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The effects of specific functional groups of pollinators in the diversification

of angiosperms are still to be elucidated. We investigated whether the pollina-

tion shifts or the specific association with hummingbirds affected the

diversification of a highly diverse angiosperm lineage in the Neotropics. We

reconstructed a phylogeny of 583 species from the Gesneriaceae family and

detected diversification shifts through time, inferred the timing and amount

of transitions among pollinator functional groups, and tested the association

between hummingbird pollination and speciation and extinction rates. We

identified a high frequency of pollinator transitions, including reversals to

insect pollination. Diversification rates of the group increased through time

since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers

and the arrival of hummingbirds in South America. We showed that plants

pollinated by hummingbirds have a twofold higher speciation rate compared

with plants pollinated by insects, and that transitions among functional

groups of pollinators had little impact on the diversification process. We

demonstrated that floral specialization on hummingbirds for pollination has

triggered rapid diversification in the Gesneriaceae family since the Early Mio-

cene, and that it represents one of the oldest identified plant–hummingbird

associations. Biotic drivers of plant diversification in the Neotropics could be

more related to this specific type of pollinator (hummingbirds) than to shifts

among different functional groups of pollinators.

1. Introduction
The current species richness of a group of organisms results from the diversifica-

tion process that has occurred throughout its evolution. In plants, a variety of

intrinsic and extrinsic factors affect the diversification process [1]. Among those

factors, changes in climatic conditions [2], the colonization of new geographical

areas [3] or the evolution of particular traits might create new possibilities for

species diversification [4,5]. In angiosperms, traits such as biotic pollination,

floral symmetry and nectar spurs, which are all related to specialized pollination

and the ability to generate reproductive isolation, have been proposed as key

innovations due to their positive effects on diversification [6,7]. The role of special-

ized biotic pollination in the diversification of angiosperms is a long-standing

question [8], but the mechanisms that led to the apparent association between

pollination and species richness are still rather unexplored [9].

One hypothesis is that diversification in angiosperms has been enhanced by

the effect of pollinator specialization on reproductive isolation. Spatial and tem-

poral differences in the availability of the most effective pollinator across the

species range could produce pollinator shifts, floral divergence, reproductive iso-

lation and, ultimately, speciation in plants [10]. Evidence for pollinator-shift

effects in plant speciation have been found for Costus [11], Gladiolus [12] and
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Lapeirousia [13], and a review of available species-level

phylogenies estimated that around 25% of the divergence

events could be associated with pollinator shifts in angio-

sperms [14]. Although these results suggest that frequent

pollination shifts have occurred during the speciation events

in angiosperms, a large proportion of these events could still

occur within specific pollination systems. Indeed, an alterna-

tive hypothesis proposes that diversification rates in

angiosperms increase with specialization on certain guilds of

pollinators, rather than with pollinator shifts per se [12]. For

example, vertebrate pollination, and in particular pollination

mediated by birds, is associated with plant species richness

in various clades [15,16]. The evaluation of the role of

ornithophily in the diversification of the whole Gesneriaceae

family has recently indicated distinct patterns between Old

and New World lineages [17]. The evolution of bird pollination

(specifically hummingbird pollination) was associated with an

increase in diversification rates in the New World, while no

influence was detected for the lineages in the Old World. How-

ever, a necessary step to further understand the effects of

hummingbird pollination in the New World plant diversity

is to evaluate whether the frequent shifts among pollinator

groups or the specialization on hummingbird pollination is

influencing plant diversification [18]. Surprisingly, the relative

contribution of these two processes remains unexplored.

