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Abstract
Estimating a population’s growth rate and year-to-year variance is a key component of 
population viability analysis (PVA). However, standard PVA methods require time se-
ries of counts obtained using consistent survey methods over many years. In addition, 
it can be difficult to separate observation and process variance, which is critical for 
PVA. Time-series analysis performed with multivariate autoregressive state-space 
(MARSS) models is a flexible statistical framework that allows one to address many of 
these limitations. MARSS models allow one to combine surveys with different gears 
and across different sites for estimation of PVA parameters, and to implement replica-
tion, which reduces the variance-separation problem and maximizes informational 
input for mean trend estimation. Even data that are fragmented with unknown error 
levels can be accommodated. We present a practical case study that illustrates MARSS 
analysis steps: data choice, model set-up, model selection, and parameter estimation. 
Our case study is an analysis of the long-term trends of rockfish in Puget Sound, 
Washington, based on citizen science scuba surveys, a fishery-independent trawl sur-
vey, and recreational fishery surveys affected by bag-limit reductions. The best-
supported models indicated that the recreational and trawl surveys tracked different, 
temporally independent assemblages that declined at similar rates (an average of 
−3.8% to −3.9% per year). The scuba survey tracked a separate increasing and tempo-
rally independent assemblage (an average of 4.1% per year). Three rockfishes (bocac-
cio, canary, and yelloweye) are listed in Puget Sound under the US Endangered Species 
Act (ESA). These species are associated with deep water, which the recreational and 
trawl surveys sample better than the scuba survey. All three ESA-listed rockfishes 
declined as a proportion of recreational catch between the 1970s and 2010s, suggest-
ing that they experienced similar or more severe reductions in abundance than the 
3.8–3.9% per year declines that were estimated for rockfish populations sampled by 
the recreational and trawl surveys.
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1  | INTRODUCTION

Population growth rate estimates are critical to many assessment pro-
tocols for evaluating the status of species and populations thought 
to be at risk of extinction, such as those listed in the IUCN Red List 
Categories and Criteria and the US Endangered Species Act (ESA) 
(Andelman, Groves, & Regan, 2004; Morris & Doak, 2002; Rueda-
Cediel, Anderson, Regan, Franklin, & Regan, 2015). Count-based PVA 
is a standard method used for estimating long-term average popula-
tion growth rate and associated year-to-year variability (Beissinger, 
2002; Dennis, Munholland, & Scott, 1991; Morris & Doak, 2002). 
Unfortunately, count-based PVA requires a continuous time series 
from surveys with consistent methodology. The available data for 
many species of conservation interest do not meet this standard 
(Butchart & Bird, 2010; Smith et al., 2009). Frequently, these “data-
poor” species are given an ambiguous status, such as “species of 
concern” under the ESA, or are designated as “data-deficient” on the 
IUCN Red List (Butchart & Bird, 2010; Morais et al., 2013). In these 
cases, species must await the availability of further research before 
receiving a clear status or the recovery actions associated with a list-
ing decision (Anderson, Lee, & Levin, 2013). A species may be given a 
“data-deficient” designation when data do exist, but are fragmented 
into multiple short or discontinuous datasets from disparate sources 
and surveys. In this study, we show how multivariate autoregressive 
state-space (MARSS) models can help circumvent some of these data-
set challenges.

Classic count-based PVA (sensu Dennis et al., 1991) uses a univari-
ate autoregressive process to model underlying population abundance 
trajectories. Multivariate autoregressive (MAR) time-series models are 
a multivariate version of the same model that allow one to model mul-
tiple population processes with structure or interactions. MAR models 
have been widely used to examine food web dynamics, species inter-
actions, metapopulation structure, and community stability (Hampton 
et al., 2013; Ives, Dennis, Cottingham, & Carpenter, 2003; Thibaut, 
Connolly, & Sweatman, 2012; Ward et al., 2010). A MARSS model is 
a state-space version of a MAR model with separate state and obser-
vation components, both of which are multivariate. The state is what 
we aim to estimate (e.g., abundance trajectory), and the data are ob-
servations of this state. MARSS models have a well-established statis-
tical framework for analyzing multivariate time-series data (cf. Harvey, 
1990; and many other textbooks; Shumway & Stoffer, 2010). These 
models have been used in a variety of ecological and fisheries appli-
cations, including analysis of age-structured populations (Buckland, 
Newman, Thomas, & Koesters, 2004), analysis of spatial structure in 
populations (Ward et al., 2010), and factor analysis for large fishery 
datasets (Zuur, Tuck, & Bailey, 2003). We use MARSS models to tackle 
the problem of estimating PVA parameters from multivariate data sets, 
and show how these models can be used to implement replication, 
solving a difficult variance separation problem, and to test data sup-
porting different underlying population structures, which can affect 
PVA parameter estimates and the interpretation of those estimates.

Standard PVA, even if conducted with a state-space model, re-
quires a single time series of data. This requirement limits our ability 

to systematically combine information from multiple sources and to 
evaluate the spatial structure of populations. Separate state and ob-
servation components combined with a multivariate structure allow 
MARSS models to treat multiple time series across different, possibly 
non-overlapping, year ranges as observations of a single underlying 
population trajectory, wherein the trajectory reflects an index of the 
yearly population abundance. Each observation type can be allowed to 
have a unique abundance scale (i.e., catchability) and level of observa-
tion error. Additionally, the state-space structure and estimation via a 
Kalman Filter allow missing values to be easily handled (Holmes, Ward, 
& Scheuerell, 2014).

The MARSS framework also allows us to formally test how well 
data support structure within both the population process and the 
observation process. For example, in our rockfish analysis that fol-
lows, we test models that treat (1) all recreational and trawl surveys 
as observing a single abundance trajectory corresponding to a rockfish 
assemblage with a wide depth range, and (2) all shallow-water scuba 
surveys as observations of a separate trajectory. Similarly, MARSS 
models can be used to evaluate the support for spatial structure (e.g., 
regional subdivisions) in the underlying abundance trajectories and 
the support for spatial temporal independence (Hinrichsen & Holmes, 
2009; Ward et al., 2010). This utility is important for statistical reasons 
when estimating population growth rates, but also has implications 
for population viability. Regions with temporally independent dynam-
ics can buffer risk, and spatial structure affects management decisions 
and planning (Beaudreau & Whitney, 2016; Hilborn, Quinn, Schindler, 
& Rogers, 2003; Schindler, Armstrong, & Reed, 2015).

