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Abstract

In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elonga-

tion and bolting delay. Uniconazole spraying has become an important cultivation technique

in controlling the flowering and improving the fruit-setting of litchi. However, the mechanism

by which uniconazole regulates the complicated developmental processes in litchi remains

unclear. This study aimed to determine which signal pathways and genes drive the re-

sponses of litchi inflorescences to uniconazole treatment. We monitored the transcriptional

activity in inflorescences after uniconazole treatment by Illumina sequencing technology.

The global expression profiles of uniconazole-treated litchi inflorescences were compared

with those of the control, and 4051 differentially expressed genes were isolated. KEGG

pathway enrichment analysis indicated that the plant hormone signal transduction pathway

served key functions in the flower developmental stage under uniconazole treatment. Bas-

ing on the transcriptional analysis of genes involved in flower development, we hypothesized

that uniconazole treatment increases the ratio of female flowers by activating the transcrip-

tion of pistil-related genes. This phenomenon increases opportunities for pollination and

fertilization, thereby enhancing the fruit-bearing rate. In addition, uniconazole treatment reg-

ulates the expression of unigenes involved in numerous transcription factor families, espe-

cially the bHLH and WRKY families. These findings suggest that the uniconazole-induced

morphological changes in litchi inflorescences are related to the control of hormone signal-

ing, the regulation of flowering genes, and the expression levels of various transcription fac-

tors. This study provides comprehensive inflorescence transcriptome data to elucidate the

molecular mechanisms underlying the response of litchi flowers to uniconazole treatment

and enumerates possible candidate genes that can be used to guide future research in con-

trolling litchi flowering.
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Background

Litchi is an important tropical fruit widely cultivated in more than 20 countries in tropical and

subtropical regions worldwide [1, 2]. In China, the planting area and total output of litchi are

more than 0.59 million hectares and 1.91 million tons, respectively, according to the Agricul-

tural Statistics Program of China [2]. However, the easily flowering and difficult fruit setting of

litchi bring serious problems in its cultivation and production. Without treating or pruning,

inflorescence development and flowering can consume excessive amounts of accumulated

nutrients, thus leading to low fruit-setting percentage and even zero yield [3].

At present, mechanical and chemical methods of flower thinning have been employed in

inflorescence control and management [3]. However, mechanical thinning is time consuming

and labor intensive, and its effect is easily affected by temperature and weather [3]. Therefore,

chemical flower thinning is preferred by litchi growers. Uniconazole (S-3307) is an important

plant growth regulator widely used in inflorescence control because of its high efficiency, low

toxicity, low residual, and low environmental pollution [4]. This chemical is a new plant growth

retardant that can regulate numerous growth and development processes, such as flowering

period [4, 5], controlcrop type [6, 7], enhance resistance [8, 9], and increase output and quality

[10]. In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elon-

gation and bolting delay [11], and it can also inhibit biosynthesis of gibberellins (GA) [11],

trans-zeatin [12] and abscisic acid (ABA) [13]. Application of uniconazole can inhibit the flower-

ing response induced by short-day treatment, and the inhibition by uniconazole is canceled by

further application of GA1 in Pharbitis nil [14]. Moreover, uniconazole can effectively suppress

excessive vegetative growth of soybean during the flowering stage, delay senescence of photosyn-

thetically active leaves at pod-setting stage, and induce higher yield [15]. In litchi cultural areas,

S-3307 spraying has become an important cultivation technique for flower control and fruit

retention [4, 16]. S-3307 can significantly increase the fruit-setting rate to improve yield [16].

The present study compares and analyzes the transcriptional level differences between the treat-

ment and control groups, and clarifies the metabolic pathways involved in litchi fruit setting.

Materials and methods

Plant materials and treatments

Six randomly selected 10-year-old litchi trees (Litchi chinensis Sonn. cv. Feizixiao) grown in an

orchard in the South Subtropical Crops Research Institute (Zhanjiang, China) were selected, and

20 similar-sized inflorescence clusters from each tree were tagged. Three trees were treated with

50 ppm uniconazole when the length of inflorescence reached approximately 15 cm, and the

remaining untreated trees were used as control. Each tree was treated as a biological replicate.

