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This paper focused on an effectivemethod to discriminate the geographical origin ofWuyi-Rock tea by the stable isotope ratio (SIR)
and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (𝑛 = 99) collected
from nine producing areas and non-Wuyi-Rock tea (𝑛 = 33) from eleven nonproducing areas were analysed for SIR and MEP
by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction
shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance
discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the
model. The results show that 𝛿2H, 𝛿18O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and
not all of the metallic elements improve the prediction accuracy of the SVMmodel.

1. Introduction

Oolong tea is a traditional beverage favoured by consumers
all over the world for its pleasurable aroma and taste. In
addition, Oolong tea is a rich source of antioxidants, such as
tea polyphenol and tea polysaccharide, so it is also reported as
a functional drink that combats obesity, hypoglycaemia, and
oral bacterial infection [1–4].

For tea products, their aroma and savor are influenced
by many aspects, such as geographical origin [5, 6], tea
specie, cultivation, and processing method [7, 8]. Among
these aspects, the geographical and natural conditions in
which the tea trees grow are widely perceived to be a key
factor. Therefore, in China, the majority of famous teas are
named for their provenance, such as theAnxi-Tieguanyin tea,
the West Lake-Longjing tea, and the Anji-White tea.

Wuyi-Rock tea is originally cultivated in a mountain in
the north of Fujian Province (Wuyi Mountain). Contributed
to by the unique climate and edatope of Wuyi Mountain,
Wuyi-Rock tea (WRT) is recognized as one of the most
prestigious Oolong teas for its special savor and long-lasting

fragrance.Therefore,Wuyi-Rock tea has been awarded a pro-
tected geographical indication (PGI) and exported to more
than 30 countries. However, the actual yield of WRT is lim-
ited, and it cannot satisfy the needs of consumers. In various
markets, many teas labeled as Wuyi-Rock tea were actually
cultivated outside the protected production area; some of
them are not even cultivated in Fujian Province. Although the
taste and aroma of non-Wuyi-Rock teas (NWRT) are inferior
to authentic WRT, teas planted in different geographical
origins still have a similar appearance, and they can hardly
be distinguished just by the naked eye. In traditional sensory
analysis, WRT was tasted by professional tea tasters, and
then counterfeits were identified based on a series of sensory
scores. However, the result of sensory analysis depends a
great deal on subjective decisions by tea tasters, and a well-
trained tea taster is hard to find.Therefore, an urgent demand
exists for developing a more effective and stable technique to
discriminate the provenances of tea products.

In recent years, analyticalmethods based on instrumental
technology have been widely applied in food quality control
[9, 10]. Isotope ratiomass spectrometry (IRMS) is a technique
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Table 1: Detailed information of the samples.

Number Producing area Size of samplea Typeb

A01 Shangmei, Wuyi, Fujian Province 9 A
A02 Xingcun, Wuyi, Fujian Province 9 A
A03 Wufu, Wuyi, Fujian Province 9 A
A04 Langu, Wuyi, Fujian Province 9 A
A05 Chongan Street, Wuyi, Fujian Province 9 A
A06 Xinfeng Street, Wuyi, Fujian Province 9 A
A07 Yangzhuang, Wuyi, Fujian Province 9 A
A08 Xingtian, Wuyi, Fujian Province 9 A
A09 Xiamei, Wuyi, Fujian Province 9 A
A10 Wutun, Wuyi, Fujian Province 9 A
A11 Wuyi Street, Wuyi, Fujian Province 9 A
N01 Jianyang, Fujian Province 3 N
N02 Jianou, Fujian Province 3 N
N03 Zhangzhou A, Fujian Province 3 N
N04 Zhangzhou B, Fujian Province 3 N
N05 Quanzhou, Fujian Province 3 N
N06 Guangxi Province 3 N
N07 Guizhou Province 3 N
N08 Ganzhou, Jiangxi Province 3 N
N09 Wuyuan, Jiangxi Province 3 N
N10 Songxi, Fujian Province 3 N
N11 Zhenghe, Fujian Province 3 N
aThe number of the tea samples from the production site.
bA: Wuyi-Rock tea; N: non-Wuyi-Rock tea.