A key component of a count-based PVA is estimation of the process 
variance, which represents real fluctuations in population abundance 
due to stochastic environmental variation (e.g., variable recruitment 
due to climate). In contrast, observation variance results from errors 
in our observation of the hidden, true abundance. State-space models 
allow one to partition the variance in time-series data into process and 
observation variances by allowing the structure to be modeled in both 
the population and observation processes (Holmes, 2001; Holmes, 
Ward, & Wills, 2012; Ward et al., 2010). This partitioning is essential 
for unbiased forecasting of extinction (Holmes, Sabo, Viscido, & Fagan, 
2007; Ward et al., 2010), correctly computing the uncertainty in pop-
ulation trend estimates (Humbert, Mills, Horne, & Dennis, 2009), esti-
mating the strength of population regulation (Dennis, Ponciano, Lele, 
Taper, & Staples, 2006), and understanding the environmental driv-
ers of population fluctuations (Ahrestani, Hebblewhite, & Post, 2013; 
Linden & Knape, 2009). Separation of the process and observation 
variance can be difficult with univariate time series (Holmes, 2004), 
and the problem can be severe if one is estimating density dependence 
in the model (Dennis et al., 2006; Knape, 2008). The incorporation of 
multiple observations (replication) of abundance in MARSS models 
reduces this separation problem substantially (Dennis, Ponciano, & 
Taper, 2010; Knape, Besbeas, & De Valpine, 2013) and allows one to 
estimate the critical process variance parameter. Figure 1a illustrates 
the structure of data-versus-population trajectory relationship in 
a MARSS framework and shows an example of replicated and frag-
mented data. Figure 2 shows simulation results from MARSS models 
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applied to simulated datasets similar to the North Puget Sound (NPS) 
recreational data used in our study. Our rockfish case study illustrates 
a more complex application of MARSS models wherein replication 

takes multiple forms across space, changes in fishing regulations, and 
different survey types. We show how the MARSS framework allows 
one to include multiple types of replication in order to maximize the 
power to separate the variances and estimate trends.

Our case study concerns the estimation of the long-term growth 
rate and process variance for a multi-species rockfish (Sebastes spp.) 
assemblage in the Puget Sound in Washington State, USA. This diverse 
assemblage has experienced several decades of fishing (Drake et al., 
2010; Tonnes et al., 2016; Williams, Levin, & Palsson, 2010) and in-
cludes three species whose distinct population segments in the Puget 
Sound were listed in 2010 under the US ESA (75 FR 22276): bocaccio 
Sebastes paucispinis (endangered), canary rockfish S. pinniger (threat-
ened), and yelloweye rockfish S. ruberrimus (threatened). Time-series 
data were available from three very different survey types that varied 
in duration, completeness, and geographic extent: a recreational fish-
ery survey, a citizen science scuba survey, and a fishery-independent 
trawl survey. None of the three data sets alone was amenable to 
univariate, count-based PVA methods. The longest time series (the 
recreational survey) spanned multiple management regimes with po-
tentially different catch-per-unit effort (CPUE), and all three surveys 
had spatial structure and data gaps. Here, we employ MARSS models 
to use all three datasets together to estimate key PVA parameters and 
to evaluate data support for spatial structure in the process and ob-
servational components. We use information on changes over time in 
the species composition of the rockfish assemblage to infer long-term 
trends (since 1977) of the three listed rockfish species.

2  | MATERIALS AND METHODS

As part of the original ESA-listing for bocaccio, canary, and yellow-
eye (Drake et al., 2010), we used MARSS models to analyze historical 
changes in the abundance of “total rockfish” (summed abundance of 
all rockfish) because there were few observations of the focal spe-
cies, some concern about species identification, and many taxa had 
been lumped into a “rockfish” category in the surveys. Thus, indi-
vidual species analyses were not possible. For this study, we add 
new data extending the analyses from 2008 to 2014 and change the 
spatial resolution of the data used from two large regions (north and 
south Puget Sound) to nine smaller marine catch areas (MCAs) (Data 
S1). The statistical analysis in this study also differs significantly from 
that in the study by Drake et al. (2010), whose primary goal was to 
develop a trend estimate because the study was part of a specific 
ESA listing analysis that required an estimate of historical trends. 
Report from Drake et al. was not written to provide the background 
that would be needed for applying similar approaches. Here, we pre-
sent the approach for a general audience interested in count-based 
PVA using multivariate methods. We show how model selection, 
combined with survey knowledge, can be used to choose the struc-
ture of the model and to evaluate spatial structure in the population, 
both key considerations when embarking on a multivariate PVA. We 
also illustrate the use of simulations for the evaluation of parameter 
estimation performance (Figure 2).

F IGURE  1  Illustration of the structure of a multivariate 
autoregressive state-space (MARSS)-based population viability 
analysis (PVA). (a) Four surveys (Obs 1–4) with one true population 
trajectory (red line) and an estimated trajectory (scaled estimate, 
black line). The true population trajectory is “hidden” (i.e., not directly 
observable). The four different time series (surveys) follow the hidden 
population trajectory but with different scaling because each is a 
somewhat different index survey. Numbers on the figure indicate 
a (scaling up or down) for the survey data. Only three of the scaling 
factors can be estimated. One scaling factor is set to zero and the 
estimate for the population trajectory is scaled to that survey. The 
scaling factors for the other surveys can be estimated because they 
are all assumed to be observing the same population (black line). 
Although estimation is improved if the segments overlap, the model 
can still estimate the black line, and parameters associated with it, 
when there are gaps between segments as long as the segments are 
not too short. Replication by way of multiple observations at different 
sites or with different surveys can enhance the ability of the model 
to estimate population trajectory substantially. (b) An example of a 
MARSS model with the same long-term population growth rate u but 
two different trajectories (states) which covary
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2.1 | Rockfishes in Puget Sound

The Sebastes spp. are a diverse taxon of demersal and mid-water 
marine fishes with 100+ species worldwide, including over 70 in the 
northeastern Pacific (Love, Yoklavich, & Thorsteinson, 2002; Williams 
et al., 2010). Twenty-eight Sebastes species have been recorded in 
the Salish Sea (Pietsch & Orr, 2015), of which Puget Sound is a part. 
All rockfishes share the characteristics of internal brooding, pelagic 
larval duration of several months, settlement to shallow vegetated 
habits, slow maturation, and long-life spans (Love et al., 2002). Many 
species are most commonly found in rocky habitats, which are more 
abundant in northern than in southern areas of Puget Sound (Williams 
et al., 2010). Within Puget Sound (Figure 3, Drake et al., 2010), sills, 
freshwater inputs, and current patterns create five hydrographic ba-
sins. These characteristics have the potential to limit larval dispersal 
across basins and support regional population subdivision, particularly 
between North Puget Sound (NPS) and Puget Sound Proper (PSP).