The aim of this study is to evaluate the tempo of evolution

of functional groups of pollinators, in particular humming-

birds, and their impact on the diversification rates of the

Neotropical lineage of the family Gesneriaceae, hereafter

referred to as Gesnerioideae, which is the lineage of this

family with hummingbird interactions. Specifically, by

expanding the most recent phylogenetic sampling by 129

species, we conducted an accurate evaluation of the pollina-

tion syndromes, their evolution and their impact in

diversification rate shifts for the subfamily. The Gesnerio-

ideae is a clade of herbaceous plants, shrubs or more rarely

small trees. It contains 75 genera and over 1200 species

found exclusively in the Neotropics, with the exception

of few Southwest Pacific taxa in the tribe Coronanthereae

[19,20]. Molecular dating and biogeographic reconstructions

have estimated an origin of the Gesnerioideae in South America

during the Early Oligocene, with a rapid range expansion into

most Neotropical regions [21]. The species in this subfamily

exhibit a large diversity of floral morphology associated with

repeated adaptations to different pollinators, such as humming-

birds, bees and bats [22–27] (figure 1). Therefore, this clade is

particularly interesting to test the mode and tempo with

which plant–pollinator interactions have evolved and how

they have influenced species diversification.

Here, we reconstructed one of the largest species-level phy-

logenies for a group of Neotropical plants based on four DNA

loci and a wide sampling of Gesnerioideae species to test for

temporal variations and trait-dependent rates of diversifica-

tion at a continental scale. We specifically investigated (i) the

number and timing of transitions among pollination syn-

dromes in the subfamily, and (ii) the temporal match

between the evolution of hummingbird pollination and hum-

mingbird diversification in South America [28]. Additionally,

we tested (iii) whether the evolution of hummingbird pollina-

tion has contributed to the elevated Gesnerioideae diversity in

Neotropics, and (iv) whether diversification rates were associ-

ated with recurrent shifts of pollinators or the observed species

richness was driven specifically by hummingbird-mediated
pollination. Addressing these questions in such a large and

diverse group of plants will contribute to a better understand-

ing of how ecological factors shape current patterns of species

richness in the Neotropics [15].
2. Material and methods
(a) Taxonomic sampling and DNA sequencing
Our taxonomic sampling consisted of 583 species representing all

the 75 recognized genera in Gesnerioideae and about 50% of the

species in the subfamily [20]. The sampling of each tribe and

outgroups is detailed in the electronic supplementary material,

methods S1. A total of 475 sequences were amplified from field

samples for this study (see ‘Data accessibility’ below) and merged

to available Genbank sequences. Sequences were aligned using

MAFFT v. 7 [29]) and all sites were scored for accuracy of the align-

ment using Guidance [30]. We identified the best substitution model

for each DNA region using the Akaike information criterion (AIC)

as implemented in the phymltest function in R (ape package [31];

see details in the electronic supplementary material, methods S1).

(b) Phylogenetic reconstruction
Relationships among species were reconstructed by Bayesian infer-

ence using MRBAYES v. 3.2 [32]. Data partitions and details of

Bayesian inference are described in the electronic supplementary

material, methods S1. Divergence times were estimated using a

relaxed clock model with uncorrelated lognormal prior distri-

bution for the rates of substitution and a birth–death prior for

the age of each node as implemented in BEAST v. 1.7.0 [33].

Secondary calibration was performed by imposing priors for the

divergence times for the clade containing all Gesneriaceae (includ-

ing Sanango racemosum and members of the Didymocarpoideae

family). MCMC settings and tree sampling are described in the

electronic supplementary material, methods S1.

(c) Characterization of pollination syndromes
The predictability of pollination syndromes is largely debated

[34,35]. However, a recent meta-analysis supported the concept

of pollination syndromes, especially for tropical plants [36],

and encouraged the use of floral characters as a proxy for pollina-

tion interactions in macro-evolutionary studies [16,17]. In

Gesnerioideae, several studies combining field observations and

multivariate analyses of morphometric data have demonstrated

that suites of floral traits could predict specialized pollination by

hummingbirds, bees and bats in Drymonia [27], Gesnerieae [25],

Nematanthus and Codonanthe [37], and Sinningieae [24].

