Abstract
Human endothelial cells or human foreskin fibroblasts infected with herpes simplex viruses (HSVs) potently inhibit the lytic activity of natural killer cells and interleukin 2-activated killer cells. The inhibition occurs after as little as 8 hr of viral infection and requires contact between effector cells and HSV-infected targets. Inhibition evidently stems from direct blockade of killer cell function because killer cells placed atop HSV-infected targets rapidly become incapable of lysing subsequently added HL-60 or K-562 cells. The impairment of killer cell function is prevented when protein glycosylation in HSV-infected cells is blocked with tunicamycin. These studies may be relevant for understanding the persistence of herpes simplex virus infections and, further, suggest a mechanism for failed immune surveillance.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benditt E. P., Barrett T., McDougall J. K. Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6386–6389. doi: 10.1073/pnas.80.20.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biron C. A., Byron K. S., Sullivan J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989 Jun 29;320(26):1731–1735. doi: 10.1056/NEJM198906293202605. [DOI] [PubMed] [Google Scholar]
- Cauda R., Tumbarello M., Ortona L., Kanda P., Kennedy R. C., Chanh T. C. Inhibition of normal human natural killer cell activity by human immunodeficiency virus synthetic transmembrane peptides. Cell Immunol. 1988 Aug;115(1):57–65. doi: 10.1016/0008-8749(88)90161-x. [DOI] [PubMed] [Google Scholar]
- Ching C., Lopez C. Natural killing of herpes simplex virus type 1-infected target cells: normal human responses and influence of antiviral antibody. Infect Immun. 1979 Oct;26(1):49–56. doi: 10.1128/iai.26.1.49-56.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droller M. J., Schneider M. U., Perlmann P. A possible role of prostaglandins in the inhibition of natural and antibody-dependent cell-mediated cytotoxicity against tumor cells. Cell Immunol. 1978 Aug;39(1):165–177. doi: 10.1016/0008-8749(78)90091-6. [DOI] [PubMed] [Google Scholar]
- Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell. 1978 Apr;13(4):671–679. doi: 10.1016/0092-8674(78)90217-9. [DOI] [PubMed] [Google Scholar]
- Goodman J. L., Stevens J. G. Passage of herpes simplex virus type 1 on chick embryo fibroblasts confers virulence for chick embryos. Virus Res. 1986 Aug;5(2-3):191–200. doi: 10.1016/0168-1702(86)90017-1. [DOI] [PubMed] [Google Scholar]
- Gray J. D., Horwitz D. A. Lymphocytes expressing type 3 complement receptors proliferate in response to interleukin 2 and are the precursors of lymphokine-activated killer cells. J Clin Invest. 1988 Apr;81(4):1247–1254. doi: 10.1172/JCI113442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris D. T., Cianciolo G. J., Snyderman R., Argov S., Koren H. S. Inhibition of human natural killer cell activity by a synthetic peptide homologous to a conserved region in the retroviral protein, p15E. J Immunol. 1987 Feb 1;138(3):889–894. [PubMed] [Google Scholar]
- Heiskala M. K., Carpén O., Saksela E., Timonen T. Mechanism of cell contact-mediated inhibition of natural killer activity. J Immunol. 1987 Sep 1;139(5):1414–1418. [PubMed] [Google Scholar]
- Heiskala M., Ylikorkala O., Timonen T. Inhibition of human natural killer activity by monolayers of primary cell cultures. Nat Immun Cell Growth Regul. 1987;6(1):1–11. [PubMed] [Google Scholar]
- Herberman R. B., Ortaldo J. R. Natural killer cells: their roles in defenses against disease. Science. 1981 Oct 2;214(4516):24–30. doi: 10.1126/science.7025208. [DOI] [PubMed] [Google Scholar]
- Lanier L. L., Le A. M., Civin C. I., Loken M. R., Phillips J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986 Jun 15;136(12):4480–4486. [PubMed] [Google Scholar]
- Lotze M. T., Grimm E. A., Mazumder A., Strausser J. L., Rosenberg S. A. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981 Nov;41(11 Pt 1):4420–4425. [PubMed] [Google Scholar]
- Melder R. J., Whiteside T. L., Vujanovic N. L., Hiserodt J. C., Herberman R. B. A new approach to generating antitumor effectors for adoptive immunotherapy using human adherent lymphokine-activated killer cells. Cancer Res. 1988 Jun 15;48(12):3461–3469. [PubMed] [Google Scholar]
- Moingeon P., Ythier A., Goubin G., Faure F., Nowill A., Delmon L., Rainaud M., Forestier F., Daffos F., Bohuon C. A unique T-cell receptor complex expressed on human fetal lymphocytes displaying natural-killer-like activity. Nature. 1986 Oct 16;323(6089):638–640. doi: 10.1038/323638a0. [DOI] [PubMed] [Google Scholar]
- Ochoa A. C., Gromo G., Alter B. J., Sondel P. M., Bach F. H. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, beta-IL 1, interferon-gamma and -beta. J Immunol. 1987 Apr 15;138(8):2728–2733. [PubMed] [Google Scholar]
- Ramsdell F. J., Golub S. H. Generation of lymphokine-activated killer cell activity from human thymocytes. J Immunol. 1987 Sep 1;139(5):1446–1453. [PubMed] [Google Scholar]
- Reiher W. E., 3rd, Blalock J. E., Brunck T. K. Sequence homology between acquired immunodeficiency syndrome virus envelope protein and interleukin 2. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9188–9192. doi: 10.1073/pnas.83.23.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. D., Craft D. W., Shiromoto R. S., Yan P. O. Alternative cell line for virus isolation. J Clin Microbiol. 1986 Aug;24(2):265–268. doi: 10.1128/jcm.24.2.265-268.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takimoto K., Niwa O., Sugahara T. Reactivation of UV- and gamma-irradiated herpes virus in UV- and X-irradiated CV-1 cells. Photochem Photobiol. 1982 Apr;35(4):495–499. doi: 10.1111/j.1751-1097.1982.tb02599.x. [DOI] [PubMed] [Google Scholar]
- Vercellotti G. M., Lussenhop D., Peterson P. K., Furcht L. T., McCarthy J. B., Jacob H. S., Moldow C. F. Bacterial adherence to fibronectin and endothelial cells: a possible mechanism for bacterial tissue tropism. J Lab Clin Med. 1984 Jan;103(1):34–43. [PubMed] [Google Scholar]
- Visser M. R., Jacob H. S., Goodman J. L., McCarthy J. B., Furcht L. T., Vercellotti G. M. Granulocyte-mediated injury to herpes simplex virus-infected human endothelium. Lab Invest. 1989 Feb;60(2):296–304. [PubMed] [Google Scholar]
- Weigent D. A., Hoeprich P. D., Bost K. L., Brunck T. K., Reiher W. E., 3rd, Blalock J. E. The HTLV-III envelope protein contains a hexapeptide homologous to a region of interleukin-2 that binds to the interleukin-2 receptor. Biochem Biophys Res Commun. 1986 Aug 29;139(1):367–374. doi: 10.1016/s0006-291x(86)80123-1. [DOI] [PubMed] [Google Scholar]
- Woods G. L., Young A. Use of A-549 cells in a clinical virology laboratory. J Clin Microbiol. 1988 May;26(5):1026–1028. doi: 10.1128/jcm.26.5.1026-1028.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Fries R. U., Golub S. H. Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells. J Immunol. 1988 May 15;140(10):3686–3693. [PubMed] [Google Scholar]