2.2 | Washington Department of Fish and Wildlife 
recreational fishery survey 1977–2014 (Rec)

The Washington Department of Fish and Wildlife (WDFW) has 
surveyed the number of rockfish caught by recreational anglers 

(mainly boat based) in Puget Sound since the mid-1960s using 
punch cards sent in from anglers, phone interviews, and creel 
(dockside) surveys (Figure 4). These surveys include identification 
of retained catches, although species identification for released fish 
has not been consistent over time. See the Supporting Information 
for details and references. We use the recreational CPUE, which 
quantitates total rockfish catch (both retained and released) per 
angler trip in nine MCAs (no. 5–13 in Figure 3) within Puget Sound. 
Following Drake et al. (2010), we define NPS as MCAs 5–7 and 
PSP as MCAs 8–13. We use greater Puget sound (GPS) to refer 
to MCAs 5–13. While some data exist for 1965–1973 (described 
in the Supporting Information), they are highly variable and use 
inconsistent geographic designations, and thus are not used in 
our analysis of growth rates. We do use these data for estimating 
changes in species composition (Figure 4).

In response to declines in abundance, the WDFW reduced the 
allowed daily bag limits successively from the early 1980s onward, 
resulting in six regulatory periods which we include in the MARSS 
analysis(Williams et al., 2010):

1.	 1977–1982: no catch limit
2.	 1983–1993: ten rockfish per day in NPS and five per day in PSP.
3.	 1994–1999: five per day in NPS and three per day in PSP.

F IGURE  2 Results of the simulation study of estimation of the population growth and process error for data structured similar to the 
Recreational Fishery (Rec) survey in the North Puget Sound (NPS). The data are divided into segments of 6, 11, 6, 10, and 5 years long. There are 
three spatial replicates [marine catch areas (MCAs)]. In this simulation, there is one population trajectory representing the rockfish assemblage 
surveyed by the Rec survey in NPS. The true population is declining 2.0% per year on average in the simulation; process variance was set to 
0.02. For this simulation, the scaling factors were chosen to increase with each successive segment, creating the illusion of an increasing trend. 
One thousand datasets and population trajectories were generated; long-term population growth rate and process variance were estimated for 
each. (a) Example of the true population trajectory and estimated population trajectory for one dataset. (b) Histogram of the 1000 long-term 
population growth rate estimates showing that they are unbiased (i.e., non-zero). (c) Histogram of the process variance estimates. A feature 
of state-space models is that there can be a likelihood maximum with one of the variances at zero (degenerate model). The interior (non-zero) 
variance estimates are unbiased. In practice, if a degenerate estimate occurs, one examines the likelihood surface to find the interior local 
maximum where all variances are non-zero
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4.	 2000–2009: one per day in GPS but zero retention of canary and 
yelloweye rockfishes after 2001. The analysis for the original ESA-
listing (Drake et al., 2010) used data through 2007. Thus, the actual 
time series for period (4) run from 2000 to 2007.

5.	 2000—2009: As for (4) above. However, in 2012, WDFW updated 
their methodology for re-estimated CPUE from 2003 onward (See 
Supporting Information). We include these updated estimates for 
2003–2010. Thus, there is temporal overlap between (4) and (5). 
Note that in 2004 retention of all rockfish species was prohibited in 
MCA12 (Hood Canal), which is captured by (5) with a one-year 
discrepancy.

6.	 2010–2014: No allowed retained catches except in the western 
portion of MCA 5 where catching black rockfish S. melanops and 
blue rockfish S. mystinus was allowed (three-fish bag limit of either 
species). Additionally, bottom fishing below 120 feet (~36 m) was 
prohibited in GPS (reducing fishable area by approximately 70%) to 
avoid incidental catch of the three listed rockfish species, which 
tend to inhabit deeper waters.

These regulatory changes led to a drop in the recreational CPUE re-
ported from one regulatory period to the next. Note that the reported 
CPUE is not zero after 2010, because released fish are recorded in phone 
surveys and dockside creels, and illegal retention is reported in both. 
Analysis of the recreational survey data by standard, univariate PVA is 
not possible because there are multiple time series, one for each of the 

nine MCAs for six different regulatory periods. However, it is straightfor-
ward to analyze these data in a MARSS framework.

2.3 | Reef Environmental Education Foundation 
scuba diver surveys 1998–2014

Reef Environmental Education Foundation (REEF) is a citizen science 
organization that trains recreational scuba divers to identify and re-
cord fish species during recreational dives (REEF, 2014). At the time 
of our analysis, Puget Sound data were available for years 1998–2014 
(Figure 5). The data are reported in abundance categories: 1 fish, 2–10 
fish, 11–100 fish, and ≥101 fish. Following Drake et al. (2010), we 
converted these abundance categories to minimum values (1, 2, 11, 
or 101 fish). We then averaged observations by site within years to 
control for more frequent surveys at popular dive sites and limited 
data for dives to hard-bottom sites. Because we are averaging across 
a large number of sites, the REEF data used in our analysis are not cat-
egorical, but are instead averages with normal distributions. We calcu-
lated a yearly mean for each MCA, but excluded Puget Sound rockfish, 
S. emphaeus, from the analyses because they are much smaller than 
other rockfishes, can occur in a very high abundance ephemerally, and 
are not caught in recreational fishery. We also excluded young-of-
year fish to eliminate recruitment pulses and to make the data more 
comparable with the recreational fishery and trawl survey data.

2.4 | WDFW trawl survey 1987–2014 (Trawl)

Since 1987, the WDFW has conducted a depth-stratified fishery-
independent trawl survey throughout Puget Sound. Effort is allocated 
among 12 regions throughout Puget Sound, nine of which are in US waters. 
Here, we use data for eight of the nine US regions (Figure 6), excluding one 
(Discovery Bay) because it had only two data points across all years. CPUE 
(number per m2) for total rockfishes was calculated by dividing the total 
number of individuals (all rockfish species) caught by the swept area of the 
trawl. We then calculated the mean CPUE for each year for each of the 
eight trawl regions. Although the survey design shifted after 2008 from 
random allocation of sampling effort to index sites, we do not model these 
as separate time series because the general habitat (soft bottom), depth 
range, and overall sampling methodology were similar before and after the 
shift (See the Supporting Information for further details). The Trawl survey 
samples mainly soft bottom habitat and may sample a different rockfish 
assemblage than that sampled by the Rec and REEF surveys, which sample 
rocky habitats. The listed rockfish species are found mostly in rocky habi-
tats and are represented infrequently in the Trawl survey.