To further test the validity of pollination syndromes, we

assessed thoroughly the correlation among floral traits and func-

tional groups of pollinators among the species of Gesnerioideae

with documented pollination systems. An extended bibliographic

search was conducted to identify all species with published infor-

mation about their pollinators (electronic supplementary material,

table S2). Flowers of these species were characterized using nine

morphological traits reflecting their variation in size, shape

and colour (electronic supplementary material, table S2). Trait

values were derived from published morphometric datasets,

monographic revisions and our own measurements of flowers col-

lected in the field or in living collections, or from scaled images

available on J.L.C.’s website (www.gesneriads.ua.edu). Among

these traits, the degree of corolla constriction (i.e. tubular versus

bell-shaped corolla) and the presence of pouched or urn-shaped

corolla have been identified as key traits to discriminate humming-

bird- from bee- and bat-pollinated flowers in different groups of

Gesnerioidae [24,25,27,37]. Experimental results have also demon-

strated the role of flower constriction and anther exsertion in

improving the morphological fit between hummingbirds and

http://www.gesneriads.ua.edu
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Figure 1. (a) Examples of plant – pollinator interactions in the Gesnerioideae (images 1 – 7); photo information in the electronic supplementary material, table S2. Photo credits:
images 1, 2, 4, 5, 7 by I. SanMartin-Gajardo; image 3 by a. Weber; image 6 by L. Freitas. (b) Discriminant analysis conducted for 118 plant species and nine floral traits. Numbers
refer to species shown in (a). Electronic supplementary material, table S2, provides the morphological data and the source of pollinator observations for each species. (c) Bayesian
common ancestor (CA) phylogenetic reconstruction showing one stochastic mapping of pollination syndromes. White and gray boxes correspond to taxonomic tribes and sub-
tribes. Names following classification by [20]: N, Napeantheae; C, Coronanthereae; T, Titanotricheae; Sp, Sphaerorrhizinae; O, outgroups. Colours on branches correspond to
pollination syndromes: blue, insect; red, hummingbird. Trait states: blue, insects; red, hummingbirds; green, bats. Grey concentric circles have 10 Myr span.
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flowers and/or in deterring less efficient pollinators like bees [38].

We used a discriminant analysis to maximize the differences in

each trait among functional groups of pollinators (i.e. humming-

birds, bats, insects and generalists), and to estimate their

predictability for the identification of pollination/shape associ-

ations. We used the lda and predict functions from the R package
MASS [39]. The most discriminant floral traits were then used to

predict the functional groups of pollinators for the species included

in the phylogeny that lack direct observation of pollinators.

In all subsequent analyses requiring binary states (see below),

the bat-pollinated species (8 out of 590 species) were merged into

the hummingbird pollination syndrome category. We based this
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choice on the fact that (i) hummingbirds and nectarivorous bats are

both vertebrates with hovering ability, (ii) certain bat-pollinated

species are generalists (pollinated also by hummingbirds during

late afternoon and at dawn [25]), and (iii) according to a three-

state stochastic mapping analysis, most of the bat-pollinated species

in Gesnerioideae evolved recently from hummingbird-pollinated

species [40] (see the electronic supplementary material, figure S5).

(d) Evolution of pollination syndromes
The study of trait evolution has largely improved by considering

evolutionary time in the modelling of a trait change [41], and by

including the species diversification process itself in binary-state

speciation and extinction (BiSSE) models [42]. Here, we incor-

porate most of these improvements by jointly modelling the

evolution of pollination syndromes and trait-dependent diversifi-

cation rates (binary-state trait). For this, we used estimates of

transition rates between hummingbird and insect pollination syn-

dromes from the BiSSE model that decomposes the evolutionary

process into state-specific speciation and extinction rates and

two transition rates. We performed an ancestral state reconstruc-

tion, accounting for the influence of diversification, using the asr
function from the R package diversitree [43] to estimate the

marginal probability of each state at each node. This function is

only available for the BiSSE model, and not the other extensions

of this model, such as the cladogenetic state change speciation

and extinction (ClaSSE) model used in the diversification analysis.

The temporal assessment of insect and hummingbird-adapted

flowers was done by mapping changes in pollination syndromes

across the Gesnerioideae phylogenetic tree. We incorporated the

BiSSE estimates of ancestral states into the stochastic mapping

(modifying the simmap function in the R package phytools [44];

script available from ‘Data accessibility’ below) and ran 200 recon-

structions on independent trees. For each stochastic mapping, we

divided branch lengths into time bins of 1 Myr and recorded the

number of transitions from and to hummingbird pollination

syndrome in each bin. We reported the time bin at which 95% of

the stochastic mappings have at least one transition event as

the onset time for each type of transition. We performed an

additional three-state stochastic mapping without considering

trait-dependent diversification to explore the evolution among

hummingbird, bat and insect pollination syndromes (see the

electronic supplementary material, methods S2).

