooth as f0(z). 

As can be seen in Section 3.4, this condition is imposed to control the bias of the parametric 

component, which is caused by penalization on the the nonparametric component. We call 

this interaction as the “bias propagation phenomenon”, and study it in Section 3.4.

3.2. Non-Asymptotic Bound for Mean-Squared Error

The primary goal of this section is to evaluate the estimation quality of the combined 

estimate from a non-asymptotic point of view. Specifically, we derive a finite sample upper 

bound for the mean-squared error . When s does not grow 

too fast, we show that MSE(f̄) is of the order , from which the aggregation 

effect on f can be clearly seen. If λ is chosen in the order of N, the mean-squared error 

attains the (un-improvable) optimal minimax rate. As a by-product, we establish a non-

asymptotic upper bound for the mean-squared error of , i.e., 

. The results in this section together with Theorem 3.4 in 

Section 3.4 determine an upper bound of s under which f ̄ enjoys the same statistical 

properties (minimax optimality and asymptotic distribution) as the oracle estimate f̂or.

Define τmin(Ω) as the minimum eigenvalue of Ω and  as the trace of K. 

Moreover, let , 

,  and 

.

Theorem 3.1

Suppose that Assumptions 3.1–3.3 hold. If , then we have

(3.4)

where , rn,s = 

(nh)−1/2log2 N + λ and C is some generic constant.

Typically, we require an upper bound for s so that the third term in the R.H.S. of (3.4) can be 

dominated by the first two terms, which correspond to variance and bias, respectively. 

Hence, we choose  to attain the optimal bias-variance trade-off. The resulting 

rate coincides with the minimax optimal rate of the oracle estimate in different RKHS; see 

Section 4. This can be viewed as a non-asymptotic version of the “oracle property” of f̄. In 
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comparison with the nonparametric KRR result in Zhang et al. (2013), we realize that 

adding one parametric component does not affect the finite sample upper bound (3.4).

As a by-product, we obtain a non-asymptotic upper bound for . This result is 

new, and also of independent interest.

Theorem 3.2—Suppose that Assumptions 3.1 – 3.3 hold. Then we have

(3.5)

where a(n, s, h, λ, ω) is defined in Theorem 3.1.

Again, the first term and second term in the R.H.S. of (3.5) correspond to the variance and 

bias, respectively. In particular, the second term comes from the bias propagation effect to be 

discussed in Section 3.4. By choosing λ= o(n−1/2), we can obtain the optimal rate of 

, i.e., O(n−1/2), but may lose the minimax optimality of MSE(f̄) in most cases.

3.3. Joint Asymptotic Distribution

In this section, we derive a preliminary result on the joint limit distribution of 

at any . A key issue with this result is that their centering is not at the true value. 

However, we still choose to present it here since we will observe an interesting phenomenon 

when removing the bias in Section 3.4.

Theorem 3.3 (Joint Asymptotics I)

Suppose that Assumptions 3.1 and 3.2 hold, and that as , 

, and . Suppose the following conditions 

are satisfied

(3.6)

(3.7)

Denote  as , where . We have for any z0 ∈ Ƶ and j = 

1,...,s,

(i) if s → ∞ then
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(3.8)

where ;

(ii) if s is fixed, then

(3.9)

where .

Part (i) of Theorem 3.3 says that  and  are asymptotically independent as 

s → ∞. This is not surprising since only samples in one sub-population (with size n) 

contribute to the estimation of the heterogeneity component while the entire sample (with 

size N) to commonality. As n/N = s−1 → 0, the former data becomes asymptotically 

independent of (or asymptotically ignorable to) the latter data. So are these two estimators. 

The estimation bias  can be removed by placing a smoothness condition on Bk, i.e., 

Assumption 3.3. Interestingly, given this additional condition, even when s is fixed, these 

two estimators can still achieve the asymptotic independence if h → 0. Please see more 

details in next section.