2.5 | Time-series analysis

We used MARSS models (Hinrichsen & Holmes, 2009; Holmes et al., 
2012, 2014) to estimate two key PVA parameters for “total rockfish” 
(summed abundance across rockfish species) in Puget Sound: long-
term population growth rate and process variance. Although total 
rockfish is a multi-species assemblage, rather than a single species 

F IGURE  3 Marine catch areas (MCAs) for Washington 
Department of Fish and Wildlife (WDFW) recreational catch data. 
Data from North Puget Sound [(NPS) MCAs 5–7] and Puget Sound 
Proper [PSP (MCAs 8–13)] were used in the analyses. The major 
regional water masses are NPS (MCAs 5–7), Whidbey Basin (MCA 8), 
Main Basin (MCAs 9–11, 13), and Hood Canal (MCA 12). The dashed 
line indicates the US.–Canadian border. Red lines indicate MCA 
boundaries
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population, the autoregressive process model can approximate sums 
of population trajectories (Holmes & Semmens, 2004). Our process 
equation, which models a set of true, but unknown, abundance trajec-
tories on a log-scale, takes the form:

where xi,t is the state, in this case (log) abundances of rockfish in year 
t for the ith abundance trajectory. This equation replicates the stand-
ard population model equation underpinning a count-based PVA, but 
in multivariate form. Each xi is a population trajectory (Figure 1b), 
which might be independent or co-vary temporally. The latter means 
that good versus bad years may correlate to some degree, even if their 
long-term population growths (ui) are quite different. The wi,t variable 
signifies process errors, which represent the population growth rate in 
year t. The process errors are modeled as multivariate normal (MVN) 
with variance-covariance matrix Q. The mean of wi,t is ui, the average 
population growth rate for population i. For example, for a model with 
distinct north and south rockfish populations sharing a common aver-
age growth rate u, the same level of process variance (q) and corre-
lated yearly growth rates (c) would be modeled as

The second part of our model is the observation equation, which 
relates the observed data to the abundance trajectories (the x in 
Equation 1a). It takes the form

where the vi variables are the process errors and are MVN with a 
mean of zero. yj,t is the number of observations (possibly with miss-
ing observations) in year t for the jth observation time series. Z is a 
[0,1] matrix that defines how the observations relate to the underlying 
abundance trajectories. For example, suppose we have observation 
time series in four locations: three sampling the northern population 
and one sampling the southern population. We can model this in a 
MARSS framework as
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F IGURE  4 Log-abundance index from 
the Washington Department of Fish and 
Wildlife (WDFW) recreational survey. The 
data are the log of catch (retained and 
released) per angler effort (catch-per-unit 
effort, (CPUE), where effort is defined 
as one angler trip. The different symbols 
represent periods with different bag limits. 
Note that the + and × are data obtained 
using a new methodology that includes 
a phone survey in addition to a creel 
(dockside) survey. The new methodology 
yields CPUE values that are higher than the 
prior method (see overlapping years with 
open diamonds and ×)
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The a variables are scaling terms for each observational time se-
ries, which allows time series estimated across different scales to be 
combined (Figure 1a). For our study, we model the successive reduc-
tions in angler CPUE in the Rec survey caused by reductions in bag lim-
its as separate time series observing the same trajectory. Because the 
absolute scaling of the abundance trajectories is unknown, the esti-
mated population trajectories are indices; they relate to the true abun-
dances by an unknown scaling factor. A mathematically equivalent (but 
computationally slower) way to model the bag-limit changes would be 
to use time-varying a, such that there is one y for each Rec (in each 
MCA) and a different a for each bag-limit period. We were not willing 
to assume that the effect of the bag-limit on fishing behavior would be 
the same across MCAs. Thus, the a variables also account for different 
CPUE values in different MCAs when the MCAs are combined into 
regional trajectories (NPS and PSP) or a single GPS trajectory.

Reducing the bag limit caused a step reduction in CPUE because 
fishers’ daily catches were restricted. Implicit in the model is the as-
sumption that whatever caused step changes in the Rec survey (ob-
served CPUE) did not also cause step changes in the true population 
abundance. There is no reason to assume that a bag-limit change 
would cause an immediate, step change in the actual abundance of 
rockfish given the long life-span of rockfishes and the relatively long 
period needed to reach sexual maturity for many species (Love et al., 
2002). The intent of reduced bag limits was indeed to increase popula-
tion size, but any resultant increase would be expected to be gradual. 

Although the Trawl survey is fishery-independent and free from ef-
fects of changes in fisher behavior, it came into full use after 2000. 
Thus, it does not support studies of long-term abundance changes. 
Additionally, few of the listed species are captured in the Trawl survey 
because it does not sample rocky habitats. The species found in rocky 
habitats are caught in the Rec survey. It should also be noted that al-
though the Trawl survey is fishery independent, it is not free of survey 
effects. The Trawl survey uses index sites and thus may be prone to lo-
calized survey-induced depletion. The Rec survey, though fishery de-
pendent, surveys a wide variety of habitats and is spatially extensive.

2.6 | Tests of estimation performance

Figure 1a illustrates the relationship between the underlying (and hid-
den) population trajectory represented by x in Equation 1a and the 
observations represented by y in Equation 1b. Note that the popu-
lation trajectory is not a straight line, but rather fluctuates year-to-
year with local periods of increases and decreases. Here, population 
abundance is modeled as a stochastic auto-regressive process, the 
same model used in a classic count-based PVA model. In Figure 1a, 
the observation time series are shown as a series of non-overlapping 
segments with different scaling factors; the Rec data take this struc-
ture because of the consecutive changes in the bag limits. The scaling 
factors can be estimated for non-overlapping segments because we 
assume that they all follow the same underlying population trajectory 

F IGURE  5 Reef Environmental 
Education Foundation (REEF) survey data 
used in the MARSS analysis by Washington 
marine catch areas (MCA). North Puget 
Sound (NPS) = MCAs 5–7; Puget Sound 
Proper (PSP) = MCAs 8–13. The data do 
not include young-of-year or Puget Sound 
Rockfish S. emphaeus

1970 1990 2010

0
1

2
3

4

MCA 5

1970 1990 2010

0
1

2
3

4

MCA 6

1970 1990 2010

0
1

2
3

4

MCA 7

1970 1990 2010

0
1

2
3

4

MCA 8

1970 1990 2010

0
1

2
3

4
MCA 9

1970 1990 2010

0
1

2
3

4

MCA 10

1970 1990 2010

0
1

2
3

4

MCA 11

1970 1990 2010

0
1

2
3

4

MCA 12

1970 1990 2010

0
1

2
3

4
MCA 13

Year

Lo
g−

ab
un

da
nc

e 
in

de
x



     |  2853TOLIMIERI et al.

(black line in Figure 1a). Estimation works best when the segments 
are long, separated by no or only small gaps. Replication (i.e., multiple 
time series following the same population trajectory at the same time) 
improves estimation of the scaling factors greatly.