(e) Diversification analysis
First, we tested whether diversification rates were constant or

varied through time using the R package TreePar [45]. The

model settings are described in the electronic supplementary

material, methods S3. Second, we tested a range of trait-dependent

diversification models to assess correlations between evolution of

pollination syndromes in Gesnerioideae and changes in speciation

and extinction rates. Those models included the BiSSE [42] and

ClaSSE [46] classes. These models allow us to distinguish whether

diversification rates are associated with any particular pollination

syndrome (i.e. BiSSE) or whether they change in response to

shifts in pollination syndromes (switches between insect and hum-

mingbird syndromes, i.e. ClaSSE). We compared the BiSSE and

ClaSSE models with a recently proposed trait-independent

model where unobserved states, which are independent of our pol-

lination syndromes, account for differences in the diversification

process (called CID2 [47]). A binary trait was used to represent

the pollination syndromes (insect as state 0; hummingbird as

state 1). Sampling fraction was accounted in all trait-dependent

and CID2 models as 0.53 and 0.48 for insect and hummingbird pol-

lination, respectively. We estimated different speciation rates in

BiSSE to obtain the parameters l0 and l1 for the speciation associ-

ated with insect and hummingbird pollination syndromes,

respectively. For the ClaSSE model, we denoted the speciation

within pollination syndromes (l000, l111), the speciation associated
with a switch in trait for one of the descendant species, namely

from insect to hummingbird pollination syndrome (l001, l101),

and the speciation rates associated with switch in both descendant

species (l011, l100). Each model also included two state-specific

extinction rates (m0, m1) and two transition rates (q01, q10). We

compared eight BiSSE and 13 ClaSSE models using maximum-

likelihood estimates in the R package diversitree [43]. The best

model was selected based on AICc, and we estimated the posterior

distributions of each parameter for the best model in a Bayesian

framework [5]. Priors and MCMC parameters are described in

the electronic supplementary material, methods S3.

Methods associating traits and diversification should be taken

with caution [48]; these issues were minimized in our dataset and

analyses (see the electronic supplementary material, methods S4),

rejecting that rates may vary over the tree or through time [49].
3. Results
(a) Phylogenetic reconstruction
The best models of molecular evolution were GTR þ G and

GTR þ G þ I for the nuclear and chloroplast DNA partition,

respectively (electronic supplementary material, figure S1).

The MRBAYES and BEAST analyses resulted in congruent topol-

ogies. Our phylogenetic reconstruction (figure 1c) constitutes

one of the largest species-level phylogenetic analysis for Neotro-

pical plants. The topology corroborates the formal previous

classifications [20], namely that Gesnerioideae comprises five

tribes and 12 subtribes (posterior probabilities . 0.99; electronic

supplementary material, figure S4). Relationships among tribes

had a high support (posterior probabilities . 0.99), except that

Titanotricheae, Napeantheae and Beslerieae (composed of the

genera Besleria, Gasteranthus, Reldia, Cremosperma, Shuaria,
Anetanthus and Tylopsacas) formed a clade (PP¼ 0.508 in the

BEAST MCC tree) sister to the rest of the Gesnerioideae. The

tribe Coronanthereae was sister to the Gesnerieae in agreement

with prior results [19]. Five highly supported clades were

resolved in the Gesnerieae, corresponding to the subtribes

Gesneriinae, Gloxiniinae, Columneinae, Sphaerorrhizinae and

Ligeriinae. Generic and infrageneric relationships largely

agree with previous phylogenetic results obtained for these

lineages [37,50–53]. Out of 74 genera of Gesnerioideae, eight

appeared non-monophyletic and are still in need of further

taxonomical revision (Achimenes, Diastema, Gesneria, Mandirola,
Paliavana, Phinaea, Sinningia and Vanhouttea).