3.4. Bias Propagation

In this section, we first analyze the source of estimation bias observed in the joint 

asymptotics Theorem 3.3. In fact, these analysis leads to a bias propagation phenomenon, 

which intuitively explains how Assumption 3.3 removes the estimation bias. More 

importantly, we show that f̄ shares exactly the same asymptotic distribution as f̂or, i.e., oracle 

rule, when s does not grow too fast and λ is chosen in the order of N.

Our study on propagation mechanism is motivated by the following simple observation. 

Denote  and  as the designs based on the samples from the jth sub-population and 

let . The first order optimality condition (w.r.t. β) gives

(3.10)

where  is a n-dimensional vector with entries f0(Zi) for i ∈ Lj and  is defined 

similarly. Hence, the estimation bias of  inherits from that of f̂(j). A more complete 
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picture on the propagation mechanism can be seen by decomposing the total bias 

into two parts:

(3.11)

(3.12)

according to Proposition 2.3. The first term in (3.12) explains the bias introduced by 

penalization; see (2.5). This bias propagates to the parametric component through B, as 

illustrated in (3.11). The parametric bias Lλf0 propagates back to the nonparametric 

component through the second term of (3.12). Therefore, by strengthening  to 

, i.e., Assumption 3.3, it can be shown that the order of Lλf0 in (3.11) reduces to 

that of λ. And then we can remove Lλf0 asymptotically by choosing a sufficiently small λ. 

In this case, the nonparametric bias becomes Wλf0.

We summarize the above discussions in the following theorem:

Theorem 3.4. (Joint Asymptotics II)—Suppose Assumption 3.3 and the conditions in 

Theorem 3.3 hold. If we choose , then

(i) if s → ∞ then

(3.13)

where ;

(ii) if s is fixed, then

(3.14)
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where  and  is the same as in (i).

Moreover, if h → 0, then  and  in (i) and (ii).

The nonparametric estimation bias Wλf0(z0) can be further removed by performing 

undersmoothing, a standard procedure in nonparametric inference, e.g., Shang and Cheng 

(2013). We will illustrate this point in Section 4.

By examining the proof for case (ii) of Theorem 3.4 (and taking s = 1), we know that the 

oracle estimate f̄or defined in (3.1) attains the same asymptotic distribution as that of f̄ in 

(3.13) when s grows at a proper rate. Therefore, we claim that our combined estimate f̄ 

satisfies the desirable oracle property.

In Section 4, we apply Theorem 3.4 to several examples, and find that even though the 

minimization (3.2) is based only on one fraction of the entire sample, it is nonetheless 

essential to regularize each sub-estimation as if it had the entire sample. In other words, λ 
should be chosen in the order of N. Similar phenomenon also arises in analyzing minimax 

optimality of each sub-estimation; see Section 3.2.

Cheng and Shang (2013) have recently uncovered a joint asymptotics phenomenon in partial 

smoothing spline models: parametric estimate and (point-wise) nonparametric smoothing 

spline estimate become asymptotically independent after the parametric bias is removed. 

This corresponds to a special case of Part (ii) of Theorem 3.4 for polynomially decaying 

kernels with s = 1 and h → ∞. Therefore, case (ii) in Theorem 3.4 generalizes this new 

phenomenon to the partially linear kernel ridge regression models. When , e.g., 

 for finite rank kernel, the semi-nonparametric estimation in consideration 

essentially reduces to a parametric one. Hence, it is not surprising that the asymptotic 

dependence remains.

Remark 3.1—Theorem 3.4 implies that  when λ = 

o(n−1/2). When the error ∈ follows a Gaussian distribution, it is well known that 

achieves the semiparametric efficiency bound (Kosorok, 2007). Hence, the semiparametric 

efficient estimate can be the obtained by applying the kernel ridge method. However, we can 

further improve its estimation efficiency to a parametric level by taking advantage of f̄ (built 

on the whole samples). This is one important feature of massive data: strength-borrowing.