We used simulation studies to test whether our models were able 
to return unbiased estimates of the key parameters accurately using 
simulated data with the same structure (number of time series, gaps, 
lengths, and levels of variance) as our data. Figure 2 shows simulation 
results obtained with data similar in structure to the NPS Rec survey. 
The data consist of five non-overlapping segments (6, 11, 6, 10, and 
5 years long) with three spatial replicates (MCAs) (Figure 2a). This 
structure is similar to that of our NPS Rec data. The simulated data 
appear to have a strong upward trend due to progressively increas-
ing scaling factors for successive segments (done by design to create 
this illusion). However, the true population trend is negative (3.8% de-
cline per year). The points in Figure 2b show an example of the true 

population trends in one simulation. Figure 2c shows that the model 
estimates the declining trend correctly even though the data appear to 
have an increasing trend (Figure 2a). If the process variance estimate 
is non-zero, it is also unbiased (Figure 2d). For this simulation, the pro-
cess variance estimates were frequently zero. In practice, if a non-zero 
variance estimate occurs, one can examine the likelihood surface to 
find the interior local maximum where all the variances are non-zero. 
In our case study, the variance estimates were always non-zero except 
when the model conflicted observably with the covariance structure in 
the data. There are limitations to how much data fragmentation can be 
handled, which depend on the lengths of the segments and the amount 
of spatial replication in the data. The Supporting Information includes 
the R code used for the simulation shown in Figure 2. This code can be 
adapted for testing performance with other data structures.

2.7 | Analysis of spatial and survey structure 
in the data

Our primary goal was to estimate the average long-term population 
growth rate and the process variance for total rockfish abundance 
in Puget Sound over our study period. We used model selection to 
test the data support for different spatial structures (specifically, 
temporally independent subgroups) within the rockfish assemblage 
in Puget Sound because model structure can affect estimates of 
population growth rate. The model selection analysis was repeated 
using three different data combinations: (1) Rec only; (2) Rec and 
REEF; and (3) Rec, REEF, and Trawl. We ran the analyses with these 
different datasets to determine whether and how the results and 
associated conclusions were influenced by dataset characteristics. 
Providing a clear demonstration of how particular datasets affect 
the results for stakeholders is important because the conclusions 
developed based on the results have direct management implica-
tions, which in turn affect resource users throughout the Puget 
Sound region.

We tested support for three spatial structures by manipulating the 
Z matrix in Equation 1b in the following three ways:

1.	 fine-scale structure (one rockfish trajectory for each MCA);
2.	 regional structure (rockfish trajectories for NPS and PSP; and
3.	 no spatial structure (a single rockfish trajectory for all of GPS).

These three spatial structures reflect the hydrographic basins and 
habitat structure (prevalence of rocky habitat) that have the potential to 
create temporally independent local populations of rockfish. For analyses 
involving more than one data source (b and c above), we also allowed 
that each survey could be sampling congruous or distinct rockfish assem-
blages. Thus, for example, to treat the Rec and Trawl surveys as sampling 
distinct GPS-wide assemblages, a model with two rows in the x matrix 
in Equation 1a (one for RecGPS and another for TrawlGPS; See Tables 1, 2, 
and S1 for model sets). The Rec data appear in the observation model, 
Equation 1b, as independent time series of total rockfish for each of the 
nine MCAs in each of the six regulatory periods (n = 54). There were nine 
REEF time series (one for each MCA) and eight Trawl time series (one 

F IGURE  6 Washington Department of Fish and Wildlife (WDFW) 
trawl survey catch-per-unit effort [CPUE (number per km2)] by 
trawl area. GB = US Strait of Georgia, JE = east US Juan de Fuca, 
JW = west US Juan de Fuca, JS = San Juan Islands, HC = Hood Canal, 
CS = central Puget Sound, SS = South Puget Sound, WI = Whidbey 
Island Basin. GB, JE, JW, and JS comprise North Puget Sound (NPS). 
CS, HC, WI, and SS comprise Puget Sound Proper (PSP)
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for each WDFW trawl area). Thus, for the analysis using all three data 
sources, the y matrix in Equation 1b has 71 rows.

For each spatial structure, we tested shared or unique average 
population growth rates u. Two populations could have different pop-
ulation trajectories but share the same long-term population growth 
rate (example in Figure 1b). If the data support a common population 
growth rate across regions, then we can use data from both regions 
to estimate the u parameter. Because u is a key parameter, we aim to 
maximize the amount data used to estimate it. We allowed the pop-
ulation growth rates to differ across all population trajectories in the 
model (by region/survey type) or forced it to be equal for all. For ex-
ample, the model might specify that each MCA samples an indepen-
dent trajectory but that those trajectories each have the same average 
growth rate. We also tested shared or unique process variance across 
trajectories. Via the Q covariance matrix, we allowed the trajectories 
to be either temporally correlated (i.e., good and bad years are cor-
related) or independent. We tested full covariance (all trajectories al-
lowed to covary), covariance only between regions (NPS and PSP), or 
covariance only within surveys (for models where surveys were given 
different trajectories). For all models, we assumed independent obs. 
Because the data were log-transformed, the proportional observation 
errors (10% up and 10% down) were modeled as normally distributed.

The data supporting each model were evaluated with AICc (Akiake’s 
Information Criterion corrected for sample size) and the models were 
ranked by ΔAICc (the AICc minus the AICc for the model with lowest 
AICc)(Burnham & Anderson, 1998). Models with ΔAICc < 2 were con-
sidered to be similarly supported. Although we conducted three model 
selection analyses using three different datasets (Rec only; Rec plus 
REEF; or Rec, REEF plus Trawl), for any given model selection analysis, 
AICc values were only compared within model sets fit to the same 
data. Our models were all nested models of the most complex (full) 

model, which is important when using AICc and a benefit of using a 
MARSS framework. Confidence intervals and standard errors were 
computed using the Hessian approximation for the best-supported 
models. Analyses were run in R 3.1.1 (R Core Team 2014) with the 
MARSS package v.3.9 (Holmes et al., 2012).

2.8 | Relative trends for the ESA-listed species

Because the three ESA-listed species are rarely caught, we had no 
yearly data with which to analyze their population trajectories of 
the species directly. However, we did have information on decadal 
changes in the species composition of recreational catches (specifi-
cally the proportions of the listed species), which we used infer popu-
lation growth rates for these three species relative to changes in total 
rockfish abundance—essentially setting an upper or lower bound. For 
example, if the frequency of a listed species increased over time, we 
would infer that the species increased more quickly (or decreased 
more slowly) than did the total rockfish abundance; if its frequency 
decreased, we would infer it had increased more slowly (or decreased 
more quickly).