Ten clusters in each tree were used to track the flowering and fruiting dynamics, and the others

were used for sampling. The total flower number, female flower number, ratio of female to male

flowers, fruit number, and fruiting rate were surveyed during the development period. The entire

inflorescences of the uniconazole-treated and control trees were sampled at 28 days after treatment

(DAT), immediately frozen in liquid nitrogen, and then stored at −80˚C for future analysis. Three

control spikes and three uniconazole-treated spikes at 28 DAT were respectively blended and pul-

verized to a mixed sample. These two mixed samples were used in transcriptome sequencing.

RNA extraction and library construction

Total RNA was extracted from the inflorescence mixed sample in accordance with the method

described by Zhang et al. [17]. The total RNA was purified with DNase I (Takara, Otsu, Japan)

and RNase-free columns (Huayueyang, Beijing, China) [18]. RNA integrity and quality were
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assessed using agarose gel electrophoresis, NanoDrop ND-1000 (Thermo Scientific, Waltham,

MA, USA), and Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). RNA (2 μg) was

synthesized to cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher,

USA) through a one-step method. cDNA library construction and Illumina sequencing were

performed using the Illumina HiSeq™ 2500 platform (San Diego, CA, USA) and then analyzed

at the Beijing Genomics Institute (Shenzhen, China) as previously described [17, 19].

De novo assembly and functional annotation

After raw reads were filtered to exclude low complexity reads, transcriptome de novo assembly

was performed by using Trinity, a short-read assembling program [20]. For more details, sees

S1 Fig. The resultant sequences obtained with Trinity are called unigenes. All assembled uni-

gene sequences were aligned by BLASTX (E-value< 10−5) to public protein databases, the

NCBI non-redundant protein (Nr) database, the Swiss-Prot protein database, the gene ontol-

ogy (GO) database, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the

Clusters of Orthologous Groups database [21]. To identify uniconazole-regulated genes, the

threshold of differential unigene expression between the treated and control samples was set to

FDR� 0.05, |log2|� 1, and P-value< 0.01. The screened differentially expressed unigenes

(DEGs) were further subjected to GO enrichment analysis and KEGG pathway enrichment

analysis to verify biological significance [21, 22] (S1 File).

Quantitative reverse transcription–polymerase chain reaction

(qRT-PCR) analysis

qRT-PCR was performed on a LightCycler 480 II (Roche, Switzerland) using the SYBR green

fluorescent label. cDNA was synthesized from total RNA using a PrimeScript RT Reagent Kit

(Thermo Fisher, USA). The relative expression levels of genes were calculated using the 2−ΔΔCt

method. All quantitative PCRs were performed in three biological replications.

Results and discussion

Effects of uniconazole on flowering in litchi

To ascertain the effects of uniconazole application on litchi blossoming and fruit bearing, we

treated litchi inflorescence clusters with 50 ppm uniconazole and water (control) when the length

of inflorescence reached approximately 15 cm (Fig 1A). As shown in Fig 1B and 1C, the flowers of

water-treated inflorescences began to open at two weeks after treatment, whereas those of unico-

nazole-treated inflorescences remained closed, thus suggesting that uniconazole delayed flower

development. Compared with the control, uniconazole treatment decreased the total flower num-

ber and male flower number and increased the number of females and ratio of female to male

flowers (Fig 1H, Table 1). Subsequently, as expected, uniconazole application highly and signifi-

cantly increased the number of fruits and fruiting rate per inflorescence (Fig 1D, 1E, 1F and 1G,

Table 1).These results indicated that uniconazole treatment changed the flowering time of litchi

and markedly increased the number of female flowers to improve fruit yield.

DEGs in response to uniconazole application on inflorescence

Differences in gene expression were assessed, and DEGs were identified by pairwise compari-

sons of the two libraries with the threshold of FDR� 0.05 and |log2|� 1 (Fig 2). A total of 4051

DEGs (3096 upregulated and 955 downregulated) were identified in the pair-wise comparison

between any two stages (S1 Table). The results showed that the number of upregulated DEGs

was considerably greater than that of downregulated DEGs (Fig 2). The comparison of the
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expression levels for the uniconazole-treated and control groups is shown vividly in the vol-

cano plots (Fig 2). These findings indicated significant differences in unigene expression at the

flowering stages after uniconazole application.