Efficiency Boosting: from semiparametric level to parametric level

The previous sections show that the combined estimate f̄ achieves the “oracle property” in 

both asymptotic and non-asymptotic senses when s does not grow too fast and λ is chosen 

according to the entire sample size. In this section, we employ f̄ to boost the estimation 

efficiency of  from semiparametric level to parametric level. This leads to our final 

estimate for heterogeneity, i.e.,  defined in (3.15). More importantly,  possesses the 

limit distribution as if the commonality in each sub-population were known, and hence 
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satisfies the “oracle rule”. This interesting efficiency boosting phenomenon will be 

empirically verified in Section 6.

Specifically, we define the following improved estimator for β0:

(3.15)

Theorem 3.5 below shows that  achieves the parametric efficiency bound as if the 

nonparametric component f were known. This is not surprising given that the nonparametric 

estimate f̄ now possesses a faster convergence rate after aggregation. What is truly 

interesting is that we need to set a lower bound for s, i.e., (3.16), and thus the homogeneous 

data setting is trivially excluded. This lower bound requirement slows down the convergence 

rate of , i.e., √n, such that f̄ can be treated as if it were known.

Theorem 3.5—Suppose Assumption 3.1 and 3.2 hold. If s satisfies

(3.16)

(3.17)

(3.18)

and we choose λ = o((Nh)−1), then we have

where .

Recall that X and Z are not assumed to be independent. Hence, the parametric efficiency 

bound Σ−1 is not larger than the semiparametric efficiency bound Ω−1.

3.6. Testing for Heterogeneity

The heterogeneity across different sub-populations is a crucial feature of massive data. 

However, there is still some chance that some sub-populations may share the same 

underlying distribution. In this section, we consider testing for the heterogeneity among sub-
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populations. We start from a simple pairwise testing, and then extend it to a more 

challenging simultaneous testing that can be applied to a large number of sub-populations.

Consider a general class of pairwise heterogeneity testing:

(3.19)

where  is a q × q matrix with q ≥ p. The general formulation (3.19) can 

test either the whole vector or one fraction of  is equal to that of . A test statistic can 

be constructed based on either  or its improved version . Let  be a confidence 

region satisfying  for any b ~ N(0, Iq). Specifically, we have the following 

α-level Wald tests:

The consistency of the above tests are guaranteed by Theorem 3.6 below. In addition, we 

note that the power of the latter test is larger than the former; see the analysis below 

Theorem 3.6. The price we need to pay for this larger power is to require a lower bound on 

s.

Theorem 3.6—Suppose that the conditions in Theorem 3.4 are satisfied. Under the null 

hypothesis specified in (3.19), we have

Moreover, under the conditions in Theorem 3.5, we have

where .

The larger power of Ψ2 is due to the smaller asymptotic variance of , and can be deduced 

from the following power function. For simplicity, we consider , i.e., Q = 

(1, 0, 0 ..., 0). In this case, we have , and 
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. The (asymptotic) power function under the 

alternative that  for some non-zero β* is

where W ~ N(0, 1) and σ* is  for Ψ1 and  for Ψ2. Hence, a 

smaller σ* gives rise to a larger power, and Ψ2 is more powerful than Ψ1. Please see Section 

6 for empirical support for this power comparison.

We next consider a simultaneous testing that is applied to a large number of sub-populations:

(3.20)

where , versus the alternative:

(3.21)

The above 's are pre-specified for each . If all 's are the same, then it becomes a 

type of heterogeneity test for the group of sub-populations indexed by . Here we allow 

to be as large as s, and thus it can increase with n. Let  be the sample covariance matrix 

of X for the j-th sub-population, i.e., . Define the test statistic

We approximate the distribution of the above test statistic using multiplier bootstrap. Define 

the following quantity:

where ei's are i.i.d. N(0, σ2) independent of the data and  is the k-th row of 

. Let . We employ the recent Gaussian 

approximation and multiplier bootstrap theory (Chernozhukov et al., 2013) to obtain the 

following theorem.
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Theorem 3.7—Suppose Assumptions 3.1 and 3.2 hold. In addition, suppose (3.17) and 