formeasuring the isotope content, which is a highly indicative
parameter in provenance discrimination. For example, the
stable isotope ratio of hydrogen (𝛿2H) in plants is influenced
by the latitude and altitude of the production site. The
concentration of deuterium in the water decreases when
clouds form above the ocean. Then, as rainwater falls and
the clouds move inland and gain altitude, the content of
𝛿2H in rainwater decreases gradually [11]. As a result, an
isotopic gradient exists in groundwater from coast to inland.
Moreover, the variation of oxygen-18 (𝛿18O) follows the same
pattern as hydrogen in the hydrosphere [12]. The isotope
ratio of carbon (𝛿13C) is strongly environmentally depen-
dent; plants cultivated in humid environments have a lower
𝛿13C than plants in arid environments. The isotope ratio of
nitrogen (𝛿15N) is influenced by agricultural practices; plants
treated with organic fertilizer develop a higher 𝛿15N content
than plants treated with chemical fertilizer. For provenance
analysis, IRMS has been successfully used for the analysis of
orange juice, fruits, cow milk, and wine [13–16]. In addition
to isotopes, trace element profiling is also available.There are
various metallic elements in agricultural food; some of them
are easily affected by edaphic and environmental factors,
such as fertilization, soil type, climate, and temperature. Both
inductively coupled plasmamass spectrometry (ICP-MS) and
atomic spectroscopy are tools for quantitative determination
of trace elements. In provenance discrimination, element
profiling has been used for honey, onion, black tea, and wine
[17–21].

This paper aims to develop an automatic analytical
method for discriminating geographical origin of WRT by
stable isotope and trace element contents. To model the
complicated relationship between the measured data and
production site, nonlinear multivariate classification models
are usually used [22–25]. Compared with other nonlinear
models such as kernel partial least squares (PLS) and artificial
neural networks (ANNs), support vector machine (SVM)
analysis is more suitable for the target data in this experiment
because of the small sample size [26–28]. Consequently, the
classification model was built based on SVM. Then, each
variable of isotope and element data was ranked by its
contribution to the model.

2. Materials and Methods

2.1. Tea Samples. In total, 99 authentic WRT samples were
collected from 11 main rich-producing areas in Wuyishan,
and 33 NWRT samples were collected from 11 different
production sites. All of the samples were made of spring teas
picked in 2015. Before analysis, the samples were preserved
in cold and dry storage with lightproof packaging. Detailed
information about the above samples is displayed in Table 1
and Figure 1.

The origin of Wuyi-Rock tea is the administrative area of
Wuyishan city, and Wuyishan has 11 subdistricts. The range
of sample collection covered all over the whole Wuyishan
city area. So the number of samples is adequate. All the
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Wuyishan city

Figure 1: Tea samples collected in Wuyishan.

collected tea samples were obtained directly from the local
tea processing space with the help of official department. All
the tea samples belonged to “Wuyi-Rock tea,” and the non-
Wuyi-Rock tea samples were purchased outside the protected
production area such as Jianyang, Jianou, and Ganzhou.

2.2. Isotopic Ratio Determinations. 𝛿13C, 𝛿15N, 𝛿18O, and
𝛿2H were measured using a MAT-253 isotope ratio mass
spectrometer (Thermo Fisher, USA) connected to a Flash-
2000 organic elemental analyser (Thermo Fisher, USA).
During carbon and nitrogen isotope analysis, the quartz
tube of the reactor was packed with chromium trioxide,
high purity copper, and silver cobalt oxide to completely
oxidize the organic matter. The carbon and nitrogen element
carried by helium gas entered the IRMS in the form of CO

2

and N
2
, respectively. The standard CO

2
and N

2
gases were

used as reference gas before and after the isotope test of
organic matter, and the detection of the instrument state in
the sample analysis was completed by the standard sample
such as labeled urea, IAEA-600, IAEA-CH-3, and VPDB
(Vienna Pee Dee Belemnite). Similarly, the instrument state
was detected by benzoic acid, IAEA-601, IAEA-602, IAEA-
CH-7, and VSMOW (Vienna Standard Mean Ocean Water)
in the analysis process of hydrogen and oxygen isotope. Each
sample was repeated three times.