For the years from 1965 to 2007, we took species composition 
information directly from the study by Drake et al. (2010; Tables 11–
18). For 2008–2014, we used raw data from the WDFW creel survey. 
Note, the extreme reductions in bag limits from 2000 onward, pro-
hibition on retention of canary and yelloweye in 2001, and inability 
to fish in deeper waters that commenced in 2010 may have reduced 
observations of the listed species in the assemblage data for the last 
two decades (2000 and 2010) because fishers were likely to adjust 
their activities to avoid the listed species. We computed decadal aver-
ages by summing the counts by decade and then converting decadal 
counts of the three listed species to proportions of the total assem-
blage. We used the sampling effort to estimate 95% confidence in-
tervals for species proportions using Wilson intervals (Agresti & Coull, 
1998). No information on sampling effort was available for the 1960s 
and 1970s, however. We did not use information from the REEF and 
Trawl surveys, because they cover a shorter time period and the listed 
species were rare in those samples. See the Supporting Information for 
the data and references.

3  | RESULTS

3.1 | Spatial structure in the rockfish assemblage

The model that best fit the Rec data alone had separate (but tem-
porally correlated) trajectories for total rockfish (sum of all species) 
in NPS and PSP (denoted as RecNPS and RecPSP; Tables S2 and S3; 
Figures 7 and 8a). There was little support for fine-scale spatial struc-
ture (independent trajectories at the MCA level) or no spatial struc-
ture [single trajectory for GPS (Table S2)]. When both the Rec and 
REEF survey data were used, two models had similar levels of support 
with only a 1.4 difference in AICc (Table S4-S6). Both models included 
three trajectories: two regional Rec trajectories (RecNPS and RecPSP), 
plus a separate REEF trajectory (Tables S5 & S6). These most robustly 

TABLE  1 Multivariate autoregressive state-space (MARSS) 
models tested using the WDFW recreational survey data only. For 
each Z structure, all combination of the u and Q structures were 
tested. In columns 1 and 2, Region = 2 trajectories or growth rates 
for NPS and PSP, MCA = trajectories or growth rates for each of the 
9 MCAs, and GPS = one Greater Puget Sound trajectory or growth 
rate. Cov = covariance between all population trajectories, No 
cov = no covariance among trajectories. Separate process variance 
was estimated for each trajectory. There were 54 observation time 
series. The number of estimated parameters for each term is in 
parentheses. For column 1, this is the number of initial states (x0) and 
number of a in a. There were nine R parameters for each model

Z structure: Number and 
structure of trajectories 
(x0, a)

Growth rates 
(u)

Covariance structures 
(Q)

MCA (9, 45) MCA (9) Cov (45)

Region (2) No cov. (9)

GPS (1)

Region (2, 52) Region (2) Cov (3)

GPS (1) No cov. (2)

GPS (1, 53) GPS (1) No cov (only one 
trajectory) (1)
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supported models indicated correlation between the Rec trajectories 
but not between these and the REEF trajectory. The estimated trajec-
tories for these models are shown in Figure 8b,c. The results obtained 
based on all three datasets were similar to the aforementioned results 
(Table S7-S9, Figure 8d,e). Four models had ΔAICc values less than 
2.0. All had two regional Rec trajectories (RecNPS and RecPSP) and a 
separate REEF trajectory for all GPS. The top three models had a sin-
gle all-GPS trawl trajectory, whereas the 4th model had two regional 
Trawl trajectories: TrawlNPS and TrawlPSP.

Thus overall, the models that received the strongest data support 
treated each survey as sampling a separate rockfish trajectory. There 
was little data support for fine-scale spatial structure but strong sup-
port for regional (NPS vs. PSP) structure in the rockfish assemblage 
surveyed by the recreational fishery. There was some support for NPS 
versus PSP structure in the assemblage sampled by the trawl survey 
but none for that sampled by the REEF survey. However, these two 
surveys are shorter time series, and the lack of data support may be a 
reflection of the data rather than the underlying assemblages tracked 
by these surveys.

3.2 | Long-term growth rate and process variance

None of the top models included spatial structure in u (meaning a dif-
ferent population growth rate in different MCAs or in NPS vs. PSP); 

see Tables S2, S4, and S7 for the models sorted by data support 
(ΔAICc). In addition to no spatial differences in u, the top models also 
did not support different u the Rec and Trawl surveys. These findings 
suggest that the rockfish assemblages sampled by the Rec and Trawl 
surveys have experienced similar rates of population growth across all 
of Puget Sound. Conversely, the best models did support a different u 
for the REEF survey, suggesting that this survey, which targets more 
shallow waters, may track a different assemblage.

To summarize, the top model using all three datasets had four 
trajectories (Tables S7 and S10). The RecNPS, RecPSP, and Trawl tra-
jectories shared a common negative u (u = −0.039 ± 0.01), indicating 
an average of 3.9% per annum decline (a 77% decline from 1977 to 
2014). The REEF trajectory had a positive u (u = 0.041 ± 0.038), in-
dicating an average of 4.1% per annum increase since 1998. This re-
sult mirrored the results obtained for the Rec and REEF data without 
inclusion of the Trawl data (Table S4). The 2nd and 3rd best models 
encompassing all three datasets had a single shared u across all trajec-
tories (u = −0.032 ± 0.011; Table 2, last row) but differed in covariance 
structure (Table S8). These models had one fewer parameters, but this 
simplification came at the cost of an increased process variance for the 
REEF trajectory in that the single declining u estimated by this model 
conflicted with the increasing trend in the REEF data (Figures 5 and 8). 
In general, the process variance matrix could be estimated for all mod-
els, except those models that did not allow covariance between the 

F IGURE  7 Estimated trajectory (solid 
line) for total rockfish in North Puget Sound 
[NPS (RecNPS)] from the best-supported 
model using the Rec data only showing the 
effect of the scaling parameter a. Numbers 
refer to separate Rec time-series for each 
regulatory period in marine catch areas 
(MCAs) 5–7. (a) Raw data for each NPS 
time-series, and (b) data for each NPS time-
series corrected by the scaling parameter 
a. Grey envelopes indicate 95% confidence 
intervals
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RecNPS and RecPSP trajectories. The process variance estimates were 
in the range of 0.03 to 0.01, which is similar to ranges found for ma-
rine fish populations (Holmes et al., 2007). The observational variance 
differed among MCAs by as much as an order of magnitude and was 
generally one to two orders of magnitude greater than the process 
variance (Tables S3, S5, and S8). The different MCAs are characterized 
by differing effort levels (the number of angler trips) and thus different 
observation variances among them is expected.

Overall, allowing spatial and survey structure in the model im-
proved the fit of the model (as measured by log likelihood). These al-
lowances also affected the estimates of the long-term growth rate of 
the Puget Sound rockfish assemblage. Treating the REEF surveys as 
having sampled the same assemblage as the Rec and Trawl data led to 
a lower estimated rate of year-to-year decline (3.2% vs. 3.9%). Figure 
S1 summarizes how the long-term trend (u) estimates depended on 
the model structure. Models with a structure (overly complex or overly 
simple) that was poorly supported by the data tended to estimate less 
severe decline than the best-supported models (estimates closer to 
0 in Figure S1). This tendency illustrates that model structure, spe-
cifically with respect to one’s assumptions about how the data are 

related to the population one is studying, affects the long-term trend 
estimates.