(b) Characterization and evolution of pollination
syndromes

Overall, 118 species with documented pollination systems

were recorded from the literature (electronic supplementary

material, table S2). Among them, 82 species were pollinated

by hummingbirds, 19 species pollinated by bees, three species

pollinated by other insects (butterfly, diptera and moth), and

seven species pollinated by bats (electronic supplementary

material, table S2). Seven other species are pollinated by a

mix of nocturnal and diurnal visitors (e.g. hummingbird, bat

and moth). These generalist species of Gesnerioideae have so

far been recorded only on the Caribbean islands in pollina-

tor-depauperate environments [26,54]. The discriminant

analyses explained a large proportion of the floral trait variabil-

ity (axes 1 and 2 with a 76.35% and 22.34% of explained

variance, respectively). Linear discriminant axis 1 had a posi-

tive loading for corolla tube shape and lateral compression,
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Figure 2. (a,b) Estimated number of transitions through time for pollination syndromes. Numbers below the pictograms correspond to the mean total number of
transitions between the states and the standard deviation. Stars denote the starting point in time where at least one transition is recorded in 95% of the recon-
structions. Grey bar is the age of the most recent CA of extant hummingbirds (20.3 – 24.7 Ma [28]). (c) State-dependent speciation rate estimates from ClaSSE model.
l ¼ speciation rate (specific parameters in Diversification analysis section), 0 ¼ insect, 1 ¼ hummingbird. Colours and pictograms correspond to the binary pol-
lination syndrome: blue for insect, and red for hummingbird states.
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and a negative loading for corolla length and the corolla width

at mouth. Linear discriminant axis 2 had a positive loading

for most of the traits except corolla length and tube shape

(electronic supplementary material, table S3 and figure S2).

The predictability of each group of functional pollinators

was high (hummingbirds¼ 0.974, insects¼ 0.954, bats¼ 1.00,

generalists¼ 0.66), and their separation in the morphological

space was clear (figure 1b). Only five species of 118 (approx.

5%) have a group predictability lower than 0.8; these are

one bee-pollinated (S. villosa), three generalists (G. viridiflora,
R. leucomallon, R. vernicosum) and one hummingbird-pollinated

(P. sericiflora, a species with flower morphology related to the

bat syndrome but effectively pollinated by hummingbirds

[22]). The standardized coefficients of each trait determine the

contribution of the respective trait to the discriminant function

among the groups. Based on these values (electronic sup-

plementary material, table S3), we selected tube shape and

lobe symmetry (electronic supplementary material, figures S2

and S3) as a proxy to assign pollination syndrome for species

in the phylogeny whose pollination biology is unstudied in

the field. Using this approach, and the information listed in

the electronic supplementary material, table S2, we inferred

351 species with hummingbird pollination syndrome, eight

species pollinated by bats and 231 species with insect

pollination syndrome among the 590 taxa included in our

phylogenetic tree (electronic supplementary material, table S1).

The BiSSE estimates of transition rates between pollination

syndromes indicated a median rate from insect to humming-

bird pollination syndrome of 0.009, and from hummingbird

to insect pollination syndrome of 0.044. Our stochastic

mapping showed that pollination syndromes evolved on

average from insect to hummingbird 31.50 (+10.07) times.

Transitions to hummingbird pollination syndromes first

occurred around 18.5 Ma and then increased in frequency

over time (figure 2a). These transitions were reconstructed at
or near the crown of large clades of Gesnerioideae, such as

Besleria, Ligeriineae, Gesneriinae, Gloxiniinae and Columnea þ
Glossoloma genera (figure 1c). Reversions from hummingbird to

insect pollination were highly frequent (on average 76.50+
18.06 times). These reversions to insect pollination started

around 12.5 Ma and were mainly reconstructed on terminal

branches or within clades including few species (figures 1c
and 2b). Our three-state reconstruction treating bat and

hummingbird syndromes separately showed that transitions

to bat-pollinated flowers (all bat-pollinated species in Gesner-

ioideae have been observed in the field) have occurred at

least seven times, since around 9.5 Ma, and mainly from

hummingbird-adapted flowers (electronic supplementary

material, figures S4 and S5).
(c) Diversification analysis
Our analyses of temporal shifts during the diversification

of Gesnerioideae detected a single shift in diversification rate

( p-value , 0.001; electronic supplementary material, figure S6)