The measured values (13C/12C, 15N/14N, 18O/16O, and
2H/1H) are usually presented as isotopic deviations, 𝛿,
defined as follows:

𝛿‰ = ( 𝑅𝑠𝑅std − 1) × 1000, (1)

where 𝑅
𝑠
is the measured value of the sample and 𝑅std is

the measured value of an international standard. 𝑅
𝑠
and 𝑅std

are the ratios of the heavier isotope and lighter isotope of an
element.

In isotope profiling, calibration was conducted according
to calibrated-urea and calibrated-benzoic acid standards as
well as the IAEA-600, IAEA-601, IAEA-602, IAEA-CH-3, and
IAEA-CH-3 standards of the International Atomic Energy
Agency (IAEA, Vienna).

2.3. Metal Determinations. Before metallic element detec-
tion, all of the tea samples were pretreated with microwave

Table 2: Optimized instrumental conditions and parameters of the
ICP-MS.

Parameter Setting value
Forward power 1200W
Scanning times 100 times
Scanning mode Peak height
Dwell time 10ms
Acquisition time 20 s
Sample uptake rate 1mL/min
Coolant gas flow rate 14 L/min
Auxiliary gas flow rate 0.75 L/min
Nebulizer gas flow rate 0.92 L/min

assisted digestion. The samples were dried before digestion
process (placed in the oven for 4 hours at 80∘C). All of the tea
samples were manufactured in May 2015 and simultaneously
analysed. Water content of tea samples was less than 6%
before drying. 0.3 g of each dried tea sample was placed into
a digestion vessel.Then, 1mL ultrapure water and 5mL nitric
acid were added to the vessel. Finally, the digestion vessel was
heated in the microwave cavity (2450MHz). The vibration
of gas pressure in the digestion procedure was conducted as
follows: (1) ramping from normal pressure to 0.5Mpa and
holding at 0.5Mpa for 70 s, (2) ramping to 1.0Mpa for 50 s, (3)
ramping to 1.5Mpa for 50 s, and (4) ramping to 2.0Mpa for
300 s. After the digestion, we evaporated the excess nitric acid
in 130∘C. When the temperature of the digestion vessel had
cooled to room temperature, the digested liquidwasmoved to
a volumetric flask and diluted to 50mL with ultrapure water.

Subsequently, concentrations of 14metallic elements were
measured. The concentrations of Ti, Cr, Co, Ni, Cu, Zn, Rb,
Cd, Cs, Ba, and Sr were detected using an X Series-IIICP-
MS (Thermo Fisher, The USA). The information about the
working condition and parameters for ICP-MS is shown in
Table 2.The concentrations of Ca,Mg, andMnwere analysed
by HITACHI 180-50 flame atomic absorption spectroscopy
(FAAS, HITACHI, Japan).Themain parameters for FAAS are
presented in Table 3. The results of ICP-MS and FAAS were
calibrated by mixed standard solution (GSB04-1767-2004)
and biological component analysis standard substance, tea
(GBW10052), respectively.

2.4. Data Splicing. All the data analysis was performed using
MATLAB 7.14.0.739 (Mathworks, Sherborn, MA). For data
splicing, the data of IRMS can be described as an 𝑛×𝑝matrix
𝐴 with 𝑛 rows and 𝑝 columns. 𝑛 represents the number of
samples and 𝑝 is the number of features in this paper (𝑛 =
132, 𝑝 = 4). In the same way, an 𝑛 × 𝑞 matrix 𝐵 (in this
paper, 𝑞 = 14) was obtained frommetallic element detection.
Then, the columns of matrix 𝐵 were arranged behind the last
column of matrix 𝐴. As a result, a union matrix 𝐶 (with 𝑛
rows and 𝑝 + 𝑞 columns) was formed that contains both the
isotope and metallic element information.



4 Journal of Analytical Methods in Chemistry

Table 3: Main measurement parameters for Ca, Mg, and Mn.