Functional analysis of DEGs in response to uniconazole application

Enrichment studies of DEGs in GO and KEGG functional categories in pairwise comparisons

were performed to evaluate the potential function of differentially expressed transcripts after

Fig 1. Effects of uniconazole on inflorescence development and flowering in litchi. (A) Inflorescence state before uniconazole application (30

days after floral evocation); (B) Inflorescence states from untreated control (B1) and uniconazole-treated (B2) plants four weeks after treatment (full-

bloom stage of untreated control); (C) Clusters from untreated control (C1) and uniconazole-treated (C2) plants six weeks after treatment (fruitlet stage

after abscission); (D) D1 and D2 represent the magnification of the portions of C1 and C2, respectively; (E) Effects of uniconazole on the blossoming

process of male flower and female flower.

https://doi.org/10.1371/journal.pone.0176053.g001

Table 1. Effects of uniconazole treatment on flowering and fruiting in litchi.

Treatment Number of flowers/

Inflorescence

Number of females/

Inflorescence

Ratio of female to

male

Number of fruits/

Cluster

Fruiting rate

(%)

Uniconazole 3283.9±296.0* 534.1±48.3 19.40%** 5.7±0.7 1.1

Water 5016.0±445.6 349.9±64.8 7.50% 0.5±0.4 0.1

“*” and “**” indicate significant difference at P�0.05 and P�0.01, respectively.

https://doi.org/10.1371/journal.pone.0176053.t001
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the application of uniconazole. The detailed information of GO and KEGG is presented in S2

Table and Fig 3. GO functional enrichment indicated that 986, 525, and 1115 DEGs could be

classified into three categories in GO assignments, namely, biological process, cellular compo-

nent, and molecular function at the flowering stages, respectively (S2 Table). As shown in S2

Table, the top two categories were “calcium ion transport” and “pollen wall assembly” in the

biological process category. With respect to the cellular component category, the majority of

DEGs were involved in “intrinsic component of membrane” and “membrane part.” Under the

molecular function category, “oxidoreductase activity” and “protein kinase activity” accounted

for the major proportion.

The KEGG database was used to understand further the biological functions and pathways

of DEGs. For the KEGG pathway enrichment analysis, pathways displaying significant changes

(Q value� 0.05) in response to uniconazole treatment were identified, with 591 DEGs catego-

rized to 99 pathways at the flowering stages (S3 Table). The top 20 KEGG pathways compared

are presented in Fig 3. The pathways involving the highest number of DEGs were “Metabolic

pathways,” followed by “Biosynthesis of secondary metabolites” and “Ribosome,” indicating

that these pathways are active at the flowering stage. The “plant hormone signal transduction”

term was the most significantly enriched at the flowering stage (Fig 3). The high ratio of “plant

hormone signal transduction” pathway implied that unigenes involved in the hormone signal-

ing perform key functions at the flower developmental stage under uniconazole treatment. At

the flowering stage, in addition to the “plant hormone signal transduction” pathway, the three

Fig 2. Volcano plots showing the comparison of DEGs between the treatment and control groups.

The red scatters indicate upregulated DEGs, green scatters indicate downregulated DEGs, and black scatters

indicate no DEGs between the uniconazole-treated and untreated samples. Datasets were filtered to remove

genes with low expression levels (dotted line from −1 to 1 on the x-axis), and a significance cut off (p< 0.01)

was applied (dotted line on the y-axis).

https://doi.org/10.1371/journal.pone.0176053.g002
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hormone-related KEGG pathways “alpha-linolenic acid metabolism,” “carotenoid biosynthe-

sis,” and “tryptophan metabolism” were also enriched. These results suggest that hormones

serve crucial functions during this particular period (Fig 3).