3.3 | Species composition

All the three ESA-listed species declined as a proportion of the rock-
fish caught (released + retained) in the recreational fishery in Puget 
Sound (Figure 9; Table S11), suggesting that they have declined to a 
similar or greater extent than did the abundance of total rockfish (sum 
of all species). The peak catch of bocaccio was in 1970 (approximately 
2% of rockfish caught by recreational anglers), but has since declined 
and remained low or zero (Figure 9a). Canary rockfish made up 2–6% 
of the recreational catch in the 1960s (Figure 9c), then peaked in rela-
tive abundance in the 1970s; its abundance has since declined and 
remained low. Yelloweye rockfish showed a similar pattern to canary, 
increasing in prevalence over time in the limited data available for the 
1960s, reaching 3–4% of the catch in the 1970s (Figure 9d); its abun-
dance then declined to less than 0.5% of the recreational catch in the 
2000s. Canary and yelloweye also decreased as a proportion of the 
sightings in the REEF surveys from the mid-2000s onward. However, 
species assemblage data for the Rec survey in the 2000s and 2010s 
should be taken with some caution due to the potential shifts in fish-
ing effort mentioned earlier (Figure S2). Reductions in total catch 
would also reduce the probability of catching one of the listed spe-
cies. Nevertheless, we would still expect to see more individuals of 
the listed species than observed here if their relative abundances had 
remained constant (Drake et al., 2010). There were small increases in 
the relative abundances of canary and yelloweye rockfishes in recrea-
tional catches in the 2010s owing to increased catch levels in MCA 
5, which is considered part of the coastal population. When we ex-
clude MCA 5, the frequency of canary and yelloweye rockfishes in the 
total catch declines (Figure 9d,f). The earlier declines in the Rec survey 
data, recent declines in the REEF survey data, and equivocal evidence 
from recent recreational data from the 2000s onward suggest that, 
based on the best-available evidence and a precautionary approach, 
we should assume that these species either followed the trend for 
the Rec and Trawl trajectories (3.8–3.9% average yearly declines) or, 
potentially, decreased at a greater rate.

4  | DISCUSSION

MARSS models allow key parameters for PVA, namely long-term pop-
ulation growth rate and process variance, to be estimated in situations 
where constraints and irregularities in the available data limit the use 
traditional univariate methods used in count-based PVA. Limiting con-
straints and irregularities include multiple types of surveys, surveys 
conducted in different regions, missing data, and temporal changes 
within surveys. In this study, we used MARSS models to combine data 
from three different rockfish surveys to estimate the long-term growth 
rate of and process variance parameters for a multi-species rockfish 
assemblage in Puget Sound, WA. Each survey had regional structure, 
and one (Rec) was strongly affected by changes in management over 

F IGURE  8 Estimated trajectories for total rockfish based on the 
best-supported models. (a) Recreational Fishery Survey (Rec) data 
only: one u, two states, uGPS = −0.038. (b) Rec + REEF data: one u, 
three states, uGPS = −0.031. (c) Rec + REEF data: two u’s, three states, 
uRec = −0.039, uREEF = 0.041. (d) Rec + REEF + Trawl data: two u’s, 
four states, uRec/Trawl = −0.039, uREEF = 0.041. (e) Rec + REEF + Trawl 
data: one u, four states, uGPS = −0.032. Grey envelopes indicate 95% 
confidence intervals
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time. MARSS models allowed us to analyze all of these data in a single, 
unified multivariate time-series framework and to provide metrics for 
parameter uncertainty and model selection. Importantly, it allowed us 
to include spatial replication as well, which is critical for separation of 
process and observation variance parameters.

One of the strengths of MARSS modeling is that it allows one to 
model structure in survey data and in underlying population (in our 
case, abundance of total rockfish) dynamics. Estimating this structure 
is important because it influences estimates of long-term growth rate 
and process variance (Figure S1). In addition, the underlying spatial 
structure in a population’s dynamics has many implications for wildlife 
management in terms of spatial management plans and portfolio ef-
fects (Hilborn et al., 2003). We found strong empirical support for four 
rockfish trajectories: two regional trajectories (NPS and PSP) tracked 
by the Rec data and two GPS-level trajectories (REEFGPS and TrawlGPS) 
tracked by the REEF and Trawl data, respectively. Furthermore, there 
was support for both medium-scale spatial structure and survey struc-
ture. There are clear reasons for the latter. Note, the surveys sample 
different depths and habitat types, and thus might be expected to 
sample different rockfish assemblages. There are several potential 
reasons for the spatial structure. Rocky habitat is more common in the 

northern part of Puget Sound (Williams et al., 2010), and the species 
composition within the recreational catch differed between NPS and 
PSP, with there being substantially more black rockfish and to a lesser 
extent yellowtail rockfish S. flavidus—both of which are semi-pelagic, 
schooling species (Love et al., 2002)—in NPS catches than in PSP 
catches. The lack of spatial structure in the REEF and Trawl surveys 
could be due to insufficient data given that these surveys have many 
fewer data points (shorter time series) than the Rec survey. This caveat 
likely applies to the Trawl survey data because the models with NPS 
and PSP Trawl trajectories did fall just within the ΔAICc < 2 threshold 
of the top model.

MARSS allowed us to combine time series from different surveys 
and regions when estimating a population trend. However, when the 
data support separate growth rates for different surveys, one must use 
biological knowledge to choose the most relevant estimate. The best-
supported model using all three surveys gave two long-term growth 
rate estimates: 3.8–3.9% per year decline for the rockfish assemblages 
sampled by the Rec and Trawl data, and 4.1% per year increase for the 
rockfish assemblage sampled by the shallower REEF surveys. Because 
all three datasets reflect changes in adult numbers, the increases ob-
served in the REEF survey cannot be attributed to pulses of juvenile 

TABLE  2 Models tested using the WDFW recreational survey and REEF scuba survey data. For each Z structure, all combination of the u’s 
and all Q structures were tested. The geographic designations are North Puget Sound (NPS), Puget Sound Proper (PSP), MCA = management 
conservation area, and GPS = Greater Puget Sound. All models included separate process variance for each rockfish trajectory with either no 
covariance between the trajectories or allowing covariance between all or some of the trajectories; see process covariance column with 
additional information in the footnotes. There were 63 observation time series: 54 Rec (nine MCAs and six regulatory time periods) and nine 
REEF (one for each MCA). Numbers in parenthesis are the number of estimated parameters for term. For the population trajectories, the 
estimated parameters are the initial value of the trajectory (x0) and the scaling parameters (a). The number of a in a was 54 (the number of 
observation time series) minus the number of trajectories. Separate observation variance was estimated for each survey in each MCA