Element Wavelength Bandpass Ethyne gas flow rate Air flow rate
Ca 422.7 nm 2.6 nm 2.6 L/min 9.4 L/min
Mg 285.2 nm 2.6 nm 2 L/min 9.4 L/min
Mn 279.5 nm 2.3 nm 2.3 L/min 9.4 L/min

Before data analysis, each variable in matrix 𝐶 was
normalized as follows:

𝑥∗ = 𝑥 − 𝑥min
𝑥max − 𝑥min

, (2)

where 𝑥 is the value of 𝑖th (𝑖 = 1 : 132) row and jth (𝑗 = 1 : 18)
column, 𝑥max is the max value in the jth column, and 𝑥min is
the min value in the jth column.

2.5. SVM Analysis. The support vector machine algorithm is
a type of classification and regression model for supervised
machine learning. The kernel function is the main factor in
the SVM algorithm. Kernels have the advantage of operating
in the input space, where the solution of the classification
problem is a weighted sum of kernel functions evaluated at
the support vectors. SVM is designed to find an optimal plane
that all the sample units can be divided into two classes in a
multidimensional space.The optimal plane is in themiddle of
the nearest points between two classes andmakes the distance
as far as possible. For𝑁 variables, the optimal hyperplane is
of𝑁-1 dimensions [29].

After the data splicing was performed, three SVM classi-
fication models were established, based on the isotope data
(Matrix 𝐴), the metallic element data (Matrix 𝐵), and the
union data (Matrix 𝐶). For all of the 132 samples (99 WRT
samples and 33 NWRT samples), 88 of them (includingWRT
and NWRT samples) were selected as a training class at
random and the other 44 were put into a prediction class.

To estimate the performance of the SVM model, the
sensitivity and specificity were calculated as follows:

Sens. = TP
TP + FN ,

Spec. = TN
TN + FP ,

(3)

where TP and FN represent the number of true positives
and false negatives, respectively, and TN and FP denote the
number of true negatives and false positives, respectively.

2.6. Variable Ranking. For SVM models, it is obvious that
each variable does not contribute equally to prediction
accuracy. In addition, some useless information may even
have negative influence on prediction, so the significance of
each measured isotope and element was investigated in this
paper. For each feature, the column was removed from the
data matrix and a new SVM model based on the incomplete
data was built. In this way, each feature of the isotope and
element data was separately removed, and 18 models were
built. Then, the models were compared, and if a model

showed a lower accuracy, the missing feature was considered
important in provenance discrimination. Using this method,
every variable was ranked by its contribution.

3. Results and Discussion

𝛿13C in plant samples is mainly affected by the metabolic
pathway of plant photosynthesis, so 𝛿13C is significantly
different between different plants, while 𝛿15N is mainly
under the influence of such regional agricultural activities as
fertilization [12]. 𝛿2H and 𝛿18O are affected by atmospheric
water cycle. Obviously, they have dimensional and land
effects through the meteorological cycle of evaporation, con-
densation, and precipitation. Decreasing temperatures causes
a progressive heavy-isotope depletion of the precipitation
when the water vapour from oceans in equatorial regions
moves to higher latitudes and altitudes [11]. 𝛿2H and 𝛿18O
in plants are affected by 𝛿2H and 𝛿18O in the surrounding
environment, so they are well used to characterize the origin
of agricultural products [12]. The characteristics of metallic
elements in plants are not only related to the composition of
mineral elements in the soil, but also affected by varieties,
climate, and agricultural activities [30, 31]. Alkaline metals,
especially Cs and Rb being easily mobilised in the soil and
transported into plants, are good indicators of geographical
identity [12]. Cu, Zn, and Cd in the soil will be affected by
agricultural activities (organic fertilizer), so these elements
in plants will also be affected [32–34]. In conclusion, it is
necessary to evaluate the influence of these trace elements in
the identification of tea samples.

The results of isotope and metallic element profiling
are presented in Tables 4 and 5. The tables demonstrate a
considerable difference in isotope and metallic content, but
distinguishing the provenance of the sample just by these
values proved difficult. Chemometric models are powerful
tools in such situations.