Transcriptional analysis of genes involved in the hormone signaling

pathway

For the KEGG enrichment analyses of the DEGs, the “plant hormone signal transduction”

pathway was highlighted as being particularly affected at the flowering stage by uniconazole

treatment (Fig 3). To understand the functions of plant hormones in inflorescence buds in

response to uniconazole treatment, homologous genes involved in various hormonal regula-

tion pathways in Arabidopsis were identified [23], and 57 unigenes predicted to be related to

plant hormone signaling pathways were found to be differentially expressed at the flowering

stage after uniconazole treatment (Fig 4, S4 Table), including those related to auxin (20 genes),

ethylene (11 genes), abscisic acid (ABA, nine genes), brassinosteroid (BR, 12 genes), salicylic

Fig 3. Functional analysis of DEGs based on the KEGG pathway. Pathways with a Q-value� 0.05

significantly enriched in DEGs were analyzed in the comparison between treatment and control at the

flowering stages. The degrees of KEGG enrichment can be measured by the richness factor, Q-value, and

gene number enriched in this pathway. The right y-axis represents the KEGG pathway, and the x-axis shows

the richness factor, which denotes the ratio of the number of DEGs to the number of annotated genes

enriched in this pathway.

https://doi.org/10.1371/journal.pone.0176053.g003
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acid (SA, two genes), and jasmonic acid (JA, three genes). The result indicated that unicona-

zole treatment significantly affected the expression of genes involved in most plant hormones.

Among these genes, those encoding auxin comprised the largest group, and one unigene

encoding auxin transporter protein (AUX1) and five unigenes encoding auxin response factor

(ARF) were upregulated after uniconazole spraying. In comparison, the three families of early

auxin responsive genes, auxin-induced proteins (Aux/IAA) (two genes), indole-3-aceticacid-

amidosynthetase (GH3) (two genes), and SAUR family protein (SAUR) (10 genes) were signifi-

cantly repressed at the flowering stage after uniconazole treatment (Fig 4A). In the ethylene-

responsive pathway, seven out of the night genes encoding ethylene response factor (ERF)

were upregulated after uniconazole treatment (Fig 4B). Seven unigenes annotated as protein

phosphatase 2C (PP2C) involved in ABA signal transduction were differentially expressed, and

six out of the seven genes were upregulated by uniconazole treatment (Fig 4C). As a plant

growth retardant, uniconazole reduces the shoot growth of plants by inhibiting gibberellin bio-

synthesis. The increase in ethylene and active forms of cytokinins and the decrease in gibberel-

lin in shoots may be the basis for the physiological phenomena caused by uniconazole [24].

Unexpectedly, gibberellin and cytokinin signaling pathways were not enriched, and related

unigenes were barely expressed differently after uniconazole treatment. These findings suggest

that the flowering of litchi affected by uniconazole may not occur through gibberellin and

cytokinin. As a strong competitive inhibitor of ABA 80-hydroxylase, uniconazole inhibits the

ABA catabolism in Arabidopsis [13]. Hu [25] et al. found that uniconazole spraying could

reduce the endogenous hormone GA, increase the hormone ABA, and change the flowering

Fig 4. Heat map diagrams of relative expression levels of DEGs in the hormone signal transduction

pathways. DEGs in the signal transduction pathways identified in KEGG pathway enrichment analysis are

shown as auxin (A), ethylene (B), abscisic acid brassinosteroid (C), brassinosteroid (D), salicylic acid (E), and

jasmonic acid (F). Ratios are expressed as log2 RPKM (treatment/control) values. Red and green colors

indicate gene upregulation and downregulation, respectively.

https://doi.org/10.1371/journal.pone.0176053.g004
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dynamics because of the change in endogenous hormones. Low GA concentration and high

ABA promote female development, thereby significantly increasing the female rate [25]. Six

PP2Cs involved in ABA signal transduction were markedly upregulated by uniconazole treat-

ment (Fig 4C), thus suggesting that ABA could serve a positive function in affecting the female

flower rate. Several studies showed that male flower development is closely associated with rel-

atively high IAA contents and that low IAA concentrations induce female flower differentia-

tion [26]. This study also found that the three families of early auxin responsive genes, Aux/
IAA, GH3, and SAUR, were all downregulated after uniconazole treatment (Fig 4A). This result

suggested that IAA exerted a negative effect on the female flower rate.