Z structure: Number and structure of  
trajectories (x0, a) Growth rates (u) Covariance structures (Q)

MCA × Survey (18, 45) MCA × Survey (18) All trajectories covary (171)

Region × Survey (4) No covariance (18)

Region (2)

Survey (2)

GPS (1)

Region × Survey (4, 59) Region × Survey (4) All trajectories covary (10)

Region (2) Regions covary within surveys (6)

Survey (2) Surveys covary within regions (6)

GPS (1) No covariance (4)

RecNPS, RecPSP, REEF (3, 60) RecNPS, RecPSP, REEF (3) All trajectories covary (6)

Survey (2) RecNPS and RecPSP covary (4)

GPS (1) No covariance (3)

Rec, REEFNPS, REEFPSP (3, 60) Rec, REEFNPS, REEFPSP (3) All trajectories covary (6)

Survey (2) REEFNPS and REEFPSP covary (4)

GPS (1) No covariance (3)

Survey (2, 61) Survey (2) All trajectories covary (3)

GPS (1) No covariance (2)

Region (2, 61) Region (2) All trajectories covary (10)

GPS (1) No covariance (2)

GPS (1, 62) GPS (1) No covariance (2)
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recruits. The Rec survey (3.8–3.9% decline) is likely to be the most rel-
evant for the purpose of inferring historical trends in the listed species. 
The REEF data are limited to a 40-m (~130-ft.) bottom depth (set by 
recreational diving limits; most dives were <20 m), and the three listed 
species are all more common below 50 m (Love et al., 2002). Thus, 
the REEF surveys may not sample an assemblage relevant to inferring 
changes in the broader abundance of the listed species, but they do 
suggest that shallow-water rockfishes have shown strong recovery in 
Puget Sound since 1998. Both the Rec (prior to 2010) and Trawl sur-
veys sample deeper depths, but the listed species, which are generally 
found on hard bottoms (Love et al., 2002), were only rarely encoun-
tered by the trawl survey. Nevertheless, model selection supported a 
shared rate of population decline for the rockfish assemblages sam-
pled by the Rec and Trawl surveys.

While we cannot estimate population parameters for each of the 
ESA-listed species, the analyses here can set some bounds. Although 
recent assemblage structure data should be interpreted with some 

caution due to potential changes in fisher behavior, as noted above, 
the relative abundance of each of these three ESA-listed species de-
creased in the Rec survey, which suggests that they have declined at 
a the same or greater rate than the 3.8–3.9% per year estimated from 
the Rec and Trawl surveys. There have been recent increases in yel-
loweye, but that trend is restricted to MCA 5 in the Strait of Juan de 
Fuca, which is closest to the coastal population and was excluded from 
the listed species’ Distinct Population Segment (Drake et al., 2010). It 
should be noted that since 2010, recreational fishing for bottom fish 
has been restricted to depths less than 120 feet (36.6 m) to reduce 
impacts on canary and yelloweye rockfishes. This depth change and 
the restrictions on bottom-fishing following the 2010 listing may lead 
to a qualitative change in the survey outcomes, perhaps causing them 
to align better with shallower REEF survey outcomes. Thus, caution is 
warranted in using future, shallower, and recreational rockfish catches 
as a trend indicator for the listed species.

The choice to model multiple survey time series as observations 
of the same underlying population trajectory requires forethought es-
pecially when the time series do not overlap temporally. If the surveys 
sample similar habitat and areas and are separated by only short tem-
poral gaps, then they are likely to track the same underlying popula-
tion. For example, we treated each regulatory period within an MCA 
as containing observations of the same population, albeit sampled in 
different years. The Rec data share methodology (angling) and general 
target community (bottom fish) across regulatory periods, although 
the 120-ft depth limit imposed in 2010 has restricted the depth range 
of the sampled assemblage relative to earlier periods. The step reduc-
tion in CPUE from one regulatory period to the next due to a bag 
limit change can be modeled by the scaling parameter a. Although it is 
technically possible to set the scaling parameter a priori, we chose to 
allow the model to estimate a because we do not know exactly how 
fisher behavior changed with the reductions in catch limits. In 2008, 
the Trawl survey shifted from random samples to index sites. However, 
we did not model these as separate time series because the Trawl sur-
vey continued to target primarily soft-bottom habitats. Future analy-
ses might further investigate this assumption and the effect of shifting 
from random to index sampling.

In cases where there is time-series overlap, such as with the Rec, 
REEF, and Trawl surveys, one can rely to a greater extent on model 
comparison to investigate combining or separating time series based 
on similarity in population growth rate, process, and observational 
variance. The data supported models with four separate rockfish tra-
jectories: one for each survey, but with two regions for the Rec survey. 
These four trajectories shared two population growth rates: one neg-
ative population growth rate for the Rec and Trawl trajectories, but a 
separate positive growth rate for the REEF trajectory. In cases with 
little temporal overlap and substantial differences in survey methodol-
ogy, specifics of the surveys and the biology of the populations being 
surveyed will be needed to guide decisions about whether to treat the 
surveys as samples of the same population, whether at the same point 
in time or at different points in time.

Providing scientifically sound estimates of the population trajecto-
ries and population growth rate parameters for species of conservation 

F IGURE  9 Prevalence of bocaccio, canary, and yelloweye 
rockfishes as a proportion of the total rockfish assemblage in the 
Washington Department of Fish and Wildlife (WDFW) recreational 
Survey for marine catch areas (MCAs) 5-13 or 6-13. a) bocaccio 
MCAs 5-13, b) bocaccio MCAs 6-13, c) canary rockfish MCAs 5-15, 
d) canary rockfish MCAs 6-13, e) yelloweye rockfish MCAs 5-13, 
f) yelloweye rockfish MCAs 6-13. MCA 5 is closest to the coast 
in the Strait of Juan de Fuca and is not included in the population 
designation for the listed species. Error bars indicate 95% confidence 
limits. Data are shown in Table S11.
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concern is essential not only for the conservation and management of 
those specific species, but also for management of other species due 
to efforts to reduce bycatch. These management decisions can have 
wide-ranging impacts on fishing. For example, within Puget Sound, the 
listing of bocaccio, canary, and yelloweye rockfishes resulted in the 
development of maximum depth regulations for recreational bottom-
fishing to minimize associated bycatch, which in turn impacted fishing 
for lingcod Ophiodon elongatus and Pacific halibut Hippoglossus steno-
lepis (Anderson et al., 2013). Unfortunately, in many cases, incon-
sistencies among data sets make traditional methods for estimating 
population trajectories and growth rates difficult, or even impossible, 
to use. MARSS models provide a rigorous statistical framework for 
solving some of these challenges and can reduce the proportion of 
cases that are assigned a designation of “data deficient.”
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