Three SVM models based on isotope data, element
content data, and coupled data were established, and their
prediction results are shown in Table 6. The accuracy of
isotope-SVMmodel reached 0.9318, and only 3 samples were
mispredicted. Although the performance of element-SVM
models (0.7727) was not very satisfactory, when it was applied
coupled with isotope data, the model can greatly improve
predictions, and the accuracy of the coupled model reached
0.9773.

The rank of each feature is reported inTable 7. In the table,
𝛿2H, 𝛿18O, Cs, Cu, Ca, and Rb contents are ranked highest,
so they are the most significant indication in provenance
analysis of WRT. Moreover, in further analysis, each feature
was accumulatively assembled by its rank order and the
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Table 4: Results of provenance experiment: averages values of 4 stable isotopes in WRT and NWRT samples.

Number 𝛿13C 𝛿2H 𝛿18O 𝛿15N
A01 −26.77 ± 0.68 −80.90 ± 9.90 24.44 ± 0.33 1.14 ± 1.17
A02 −27.90 ± 0.76 −74.85 ± 7.54 23.39 ± 2.49 2.26 ± 0.93
A03 −27.14 ± 0.50 −77.05 ± 8.27 23.01 ± 0.81 2.55 ± 1.54
A04 −27.78 ± 0.96 −86.32 ± 0.83 22.18 ± 1.11 1.71 ± 1.06
A05 −26.79 ± 0.67 −78.34 ± 4.39 23.96 ± 1.49 2.76 ± 0.88
A06 −27.95 ± 0.78 −72.42 ± 5.61 25.05 ± 0.37 1.06 ± 2.46
A07 −27.56 ± 1.61 −86.27 ± 12.88 21.65 ± 2.63 1.40 ± 1.38
A08 −26.97 ± 0.56 −78.89 ± 4.15 24.24 ± 0.72 4.74 ± 2.10
A09 −27.50 ± 0.33 −86.99 ± 14.94 23.36 ± 3.10 2.54 ± 1.49
A10 −27.18 ± 0.12 −89.79 ± 6.63 24.56 ± 1.57 3.71 ± 0.96
A11 −26.90 ± 0.21 −73.76 ± 2.04 24.41 ± 0.81 1.83 ± 0.52
N01 −28.56 ± 0.19 −102.59 ± 0.89 18.63 ± 0.17 6.12 ± 0.22
N02 −26.96 ± 0.08 −89.39 ± 2.34 20.41 ± 0.44 3.63 ± 0.03
N03 −27.77 ± 0.07 −111.98 ± 1.55 18.34 ± 0.16 7.06 ± 0.22
N04 −28.34 ± 0.08 −111.98 ± 0.78 18.24 ± 0.22 6.78 ± 0.10
N05 −27.29 ± 0.15 −98.31 ± 1.83 22.39 ± 0.39 4.19 ± 0.07
N06 −27.84 ± 0.06 −107.15 ± 1.60 18.71 ± 0.25 4.14 ± 0.02
N07 −26.80 ± 0.09 −112.65 ± 0.64 16.65 ± 0.30 6.50 ± 0.07
N08 −28.04 ± 0.16 −103.89 ± 2.10 23.24 ± 0.20 1.98 ± 0.24
N09 −28.35 ± 0.11 −107.52 ± 1.83 18.48 ± 0.02 0.79 ± 0.02
N10 −27.88 ± 0.13 −107.75 ± 1.03 19.11 ± 0.35 4.91 ± 0.24
N11 −26.85 ± 0.14 −102.27 ± 1.97 21.09 ± 0.59 1.30 ± 0.18
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Figure 2: (a) Feature selection of isotope and prediction accuracy. (b) Feature selection of metallic element and prediction accuracy.

variation of accuracy was plotted in Figure 2 when a new
variable was added. As shown in Figure 2, the prediction
accuracy was reduced as the 𝛿18O feature was added. This
result may be caused by the overlapping chemical informa-
tion between 𝛿2H and 𝛿18O because they have analogous
variation in the hydrosphere. Therefore, the relationship
between 𝛿2H and 𝛿18O was examined, and the correlation
coefficient between 𝛿2H and 𝛿18O reached 0.8634, which
strongly supports this assumption. Afterwards, the model
achieved better performance as the variables of 𝛿15N and
𝛿13C were added. In element profiling, the SVM model
achieved the best prediction result when only Cs and Cu
contents were applied. The prediction accuracy decreased as

more element features were used, so some metal elements
were not significant in the identification of Wuyi-Rock tea
geographical origin.