In addition to IAA, ABA, and ethylene, other hormones may also perform a function in

uniconazole response. Among the unigenes related to BR signaling, the levels of 12 xyloglucan

endotransglucosylase/hydrolase protein genes, annotated as TCH4, mostly increased after uni-

conazole treatment (Fig 4D). Genes related to SA and JA were also upregulated during the

flowering process after uniconazole treatment. Moreover, the treatment upregulated one non-

expressed or pathogenesis-related protein 1a gene and one BZIP transcription factor family

protein gene (Fig 4E). Similarly, the treatment upregulated the jasmonate ZIM-domain pro-

tein gene and theMYC2 gene (Fig 4F). The research outcomes indicated that uniconazole

treatment significantly increased the expression levels of numerous key genes involved in the

signal transduction of BR, SA, and JA. In particular, the expression levels of most TCH4s

markedly increased, thus implying that hormones BR, SA, and JA could be involved in the

response to uniconazole treatment. At present, however, related studies on the response of

hormones BR, SA, and JA to uniconazole are lacking. Combined with those of previous stud-

ies, our results suggest that diverse hormonal signals are involved in uniconazole responses

and that these hormones may jointly regulate the development of litchi flowers after unicona-

zole treatment. However, the exact functions of multiple hormones in this process still require

further investigation.

Transcriptional analysis of genes related to flower development and sex

determination in litchi

Uniconazole treatment significantly affected the flowering characters of litchi, which conse-

quently increased fruit yield (Fig 1, Table 1). As one of our aims was to identify the genes

responsible for flower development and sex determination, 18 homologous DEGs involved in

flower development in Arabidopsis were specifically searched from the two libraries (Table 2).

Among these genes are those that control floral organ identity [ABC model genes (AP2), stem

cell maintenance (CLAVATA1,CLV1), pistil development [(CLAVATA3, (CLV3), LEAFY,

(LFY), LEUNIG, (LUG)], and flowering time [TERMINAL FLOWER 1, (TFL1), FLOWERING
LOCUST (FT), FLOWERING-PROMOTING FACTOR 1 (FPF1), and other MADS-box genes

(SQUAMOSA PROMOTER BINDING-LIKE 8, SPL8)] (Table 2).

As shown in Fig 1 and Table 1, uniconazole treatment significantly increased the ratio of

female to male flowers, thus indicating that uniconazole could affect the differentiation of

male and female flowers in litchi. Interestingly, several pistil-related genes were differently

expressed after uniconazole treatment. LUG, which is a critical regulator of gynoecium mar-

ginal tissue development [27], negatively regulates AGAMOUS expression in the first two

whorls of the Arabidopsis flower [28]. Two LUG genes were highly induced by uniconazole

treatment (Table 2), which increased the ratio of female to male flowers. This result suggests

that LUG genes play similar roles during litchi flower development. As shown in Table 2,

one CLV1 gene and two CLV3 genes were differently expressed. Genetic analysis indicates

that CLV1 acts with CLV3 to control the balance between meristem cell proliferation and
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differentiation. The CLV3 gene is expressed in the putative stem cells at the apex of shoot, flo-

ral, and axillary meristems [29]. These results suggest that uniconazole treatment activates pis-

til development by affecting the expression of pistil-related genes in litchi.

Among the floral organ identity genes, six orthologs of AP2, an A-class gene in Arabidopsis
[30], were identified, and four orthologs were upregulated after uniconazole treatment. AP2
belongs to the AP2/ERF family, which contributes to the formation of the floral meristem and

floral organ, and interacts with floral key genes AP1 and LFY [31–33].

Aside from significantly improving the ratio of female to male flowers, uniconazole spray-

ing could delay floral organogenesis and flowering time (Fig 1). Uniconazole treatment of

inflorescence buds upregulated two orthologous genes of TFL1 (Table 2). TFL1, a floral repres-

sor in Arabidopsis, regulates flowering time and maintains the fate of inflorescence meristem.

The tfl1-1mutation causes early flowering and limits the development of the normally indeter-

minate inflorescence by promoting the formation of a terminal floral meristem [34]. The result

implies that uniconazole treatment could activate the expression of TFL1 genes, which agrees

with our observation that the flowering time of the uniconazole-treated inflorescences was

later than that of the control inflorescences (Fig 1). One putative homolog of SPL8 was differ-

ently expressed at the flowering stage. The SBP-box gene family regulates diverse aspects of

plant development, especially flower development. In Arabidopsis, SBP1 and SBP2 participate

in flower development by interacting with the floral meristem identity gene SQUAMOSA [35].