(3.18) in Theorem 3.5 hold. For any  with , if (i) 

, (ii)  for some constants c1, C1 > 0, and 

(iii) , then under H0 and choosing λ = o((Nh)−1), we have

Remark 3.2—We can perform heterogeneity testing even without specifying 's. This 

can be done by simply reformulating the null hypothesis as follows (for simplicity we set 

): H0 : α(j) = 0 for j ∈ [s – 1], where α(j) = β(j) – β(j+1) for j = 1,...,s – 1. The test 

statistic is . The bootstrap quantity is defined as

The proof is similar to that of Theorem 3.7 and is omitted.

4. Examples

In this section, we consider three specific classes of RKHS with different smoothness, 

characterized by the decaying rate of the eigenvalues: finite rank, exponential decay and 

polynomial decay. In particular, we give explicit upper bounds for s under which the 

combined estimate enjoys the oracle property, and also explicit lower bounds for obtaining 

efficiency boosting studied in Section 3.5. Interestingly, we find that the upper bound for s 
increases for RKHS with faster decaying eigenvalues. Hence, our aggregation procedure 

favors smoother regression functions in the sense that more sub-populations are allowed to 

be included in the observations. The choice of λ is also explicitly characterized in terms of 

the entire sample size and the decaying rate of eigenvalues. In all three examples, the 

undersmoothing is implicitly assumed for removing the nonparametric estimation bias. Our 

bounds on s and λ here are not the most general ones. Rather, we present the bounds that 

have less complicated forms but are still sufficient to deliver theoretical insights.

4.1. Example I: Finite Rank Kernel

The RKHS with finite rank kernels includes linear functions, polynomial functions, and, 

more generally, functional classes with finite dictionaries. In this case, the effective 

dimension is simply proportional to the rank r. Hence, . Combining this fact with 

Theorem 3.4, we get the following corollary for finite rank kernels:

Corollary 4.1—Suppose Assumption 3.1 – 3.3 hold and s → ∞. For any , if λ = 

o(N−1/2), log(λ−1) = o(N2log−12N) and , then
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where  and .

From the above Corollary, we can easily tell that the upper bound for s can be as large as 

o(N log−7 N) by choosing a sufficiently large λ. Hence, s can be chosen nearly as large as N. 

As for the lower bound of s for boosting the efficiency, we have  by plugging 

 into (3.16). This lower bound is clearly smaller than the upper bound. Hence, the 

efficiency boosting is feasible.

Corollary 4.2 below specifies conditions and s and λ under which f̄ achieves the 

nonparametric minimaxity.

Corollary 4.2

Suppose that Assumption 3.1 - 3.3 hold. When λ = r/N and s = o(N log−5 N), we have

for some constant C.

4.2. Example II: Exponential Decay Kernel

We next consider the RKHS for which the kernel has exponentially decaying eigenvalues, 

i.e.,  for some α > 0. In this case, we have  by explicit 

calculations.

Corollary 4.3—Suppose Assumption 3.1 – 3.3 hold, and for any 

satisfies . If , 

 and , then

where .
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Corollary 4.3 implies the shrinking rate of the confidence interval for f0(z0) as (Nh)−1/2. This 

motivates us to choose λ (equivalently h) as large as possible. Plugging such a λ into the 

upper bound of s yields . For example, when p = 1(p = 2), the upper 

bound is . Note that this upper bound for s only 

differs from that for the finite rank kernel up to some logrithmic term. This is mainly 

because RKHS with exponentially decaying eigenvalues has an effective dimension (log 

N)1/p (for the above λ). Again, by (3.16) we get the lower bound of 

When , it is approximately .