4. Conclusion

The origin place of Wuyi-Rock tea is the typical Danxia
landform constituting purple soil, red soil, and moist sandy
soil and the microenvironment is unique and exclusive.
According to the results of tea identification, the importance
of 𝛿2H and 𝛿18O exactly reflects the particular climatic
environment inWuyishan. 𝛿13Cmainly reflects the difference
between different plants, and 𝛿15N is easily influenced by the
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Table 5: Results of provenance experiment: averages values of 14 element concentrations (𝜇g/g) in WRT and NWRT samples.

Number Ti Cr Co Ni Cu Zn Rb
A01 27.56 ± 1.25 5.31 ± 1.05 0.88 ± 0.28 12.58 ± 2.61 11.65 ± 0.95 30.56 ± 1.17 50.89 ± 10.16
A02 27.06 ± 1.07 5.43 ± 0.26 0.26 ± 0.17 10.19 ± 1.22 11.40 ± 0.12 29.61 ± 3.51 40.11 ± 6.92
A03 25.78 ± 1.39 5.04 ± 0.65 0.14 ± 0.02 9.68 ± 1.28 10.08 ± 0.72 27.67 ± 3.66 46.22 ± 15.16
A04 23.72 ± 2.74 5.54 ± 0.16 0.27 ± 0.08 12.61 ± 1.17 15.78 ± 1.77 29.67 ± 3.18 66.22 ± 22.27
A05 27.06 ± 3.82 5.29 ± 0.71 0.24 ± 0.02 10.58 ± 0.61 10.54 ± 1.89 33.11 ± 9.73 35.72 ± 15.54
A06 28.22 ± 5.55 4.99 ± 0.18 0.48 ± 0.15 10.09 ± 0.83 11.20 ± 1.60 32.28 ± 2.60 59.39 ± 18.63
A07 24.39 ± 2.75 5.01 ± 0.59 0.33 ± 0.08 11.63 ± 2.02 12.92 ± 1.22 27.83 ± 7.55 69.08 ± 17.80
A08 24.67 ± 5.80 4.62 ± 0.29 0.41 ± 0.36 10.68 ± 2.50 12.10 ± 1.61 28.11 ± 9.48 80.78 ± 35.31
A09 26.22 ± 3.91 4.07 ± 0.95 0.30 ± 0.18 9.04 ± 2.24 11.38 ± 0.66 30.94 ± 6.46 40.11 ± 19.16
A10 26.94 ± 0.67 4.89 ± 0.27 0.88 ± 0.17 11.56 ± 1.57 13.68 ± 0.72 21.06 ± 2.51 54.94 ± 6.42
A11 32.06 ± 2.84 4.68 ± 0.40 0.28 ± 0.04 10.52 ± 0.20 12.06 ± 0.69 52.17 ± 27.66 53.11 ± 17.23
N01 20.33 ± 0.50 3.88 ± 0.21 0.17 ± 0.003 9.16 ± 0.28 10.39 ± 0.65 19.17 ± 0.29 43.17 ± 0.93
N02 28.94 ± 0.25 5.17 ± 0.08 0.93 ± 0.01 14.23 ± 0.34 13.39 ± 0.31 40.28 ± 1.02 104.33 ± 0.67
N03 24.06 ± 0.48 4.89 ± 0.09 0.19 ± 0.02 10.79 ± 0.24 11.67 ± 0.14 18.00 ± 0.58 73.83 ± 0.76
N04 20.78 ± 0.42 4.63 ± 0.12 0.22 ± 0 9.73 ± 0.32 11.69 ± 0.07 18.33 ± 1.01 69.22 ± 0.10
N05 22.72 ± 0.51 4.94 ± 0.09 0.24 ± 0.01 10.08 ± 0.48 11.86 ± 0.67 19.39 ± 0.98 45.11 ± 0.79
N06 31.17 ± 2.90 4.50 ± 0.07 0.64 ± 0.02 11.75 ± 0.17 15.68 ± 0.18 30.33 ± 2.17 347.78 ± 5.85
N07 39.61 ± 1.70 4.26 ± 0.02 1.35 ± 0.03 17.44 ± 0.25 23.67 ± 0.17 36.72 ± 2.12 59.17 ± 0.88
N08 21.17 ± 0.44 4.74 ± 0.08 0.48 ± 0.02 11.89 ± 0.79 30.39 ± 0.54 35.33 ± 8.99 117.17 ± 1.36
N09 29.72 ± 0.92 4.86 ± 0.06 0.24 ± 0.01 16.34 ± 0.18 27.89 ± 0.42 33.06 ± 0.35 76.56 ± 0.69
N10 21.06 ± 0.86 4.62 ± 0.08 0.28 ± 0.01 9.59 ± 0.29 13.36 ± 0.32 18.56 ± 1.34 78.83 ± 1.32
N11 29.17 ± 1.17 4.28 ± 0.09 0.34 ± 0.02 10.31 ± 0.26 15.85 ± 0.37 33.50 ± 0.44 92.56 ± 2.18