The AtSPL3 gene has shown activity primarily in the inflorescence apical meristems, floral

meristems, and floral organ primordial, and promotes floral transition [36, 37]. AtSPL8 con-

tributes to the formation of the sporangium and plant reproduction [38] and may also be

involved in the GA signal transduction pathway [38]. AtSPL9 can promote the transcription of

floral genes FUL, SOC1, and AGL42 [39].

Table 2. Expression analysis of genes related to flowering in inflorescence buds of litchi after uniconazole treatment.

Gene ID CK2_rpkm U2_rpkm log2 Ratio(U2/

CK2)

Abbreviation Annotation

Unigene0002425 1.66 5.05 1.60 AP2 AP2/ERF domain transcription factor [Medicagotruncatula]

Unigene0009862 2.57 0.79 −1.70 AP2 AP2 domain-containing transcription factor [Theobroma cacao]

Unigene0032409 36.04 16.81 −1.10 AP2 AP2 domain-containing transcription factor [Populustrichocarpa]

Unigene0007683 0.88 1.97 1.16 AP2 AP2 domain-containing transcription factor [Theobroma cacao]

Unigene0007332 0.30 2.27 2.93 AP2 AP2/ERF and B3 domain-containing transcription repressor

[Populuseuphratica]

Unigene0013522 1.34 3.93 1.56 AP2 AP2/ERF and B3 domain-containing transcription factor [Citrus sinensis]

Unigene0046187 2.73 1.16 −1.24 CLV1 CLAVATA 1-like [Citrus sinensis]

Unigene0017753 8.08 3.79 −1.09 CLV3 CLAVATA 3 [Pyrus x bretschneideri]

Unigene0020360 2.11 4.55 1.11 CLV3 CLAVATA 3 [Nelumbonucifera]

Unigene0039839 1.32 3.33 1.34 LFY LEAFY [Litchi chinensis]

Unigene0025554 0.50 1.92 1.95 LUG LEUNIG [Citrus sinensis]

Unigene0015457 0.00 1.34 10.39 LUG LEUNIG [Pyrus x bretschneideri]

Unigene0040635 13.62 28.18 1.05 SPL SQUAMOSA PROMOTER BINDING-LIKE 8 [Theobroma cacao]

Unigene0028669 3.29 6.67 1.02 TFL1 TERMINAL FLOWER 1 [Dimocarpuslongan]

Unigene0032646 0.92 5.16 2.49 TFL1 TERMINAL FLOWER 1 [Dimocarpuslongan]

Unigene0032778 3.33 1.14 −1.54 FT FLOWERING LOCUS T [Litchi chinensis]

Unigene0032779 0.12 1.57 3.72 FT FLOWERING LOCUS T [Litchi chinensis]

Unigene0038863 5.66 1.00 −2.50 FPF1 FLOWERING-PROMOTING FACTOR 1-like [Citrus sinensis]

https://doi.org/10.1371/journal.pone.0176053.t002
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Uniconazole-responsive transcription factors

Previous studies demonstrated that several transcription factors may be master regulators of

downstream effects and perform crucial functions in plant growth and development [40]. Six-

teen putative transcription factor families (80 members) were identified in the flowers of litchi

in response to uniconazole treatment, with 58 upregulated and 22 downregulated differentially

expressed uniconazole-responsive transcription factors at the flowering phase (Fig 5, S5 Table).

Among the transcription factor families, the largest ones were the bHLH family (16, 20.0%), fol-

lowed by the WRKY (15, 118.8%), NAC (13, 16.3%), and MYB families (13, 16.3%) (Fig 5).

The bHLH family includes genes regulating diverse processes of flower development. Four

bHLH transcription factors (ALC, AMS, DYT1, and SPT) controlling the development of

flower have been cloned in Arabidopsis thaliana. SPT and ALC may be relevant to pistil devel-

opment [41,42], but AMS and DYT1 are closely related to the morphogenesis of anthers

[43,44]. In the present study, as the largest transcription factor family, 16 unigenes with

bHLH-like sequences were differentially expressed (10 upregulated and six downregulated)

after uniconazole treatment. Such prevalence of bHLH transcripts in floral development

implies that this family is as involved in flower development in litchi as it is in other species

[45].

Fig 5. Differentially expressed genes encoding transcription factors following uniconazole treatment.

Different shades of red and green express the extent of change according to the color bar provided in Fig 4.