As a concrete example, we consider the Gaussian kernel K(z1, z2) = exp (–|z1 – z2|2/2). The 

eigenfunctions are given in (2.1), and the eigenvalues are exponentially decaying, as 

, where η = √5–1)/2. According to Krasikov (2004), we can get that

Thus, Assumption 3.2 is satisfied. We next give an upper bound of  in Corollary 4.3 as 

follows:

where equality follows from Lemma C.1 in Appendix C with the case t = 2. Hence, a 

(conservative) 100(1–α)% confidence interval for f0(z0) is given by f̄(z0) ± 1.3106σzα/2/

√Nh.

Corollary 4.4

Suppose that Assumption 3.1 – 3.3 hold. By choosing λ = log1/p N/N and s = o(N 
log–(5p+3)/p N), we have

We know that the above rate is minimax optimal according to Zhang et al. (2013). Note that 

the upper bound for s required here is similar as that for obtaining the joint limiting 

distribution in Corollary 4.3.

4.3. Example III: Polynomial Decay Kernel

We now consider the RKHS for which the kernel has polynomially decaying eigenvalues, 

i.e.,  for some ν > 1/2. Hence, we can explicitly calculate that h = λ1/(2ν). The 
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resulting penalized estimate is called as “partial smoothing spline” in the statistics literature; 

see Gu (2013); Wang (2011).

Corollary 4.5—Suppose Assumption 3.1 – 3.3 hold, and  for 

any  and . For any  for some 

 and , then

where .

Similarly, we choose  to get the fastest shrinking rate of the confidence 

interval. Plugging the above λ into the upper bound for s, we get

When N is large, the above bound reduces to . We notice that the 

upper bound for s increases as ν increases, indicating that the aggregation procedure favors 

smoother functions. As an example, for the case that ν = 2, we have the upper bound for s = 

o(N17/36 log−6 N) ≈ o(N0.47 log−6 N). Again, we obtain the lower bound  by 

plugging  into (3.16). When , we get . For ν = 2, this is 

approximately .

As a concrete example, we consider the periodic Sobolev space  with the following 

eigenfunctions:

(4.1)

and eigenvalues

(4.2)
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Hence, Assumption 3.2 trivially holds. Under the above eigensystem, the following lemma 

gives an explicit expression of .

Lemma 4.1—Under the eigen-system defined by (4.1) and (4.2), we can explicitly 

calculate:

Therefore, by Corollary 4.5, we have that when  and 

,

(4.3)

where  is given in Lemma 4.1. When  and the upper bound for s = 

o(N17/36 log−6 N).

Corollary 4.6—Suppose that Assumption 3.1 - 3.3 hold. If we choose , and 

, the combined estimator achieves optimal rate of convergence, 

i.e.,

(4.4)

The above rate is known to be minimax optimal for the class of functions in consideration 

(Stone, 1985).

5. Application to Homogeneous Data: Divide-and-Conquer Approach

In this section, we apply the divide-and-conquer approach, which is commonly used to deal 

with massive homogeneous data, to some sub-populations that have huge sample sizes. A 

general goal of this section is to explore the most computationally efficient way to split the 

sample in those sub-populations while preserving the best possible statistical inference. 

Specifically, we want to derive the largest possible number of splits under which the 

averaged estimators for both components enjoy the same statistical performances as the 

“oracle” estimator that is computed based on the entire sample. Without loss of generality, 

we assume the entire sample to be homogeneous by setting all 's to be equal throughout 

this section.
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The divide-and-conquer method randomly splits the massive data into s mutually exclusive 

subsamples. For simplicity, we assume all the subsamples share the same sample size, 

denoted as n. Hence, N = n × s. With a bit abuse of notation, we define the divide-and-

conquer estimators as  and  when they are based on the j-th subsample. Thus, the 

averaged estimator is defined as

Comparing to the oracle estimator, the aggregation procedure reduces the computational 

complexity in terms of the entire sample size N to the sub-sample size N/s. In the case of 

kernel ridge regression, the complexity is O(N3), while our aggregation procedure (run in 

one single machine) reduces it to O(N3/s2). Propositions 5.1 and 5.2 below state conditions 

under which the divide-and-conquer estimators maintain the same statistical properties as 

oracle estimate, i.e., so-called oracle property.