Ref 27.50 4.42 0.42 13.62 34.00 30.17 60.50
LOD (ng/L) 0.0019 0.025 0.001 0.008 0.045 0.091 0.001
Number Cd Cs Ba Sr Ca Mg Mn
A01 0.07 ± 0.01 0.53 ± 0.26 14.24 ± 1.53 15.56 ± 1.92 3572.22 ± 233.53 2244.44 ± 133.68 1500.00 ± 317.54
A02 0.07 ± 0.01 0.48 ± 0.14 10.64 ± 2.63 15.00 ± 2.89 4122.22 ± 296.43 2266.67 ± 109.29 888.89 ± 350.13
A03 0.04 ± 0.01 0.44 ± 0.18 12.09 ± 4.20 15.56 ± 1.92 4288.89 ± 211.04 2305.56 ± 250.19 350.00 ± 152.75
A04 0.07 ± 0.01 0.32 ± 0.10 32.78 ± 13.76 13.33 ± 2.89 4027.78 ± 511.08 2633.33 ± 217.94 1038.89 ± 330.96
A05 0.08 ± 0.06 0.26 ± 0.19 15.01 ± 13.13 9.44 ± 0.96 3816.67 ± 464.58 2333.33 ± 389.80 966.67 ± 327.87
A06 0.06 ± 0.02 0.34 ± 0.03 7.68 ± 0.34 13.33 ± 3.33 3711.11 ± 475.61 2161.11 ± 110.97 872.22 ± 227.51
A07 0.10 ± 0.07 1.82 ± 1.22 22.17 ± 2.89 13.89 ± 2.54 4027.78 ± 500.09 2277.78 ± 409.72 1088.89 ± 460.17
A08 0.06 ± 0.05 1.26 ± 0.09 13.38 ± 3.94 12.78 ± 3.47 3872.22 ± 453.79 2127.78 ± 437.90 1194.44 ± 395.23
A09 0.09 ± 0.04 0.57 ± 0.28 8.10 ± 0.98 12.22 ± 3.85 3661.11 ± 431.51 2072.22 ± 58.53 905.56 ± 194.60
A10 0.04 ± 0.02 0.86 ± 0.48 12.04 ± 2.37 12.78 ± 3.47 3466.67 ± 180.28 2427.78 ± 122.85 1588.89 ± 242.86
A11 0.04 ± 0.01 0.39 ± 0.21 12.87 ± 7.39 12.78 ± 3.47 3200.00 ± 251.66 2327.78 ± 48.11 694.44 ± 327.59
N01 0.03 ± 0.01 1.08 ± 0.04 18.78 ± 0.79 15.00 ± 2.89 3666.67 ± 196.50 2227.78 ± 25.46 827.78 ± 82.21
N02 0.09 ± 0.01 2.406 ± 0.03 12.46 ± 0.22 12.22 ± 3.85 3605.56 ± 9.62 2294.44 ± 9.62 1394.44 ± 25.46
N03 0.04 ± 0.01 1.58 ± 0.02 16.83 ± 0.17 15.00 ± 2.89 3450.00 ± 196.50 2022.22 ± 75.15 650.00 ± 33.33
N04 0.04 ± 0.01 1.73 ± 0.01 22.11 ± 0.92 13.89 ± 2.54 3600.00 ± 50.00 1950.00 ± 16.67 1161.11 ± 34.69
N05 0.04 ± 0.01 1.64 ± 0.02 8.04 ± 0.12 14.44 ± 3.85 3205.56 ± 110.97 1972.22 ± 85.53 727.78 ± 19.24
N06 0.06 ± 0.02 2.80 ± 0.07 12.59 ± 0.38 15.56 ± 1.92 2688.89 ± 25.46 2183.33 ± 28.87 788.89 ± 9.62
N07 0.07 ± 0.01 1.20 ± 0.02 13.13 ± 0.21 10.00 ± 5.77 3733.33 ± 72.65 2822.22 ± 41.94 1705.56 ± 25.46
N08 0.36 ± 0.16 3.93 ± 0.03 31.83 ± 0.60 15.00 ± 2.89 3866.67 ± 183.33 2216.67 ± 92.80 1483.33 ± 16.67
N09 0.10 ± 0.01 0.83 ± 0.02 41.56 ± 0.54 16.67 ± 0 3405.56 ± 161.88 2566.67 ± 57.74 872.22 ± 19.24
N10 0.04 ± 0.01 2.12 ± 0.02 24.50 ± 0.44 15.56 ± 1.92 4283.33 ± 120.18 2183.33 ± 44.10 1244.44 ± 9.62
N11 0.08 ± 0.02 1.04 ± 0.02 26.50 ± 0.67 15.00 ± 2.89 3783.33 ± 44.10 2400.00 ± 100.00 733.33 ± 16.67
Ref 0.10 0.97 47.33 33.33 12633.33 2800.00 1333.33
LOD (ng/L) 0.002 0.001 0.007 0.003 0.021 0.005 0.039
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Table 6: Predicting results obtained by SVM.