that most probably occurred around 18.5 Ma (95% confidence

interval ¼ 5.0–25.5 Ma). The mean net diversification rates

were 0.067 and 0.177 Ma21 for the periods before and

after the shift, respectively. The comparison of models for

trait-dependent diversification indicates that the model with

the best AICc is the ClaSSE with all different speciation rates

(though l011 and l101 constrained to be zero), extinction rates

constrained to be zero and equal transition rates (table 1; see

complete electronic supplementary material, table S7). We

clearly rejected a trait-independent process shaping the diversi-

fication of the Gesnerioideae (CID2 null model with a dAICc ¼

25.0 from the best model). The MCMC parameter estimates

suggested that speciation rates within pollination syndromes

were higher than those associated with shifts between them

(figure 2c). Furthermore, species within the hummingbird



Table 1. Summary of the best models for each class (based on AICc) of trait-dependent diversification models (BiSSE and ClaSSE), and the null trait-
independent model (CID2). Italics indicate best model AICc.

description speciation extinction transition np LogL AICc dAICc

BiSSE

different l

and q

l0= l1 m0 ¼ m1 q0_1= q1_0 5 22089.00 4188.10 10.10

ClaSSE

different la,b,c l000= l111= l001= l100,

l011 ¼ zero, l101 ¼ zero

m0 ¼ m1 ¼ 0 q0_1 ¼ q1_0 5 22083.94 4177.99 0.00

null model

CID2 null

modeld

t0A ¼ t1A= t0B ¼ t1B e0A ¼ e1A= e0B ¼ e1B all q are equal 5 22096.44 4202.98 25.00

aParameters l011 and l100 correspond to an insect-pollinated species that gives rise to two hummingbird-pollinated species, and vice versa.
bParameters l000 and l111 correspond to an insect-pollinated species that gives rise to two insect-pollinated species, and vice versa for hummingbird-
pollinated.
cParameters l010 and l101 correspond to an insect-pollinated species that gives rise to one insect, and one hummingbird-pollinated species.
dCID2 is the described null model for trait-dependent diversification models in [47]. t and e correspond to turnover and extinction fraction parameters.
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pollination syndrome have at least a twofold higher rate

(mean l111¼ 0.252 Myr21, 95% HPD ¼ 0.193–0.314) than

species within the insect pollination syndrome (mean l000 ¼

0.102 Myr21, 95% HPD ¼ 0.071–0.133). All speciation rates

associated with a shift in pollination syndrome, regardless of

the direction of the shifts, are lower and close to 0.01, and thus

an order of magnitude lower than the rates within pollination

syndrome (l001¼ 0.006, l011 ¼ 0.003, l101 ¼ 0.004, l100¼

0.010; figure 2c). Posterior distributions of extinction rate

showed a higher extinction rate for hummingbird pollination

syndrome species (mean m0 ¼ 0.015, 95% HPD¼ 0.000–0.041,

and m1 ¼ 0.027, 95% HPD ¼ 0.000–0.077). Transition rates

between pollination syndrome states supported a higher rate

of reversals to insect pollination syndrome (mean q01¼ 0.006,

HPD¼ 0.000–0.009, and mean q10¼ 0.023, HPD ¼ 0.000–

0.040), and were of similar magnitude to the rates estimated

by BiSSE (electronic supplementary material, table S4).

We found that diversification results are robust to the

misidentification of functional groups of pollinators at

the tips of the phylogenetic tree. First, the difference in

rates of speciation between the two pollination syndromes

(l000 and l111) is persistent if we remove the species-rich

genus Columnea, which includes exclusively hummingbird

pollination syndrome species (electronic supplementary

material, figure S7b), and the few bat-pollinated species (elec-

tronic supplementary material, table S6). Second, the test for

possible misidentification of functional groups of pollinators

indicated that our estimation of speciation and extinction

rates are extremely robust to up to 10% of equivocal states

(for both insect and hummingbird) and that even 15% of mis-

identification leads to qualitatively similar results (electronic

supplementary material, figures S8–S10). Finally, the simu-

lations of traits, whose evolution is independent from the

diversification process, showed that the estimated speciation

rates within pollination syndromes (i.e. l000 and l111) are

equal, under the null hypothesis, as well as the extinction and

transition rates (electronic supplementary material, figure S7a).