Our first contribution is a non-asymptotic upper bound for MSE(f̄).

Proposition 5.1

Suppose that the conditions in Theorem 3.1 hold. We have that the divide and conquer 

estimator f̄ satisfies

(5.1)

where a(n, s, h, λ, ω), C1 and C2 are constants defined in Theorem 3.1.

Our second contribution is on the joint asymptotic distribution under the same conditions for 

(s, λ) required in the heterogeneous data setting.

Proposition 5.2

Suppose that the conditions in Theorem 3.4 hold. If we choose λ = o(N−1/2), then

where  and . Moreover, if h → 0, then γz0 = 

0. In this case,  and .

The conclusion of Proposition 5.2 holds no matter s is fixed or diverges (once the condition 

for s in Theorem 3.4 are satisfied).
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In view of Propositions 5.1 and 5.2, we note that the above upper bound and joint asymptotic 

distribution are exactly the same as those for the oracle estimate, i.e., s = 1.

6. Numercial Experiment

In this section, we empirically examine the impact of the number of sub-populations on the 

statistical inference built on . As will be seen, the simulation results strongly 

support our general theory.

Specifically, we consider the partial smoothing spline models in Section 4.3. In the 

simulation setup, we let ε ~ N(0,1), p = 1 and ν = 2 (cubic spline). Moreover Z ~ Uniform 

(−1, 1) and X = (W + Z)/2, where W ~ Unfiform(−1,1), such that X and Z are dependent. It 

is easy to show that Ω = E[(X – E[X|Z])2)] = 1/12 and Σ = E[X2] = 1/6. To design that 

heterogeneous data setting, we let  for j = 1,2,...,s on the j-th subpopulation. The 

nonparametric function f0(z), which is common across all subpopulations, is assumed to be 

0.6b30,17(z) + 0.4b3,11, where bα1,α2 is the density function for Beta(α1, α2).

We start from the 95% predictive interval (at (x0, z0)) implied by the joint asymptotic 

distribution (4.3):

where  is the predicted response. The unknown error variance σ is 

estimated by , where 

A(λ) denotes the smoothing matrix, followed by an aggregation . In 

the simulations, we fix x0 = 0.5 and choose z0 = 0.25, 0.5, 0.75 and 0.95. The coverage 

probability is calculated based on 200 repetitions. As for N and s, we set N = 256, 528, 

1024, 2048, 4096, and choose s = 20, 21,...,2t–3 when N = 2t. The simulation results are 

summarized in Figure 1. We notice an interesting phase transition from Figure 1: when s ≤ 

s* where s* ≈ N0.45, the coverage probability is approximately 95%; when s ≥ s*, the 

coverage probability drastically decreaes. This empirical observation is strongly supported 

by our theory developed in Section 4.3 where s* ≈ N0.42 log−6N for ν = 2.

We next compute the mean-squared errors of f̄ under different choices of N and s in Figure 

2. It is demonstrated that the increasing trends of MSE as s increases are very similar for 

different N. More importantly, all the MSE curves suddenly blow up when s ≈ N0.4. This is 

also close to our theoretical result that the transition point is around N0.45 log−6 N.

We next empirically verify the efficiency boosting theory developed in Section 3.5. Based on 

 and , we construct the following two types of 95% confidence intervals for .
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Obviously, CI2 is shorter than CI1. However, Theorem 3.5 shows that CI2 is valid only when 

s satisfies both a upper bound and a lower bound. This theoretical condition is empirically 

verified in Figure 3 which exhibits the validity range of CI2 in terms of s. In Figure 4, we 

further compare CI2 and CI1 in terms of their coverage probabilities and lengths. This figure 

shows that when s is in a proper range, the coverage probabilities of CI1 and CI2 are similar, 

while CI2 is significantly shorter.