Red and green indicate upregulation and downregulation of genes, respectively, whereas white indicates that

no change was detected after uniconazole treatment.

https://doi.org/10.1371/journal.pone.0176053.g005
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Putative homologs of WRKY transcription factors were significantly represented after uni-

conazole treatment, with 15 unigenes showing upregulated expression. WRKY transcription

factors are mainly involved in biotic and abiotic stress responses [46] and senescence [47, 48].

In recent years, however, several members of this family have also been associated with floral

development and flowering time in plants [46, 49–51]. AtWRKY2 and AtWRKY34 regulate

pollen and pollen tube development [39]. AtWRKY71 accelerates flowering via the direct acti-

vation of FT and LFY in A.thaliana [50]. AtWRKY53 overexpression exerts the early flower

phenotype [46]. GsWRKY20 promotes the flowering of Glycine soja [52]. Two WRKY tran-

scription factors, OsWRKY11andOsWRKY72, are involved in the determination of flowering

time of rice [51, 53]. Significantly increased expression levels of all WRKY transcription factors

after uniconazole treatment indicate that these transcription factors serve important functions

in uniconazole-induced flower formation. However, the mechanisms by which WRKY tran-

scription factors are involved in this process need further investigation.

The NAC transcription factor family was significantly expressed after uniconazole treat-

ment, with 10 unigenes highly upregulated and 3unigenes downregulated. Several NAC mem-

bers are involved in flower-boundary morphogenesis [54–56]. NST1 and NST2 participate in

the formation of secondary anther walls [57]. NTL8 and LOV1 are implicated in regulating the

flowering time of Arabidopsis [58, 59]. The MYB transcription factors have been identified as

floral developmental regulators. MYB21, MYB24, and MYB57 reportedly mediate the stamen

filament growth of Arabidopsis [60, 61]. AtMYB33 may mediate flowering by binding to the

LEAFY promoter [62] and redundantly control anther development with AtMYB65 [63]. In

the present study, 13 putative MYB transcription factors were differently expressed after uni-

conazole spraying. These results indicate that the NAC and MYB transcription factors serve

similar functions in controlling flower bud development in litchi and other species.

Several other transcription factor families were also found. Interestingly, DEGs belonging

to the C2H2, MADS, TCP, GRF, MYC, SBP, and Trihelix families were upregulated after uni-

conazole treatment. By comparison, DEGs of the bZIP, HD, and PLATZ families were down-

regulated after uniconazole treatment. These results suggest that these transcription factors

perform specific functions in uniconazole-induced flower formation. In addition, unicona-

zole-induced morphological changes in litchi inflorescences may be related to the expression

levels of various transcription factors.

RT-qPCR validation of DEGs from RNA-Seq

To validate further our RNA-seq expression profile data, we performed RT-qPCR assays on 15

unigenes involved in hormone signaling and flowering, as well as on transcription factors

related to uniconazole responses (Fig 6, S2 File). Fig 6 shows that the expression trends of

these unigenes are in accordance with the prediction by RPKM value. The results validate the

fact that the predicted unigenes related to hormone signaling, flowering genes, and transcrip-

tion factors influence flowering characteristics under uniconazole induction.

Conclusion

The pre-bloom application of uniconazole to “Feizixiao” litchi inflorescences delayed the flow-

ering time and markedly increased the number of female flowers to improve fruit yield. This

study provided a global expression profile of uniconazole-treated and untreated litchi inflores-

cences through the de novo assembly of next-generation sequencing. A total of 4051 DEGs

were identified in response to uniconazole treatment, and further analysis indicated that the

uniconazole response was complex. Uniconazole-induced changes in the morphology of litchi

inflorescences could be related to the regulation of hormone signaling, flowering-related
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Fig 6. Verification of RNA-seq results by RT-qPCR. Transcript levels of 15 genes, including 5 probable transcription

factors, 5 flowering-related genes, and 5 genes involved in hormone signaling, as measured by RT-qPCR analyses. The

relative RT-qPCR expression is shown on the y-axis to the left, with error bars representing the standard error (n = 3).

https://doi.org/10.1371/journal.pone.0176053.g006
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genes, and various transcription factors. These findings provide a platform for understanding

the DEGs and pathways induced by uniconazole. This study will be useful for further studies

on the response of flowering to uniconazole in litchi.
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