The effect of hummingbird pollination syndrome on diversifica-

tion that we detected is thus not likely to be due to a particular
shape of the phylogeny that could lead to a false detection of an

association between traits and speciation [49].
4. Discussion
We showed that hummingbird pollination probably played a

role in the diversification dynamics of Gesnerioideae in the

Neotropics. Two lines of evidence support this result. First,

the diversification of this subfamily increased substantially

around 20 Ma. This period corresponds closely to the dating

for the common ancestor of hummingbirds into South America

(22.4 Ma, 95% HPD: 20.3–24.7 Ma in [28]; 24–25 Ma in [55])

and the first appearance of plant species with hummingbird

pollination syndrome in the Gesnerioideae (figure 2a).

Second, we clearly show that species with hummingbird polli-

nation syndrome have higher rates of speciation compared

with species with insect pollination syndrome. On the other

hand, we did not find high speciation rates associated with

transitions between pollinator syndromes. These results indi-

cate that species richness in this plant group has been driven

by speciation within hummingbird-pollinated lineages, with-

out involving shifts among functional groups of pollinators,

contradicting the classical pollinator-shift hypothesis [14].

(a) Evolution of hummingbird pollination syndrome
in Gesnerioideae

Our study suggests that Gesnerioideae was ancestrally

pollinated by insects and that at least 31 transitions to

hummingbird and bat pollination syndromes occurred

during its evolution (figure 1c; electronic supplementary

material, figure S4). The repeated evolution of hummingbird

pollination syndrome in independent Gesnerioideae lineages

centred in different geographical areas, such as the Brazilian

Atlantic forest, Andes, Caribbean islands and Central

America [21], is indicative of the success of this ecological

interaction in multiple biomes of the Neotropics. We found

also frequent state reversals from hummingbird to insect
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pollination syndrome providing evidence against the hypoth-

esis that the evolution of hummingbird pollination could act

as a dead end from which reversals to insect pollination

are rare or no longer possible [14,56–58]. The convergent

evolution of distinct floral morphologies and pigmentation

in relatively short periods of time, as well as the reversibility

of this system, are striking and encourage the investigation

of whether a shared molecular basis might control these

phenotypic transitions [59].

Flowers corresponding to the hummingbird pollina-

tion syndrome appeared in Gesnerioideae around 18.5 Ma

(figure 2a), when hummingbirds were already present and

diversifying in South America [28,55]. This rather early origin

of hummingbird flowers, and the inferred south American

origin of the Gesnerioideae [21], indicate that this plant group

could be one of the oldest to have established interactions

with the first hummingbirds living in the tropical regions of

South America, unlike more recent hummingbird-adapted

plant lineages [15,16,55,60]. This old interaction might have

given the Gesnerioideae species enough time for the evolu-

tion of hummingbird pollination in separate lineages, and a

substantial amount of transitions back to insect pollination.

(b) Effect of hummingbird pollination on plant
diversification

Our finding of a preferred trait-dependent model indicates an

effect of pollination syndromes in the diversification of the

Gesnerioideae. A twofold increase in speciation rates for

species with a hummingbird pollination compared with

insect pollination syndrome suggests that floral morphologies

associated with hummingbird pollinators may promote

mechanisms that lead to the generation of new species. By

contrast, speciation rates associated with shifts in pollination

syndromes (i.e. between insect and hummingbird pollination

syndromes) were between 20 and 80 times lower than those

within pollination syndromes (electronic supplementary

material, table S5). These results indicate that the classical

pollinator-shift hypothesis driving plant speciation does not

explain the Gesnerioideae diversification. Instead, species

richness in this plant group has been driven by speciation

within hummingbird-pollinated lineages, without involving

shifts among functional groups of pollinators.