Lastly, we consider the heterogeneity testing. In Figure 5, we compare tests Ψ1 and Ψ2 

under different choices of N and s ≥ 2. Specifically, Figure 5 (i) compares the nominal 

levels, while Figure 5 (ii) - (iv) compare the powers under various alternative hypotheses 

, where Δ = 0.5, 1, 1.5. It is clearly seen that both tests are consistent, and 

their powers increase as Δ or N increases. In addition, we observe that Ψ2 has uniformly 

larger powers than Ψ1.

7. Proof of Main Results

In this section, we present main proofs of Theorem 3.1, 3.3 and 3.4 in the main text.

7.1. Proof of Theorem 3.1

Proof—We start from analyzing the minimization problem (3.2) on each sub-population. 

Recall m = (β,f) and U = (X, Z). The objective function can be rewritten as

The first order optimality condition (w.r.t. Fréchet derivative) gives

where . This implies that
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where . Define . Adding  on both 

sides of the above equation, we have

(7.1)

The L.H.S. of (7.1) can be rewritten as

where the last equality follows from proposition 2.2. Then (7.1) becomes

(7.2)

We will show that the first term in the R.H.S. of (7.2) weakly converges to a normal 

distribution, the second term contributes to the estimation bias, and that the last term is an 

asymptotically ignorable remainder term. We denote the last term as 

. Recall that Ru = (Lu, Nu) and 

. Thus the above remainder term decomposes into two components:

Similarly, (7.2) can be rewritten into the following two equations:

(7.3)

and
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(7.4)

for all j = 1,...,s. Taking average of (7.4) for all j over s, and by definition of f̄, we have

(7.5)

where we used . By (7.5), it follows that

(7.6)

By Lemma A.5 and the fact that each NUiεi is i.i.d., it follows that

(7.7)

and

(7.8)

where C1 and C2 are constants specified in Lemma A.5.

As for the third term in (7.6), we have by independence across sub-populations that

(7.9)

Therefore it suffices to bound . We have the following lemma that controls this 

term:

Lemma 7.1—Suppose Assumptions 3.1, 3.2 and Condition (3.6) hold. We have for all j = 

1,...,s
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for sufficiently large n. Moreover, the inequality also holds for  and 

Combining (7.6) - (7.9) and Lemma 7.1, and by the fact that , 

we complete the proof of Theorem 3.1.

7.2. Proof of Theorem 3.3

Proof—Recall that  where . This 

implies that  and (7.5), for arbitrary x and z0,

In what follows, we will show that the main term (I) is asymptotically normal and the 

remainder term (II) is of order oP(1). Given that x is arbitrary, we apply Wold device to 

conclude the proof of joint asymptotic normality.

Asymptotic normality of (I): We present that result for showing asymptotic normality of (I) 

in the following lemma and defer its proof to supplemental material.

Lemma 7.2.—Suppose that as , 

and . We have

(i) if s → ∞, then

(7.10)

(ii) if s is fixed, then

(7.11)
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Control of the remainder term (II): We now turn to bound the remainder term (II). We 

need the following lemma:

Lemma 7.3—Suppose Assumption 3.1, 3.2 and Condition (3.6) hold. We have the 

following two sets of results that control the remainder terms:

(i) For all j = 1,...,s

where  and 

. Also,  and 

.

(ii) Moreover, we have

By Lemma 7.3, we have

(7.12)

where we used the boundedness of x. Also,

(7.13)

where the second inequality follows from Lemma A.4. Therefore by (7.12) and (7.13), we 

have

(7.14)
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Now by definition of bn,s and condition (3.7), we have (II) = oP (1). Combining (7.10) and 

(7.14), it follows that if s → ∞, then

Combining (7.11) and (7.14), it follows that if s is fixed, then

By the arbitrariness of x, we reach the conclusion of the theorem using Wold device.