Data type Sensitivity Specificity Accuracy
Isotope data 0.9394 (31/33) 0.9091 (10/11) 0.9318 (41/44)
Metallic element data 0.8788 (29/33) 0.4545 (5/11) 0.7727 (34/44)
Coupled data 0.9697 (32/33) 1 (11/11) 0.9773 (43/44)

Table 7: Rank results of isotope and metallic element data.

Isotopes Metallic element
Ranking Variable Ranking Variable Ranking Variable
1 𝛿2H 1 Cs 8 Cr
2 𝛿18O 2 Cu 9 Ni
3 𝛿15N 3 Ca 10 Zn
4 𝛿13C 4 Rb 11 Ti

5 Sr 12 Mg
6 Ba 13 Mn
7 Cd 14 Co

agricultural activities [12]; therefore, the importance of 𝛿13C
and 𝛿15N is not significant in the identification. Cs, Rb, and Sr
have a higher contribution to Wuyi-Rock tea discrimination
than great majority of elements, which has illustrated that the
special geology in Wuyishan area provides unique features
of trace elements for Wuyi-Rock tea. The contents of Cu,
Ca, and Zn in Wuyi-Rock tea were affected by many factors,
such as the kind of soil, fertilization, and tea varieties, so it
needed further investigation and analysis of the relationship
between identification and those aspects mentioned above in
Wuyishan tea field.

In this paper, isotope and metallic element analyses
demonstrate the potential for geographical origin discrimi-
nation of Wuyi-Rock tea. As a nonlinear model, SVM was
performed for classification, and the chemical information of
isotopes and metallic elements is complementary in prove-
nance discrimination. In addition, the ranks of isotope and
element features were carried out using established methods.
The result shows that 𝛿2H, 𝛿18O, Cs, Cu, Ca, and Rb contents
are significant in provenance analysis, 𝛿2H and 𝛿18O are
interrelated, and not every element is helpful in geographical
origin discrimination.
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