Why hummingbird pollination promotes plant speciation

remains unclear, but we propose plausible mechanisms as a

starting point for future research. First, the evolution of tubular

or gullet-like flowers characterizing most hummingbird flow-

ers may have directly accelerated speciation by promoting

specialized relationships with the different categories of

hummingbird species and the evolution of rapid prezygotic

reproductive barriers [61,62]. Hummingbirds vary dramati-

cally in bill size and shape, and these characteristics largely

match with the flower morphology of the species they feed

on [63–65]. Although most plant species are visited by several

hummingbird species, specialization in the plant–pollinator

network was found to increase at low and medium elevations

[66], and in species-rich communities in which closely related

hummingbirds visited distinct sets of flowering species [67].

Thus, floral specialization in hummingbird-pollinated species

is frequently more specialized than initially assumed, which

may result in greater potential for pollen segregation and, even-

tually, speciation. Second, flower specialization and specific

pollen placement on the hummingbird body may limit
interspecific pollen transfer among species sharing pollinators,

thereby increasing the number of plant species that can co-

occur in the same community [37,68,69]. It has been suggested

that this process could decrease extinction rates [9], but also

potentially increase the carrying capacity of hummingbird-

pollinated lineages per unit of area, a factor that can limit the

decline of diversification rates over time [70]. Finally, beyond

floral specialization, bird pollination could have a direct

impact on gene flow and the geography of plant speciation.

Compared with insects, bird pollination increases the efficiency

of pollen transfer and deposition [71], potentially affecting the

connectivity among natural populations even in the context of

a patchy distribution of suitable habitat [72]. Such improved

transfer of pollen over long distances could enable the mainten-

ance of isolated population providing the precondition for

allopatric speciation. This has been suggested for the Andean

species of Passiflora [73] and other hummingbird-pollinated

lineages in the Gesneriaceae like Columnea and Dircaea
[24,74]. Finally, and consistent with the last argument, hum-

mingbird pollination is considered to be more efficient than

insect pollination in Neotropical cloud forests at middle to

high elevations, because insects are less active in cool, foggy,

and wet conditions [75,76]. Altogether these patterns suggest

that hummingbird-pollinated species could have more opportu-

nities to colonize a wider geographical and climatic range, and

to establish complex plant–pollinator interactions compared

with insect-pollinated lineages. Although these hypotheses

remain largely untested, such factors could potentially trigger

diversification in angiosperm. Testing these hypotheses requires

more complete morphological characterization of the plant

species and plant–pollinator interaction data, to better under-

stand how biotic interactions have shaped biodiversity and

macro-evolutionary patterns in the Neotropical region.

Our study provides new insights into one of the most intri-

guing factors influencing the diversification of Neotropical

plant lineages, namely the impact of hummingbird pollination.

However, additional ecological factors should not be excluded

to conduct holistic examinations as encouraged by recent

studies [15,16]. The evolution of epiphytism and different

growth forms, the colonization of new biomes, and the geo-

logical history have potentially influenced the diversification

and distribution of Gesnerioideae [17]. Currently, factors are

usually evaluated independently, making it difficult to test

their joint effects [77], and they should be taken with pre-

caution, for instance, in traits with very few evolutionary

transitions (such as epiphytism in the species-rich Columnei-

nae clade). An optimal methodology should consider

multiple factors simultaneously and allow a particular combi-

nation of those (i.e. colonization of a new area, with an in situ
new trait state) to affect the diversification process (as discus-

sed in [77,78]). Such approaches are, however, not yet

available, and there is a current need to develop thoughtful

tests for modelling simultaneously the success of multiple

ecological interactions, considering the caveats of the methods

and data, while integrating global biodiversity patterns.
5. Conclusion
We identified a strong and positive effect of hummingbird pol-

lination syndrome on the process of species diversification in

the subfamily Gesnerioideae. This effect was probably trigge-

red by the repeated acquisition of hummingbird pollination
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when this pollination niche became available in South America

during the Early Miocene. Plants with a hummingbird pollina-

tion syndrome have a twofold increase in the rate of speciation,

suggesting a positive effect of hummingbird pollination on

the establishment of reproductive isolation. Our findings

complement the global understanding of the diversification

processes leading to the exceptional diversity of flowering

plants in the Neotropics, and provide new directions

towards further testing the role played by plant–pollinator

relationships in the build-up of plant diversity.
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