7.3. Proof of Lemma 7.3: Controlling the Remainder Term

Proof—(i) We first derive the bound of . Recall

Let , where cr is the constant 

specified in Lemma A.4. Note that Zn(m) is implicitly related to j but we omit the 

superscript of (j). We have . We apply Lemma F.1 to obtain an 

exponential inequality for . The first step is to show that Zn(m) is a sub-

Gaussian process by Lemma G.1. Let . 

Now for any m1 and m2,

where we used the fact that  by Lemma A.4. Note that 

. Therefore by Lemma G.1, we have for any t > 0,
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(7.15)

Then by Lemma F.1, we have

(7.16)

where .

Define dn,s = crrn,sh−1/2 and . Again we do not specify its relationship with 

j. Define the event . On the event , we have

where we used the fact that  by Lemma A.4. This implies 

 for any (x, z). Letting x = 0, one gets , which further 

implies  for all x by triangular inequality. Moreover, on the even  we have

by the definition of . Hence, we have shown that . Combining this fact 

with (7.16), and noting that , we have

(7.17)

By the definition of m̃, and the relationship , we calculate that 

. Plugging the above form 

of Zn(m̃) into (7.17) and letting x = log N in (7.17), we have

(7.18)

where we used the definition that . Therefore we 

have
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(7.19)

We have the following lemma that controls .

Lemma 7.4: If Assumption 3.1, 3.2 and Condition (3.6) are satisfied, then there exist a 

constant c such that

for all j = 1,...,s.

By Lemma 7.4 and (7.19) we have

(7.20)

(ii) We will use an Azuma-type inequality in Hilbert space to control the averaging 

remainder term , as all Rem(j) are independent and have zero mean. Define 

the event . By Lemma G.1, we have

(7.21)

Moreover, by (7.20),

(7.22)

Hence it follows that

as N → ∞, where the last inequality follows from (7.21), (7.22) and union bound. This 

finishes the proof.
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We can apply similar arguments as above to bound  and , by 

changing  to , which is dominated by . The bounds of 

and  then follow from triangular inequality.

7.4. Proof of Theorem 3.4

Proof—In view of Theorem 3.4, we first prove

(7.23)

for both (i) and (ii). By Proposition 2.3, we have

(7.24)

By Lemma A.5, it follows that under Assumption 3.3, . Now we turn to 

. Observe that

(7.25)

Applying Cauchy-Schwarz, we obtain

where the last inequality follows from the uniform boundedness of . Hence we have that 

Ak(z0) is uniformly bounded, which implies

Therefore, if we choose , then we get (7.23), which eliminates the 

estimation bias for .

Now we consider the asymptotic variance for cases (i) and (ii). It suffices to show that 

. By Lemma A.2 and (7.25), we have
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Hence by dominated conference theorem, as λ → 0 we have . As h = O(1), 

it follows that .

When h → 0, we have , as Ak(z0) is uniformly bounded. 

Hence  and .

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Coverage probability of 95% predictive interval with different choices of s and N
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Fig 2. 
Mean-square errors of f̄ under different choices of N and s
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Fig 3. 

Coverage probability of 95% confidence interval based on 
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Fig 4. 
Covergae probabilities and average lengths of 95% confidence intervals constructed based 

on  and . In the above figures, dashed lines represent CI1, which is constructed based on 

, and solid lines represent CI2, which is constructed based on .
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Fig 5. 
(i) Nominal level of heterogeneity tests Ψ1 and Ψ2; (ii) - (iv) Power of heterogeneity tests 
Ψ1 and Ψ2 when Δ= 0.5, 1.0, 1.5. In the above figures, dashed lines represent Ψ1, which is 

constructed based on , and solid lines represent Ψ2, which is constructed based on .
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