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The Nuclear Option: Evidence
Implicating the Cell Nucleus in
Mechanotransduction
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment
and stiffness) or external forces have a significant impact on cell function and behavior.
Recently, the cell nucleus has been identified as a mechanosensitive organelle that con-
tributes to the perception and response to mechanical stimuli. However, the specific
mechanotransduction mechanisms that mediate these effects have not been clearly estab-
lished. Here, we offer a comprehensive review of the evidence supporting (and refuting)
three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of
chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension
due to nuclear remodeling. Our goal is to provide a reference detailing the progress that
has been made and the areas that still require investigation regarding the role of nuclear
mechanotransduction in cell biology. Additionally, we will briefly discuss the role that
mathematical models of cell mechanics can play in testing these hypotheses and in eluci-
dating how biophysical stimulation of the nucleus drives changes in cell behavior. While
force-induced alterations in signaling pathways involving lamina-associated polypep-
tides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors
(TFs) located at the nuclear envelope currently appear to be the most clearly supported
mechanism of nuclear mechanotransduction, additional work is required to examine this
process in detail and to more fully test alternative mechanisms. The combination of
sophisticated experimental techniques and advanced mathematical models is necessary
to enhance our understanding of the role of the nucleus in the mechanotransduction proc-
esses driving numerous critical cell functions. [DOI: 10.1115/1.4035350]

Introduction

Over the last decade, there has been a growing appreciation of
the importance of mechanical stimuli on cellular behavior. Sub-
strate properties (i.e., alignment and stiffness) modulate changes
in cytoskeletal organization and cell contractility, which ulti-
mately drive important biological processes such as stem cell dif-
ferentiation, cancer progression, and fibrosis [1–5]. Active
mechanical inputs (i.e., substrate stretch and fluid shear stress)
have similar effects on cell behavior and pathogenesis [6–8].
Understanding how cells sense these biophysical stimuli and ulti-
mately translate them into specific biological outcomes is essen-
tial for advancing the field and for developing new clinical
therapies.

Recent interest in the field of mechanobiology has improved
our understanding of the mechanotransduction mechanisms that
underlie these effects. Much of this work has been focused on
mechanosensing at focal adhesions and their downstream signal-
ing pathways [9,10]. Focal adhesions are plaques of integrins and
other proteins that interface with the extracellular matrix and
receive mechanical stimuli from the microenvironment (Fig. 1)
[11,12]. Force at focal adhesions is required for their maturation
and growth, which is driven by enhanced protein interactions
induced by physical unfolding and exposure of cryptic binding
sites as well as tyrosine phosphorylation [13–15]. Several actin
binding partners (e.g., filamin, a-actinin, and 14-3-3 proteins) that
help organize the actin cytoskeleton also mediate mechanotrans-
duction at focal adhesions or cell–cell junctions and possibly
throughout the cytoplasm [16–19]. Signaling downstream of focal
adhesion maturation involves numerous pathways and is impor-
tant for cell survival, proliferation, differentiation, and migration

[20]. Furthermore, mechanical stimuli can open stretch-activated
ion channels within the plasma membrane, which alters the elec-
trochemical potential of the cell leading to oscillations in ion con-
centrations both locally and throughout the cytoplasm [21]. These
ion channels can be activated by stretch of the lipid bilayer itself
(e.g., TRAAK and TREK1) or via tension within the actin cyto-
skeleton (e.g., TRPV4) [22–24]. In particular, calcium ions that
pass through mechanosensitive calcium channels (e.g., TRPV4
and Piezo1/2) act as secondary messengers to initiate several sig-
naling processes that mediate the cellular response to mechanical
loading [25–28]. Additionally, increased calcium concentrations
sensitize the cell to further mechanical stimuli by increasing cell
contractility [29,30].

Mechanotransduction events may also occur at the nuclear
envelope and within the nucleoplasm. Forces applied at focal
adhesions propagate through the cytoskeleton and are transmitted
to the nucleus primarily by actin stress fibers and intermediate fil-
aments [31–34]. Extracellular strains and loads deform the
nucleus as a whole and redistribute intranuclear structures, includ-
ing nucleoli and Cajal bodies [34–38] (Fig. 2). Such changes in
nuclear shape are associated with changes in gene expression,
even between cells with similar spread areas [39,40]. Furthermore,
recent studies demonstrate that isolated nuclei remodel and stiffen
in response to mechanical stimulation, clearly demonstrating that
the nucleus itself is a mechanoresponsive organelle independent
of the cytoplasm [41]. However, it is still unclear whether such
nuclear mechanotransduction is causally responsible for altera-
tions in gene expression and cell behavior in response to biophysi-
cal inputs.

Several (likely nonexclusive) nuclear mechanotransduction
mechanisms have been proposed [42]. Load applied to the nucleus
may be transmitted to chromatin positioned at the nuclear enve-
lope, which could alter gene expression by affecting chromatin
condensation, topological organization, or positioning of specific
gene loci. Alternatively, nuclear loading/deformation could alter
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the conformation and binding affinities of various proteins located
at the nuclear periphery. This could induce structural remodeling
of the nucleus and alter the sequestration of genes and associated
transcription factors, which would lead to changes in gene tran-
scription. Finally, load-induced nuclear remodeling and stiffening
could alter cytoskeletal organization and tension, thereby affect-
ing mechanotransduction processes within the cytoplasm and at
the plasma membrane (e.g., at focal adhesions). While several
excellent reviews have been recently written discussing the possi-
bility of nuclear mechanotransduction [43–50], few have critically
evaluated which of these mechanotransduction mechanisms,
either alone or in combination, mediate cellular responses to bio-
physical stimuli. In this review, we offer a comprehensive synthe-
sis of the existing data supporting (and refuting) each of these
three hypotheses regarding nuclear mechanotransduction mecha-
nisms. Our goal is to provide a reference detailing the progress
that has been made and the areas that still require investigation
regarding the role of nuclear mechanotransduction in cell biology.
Additionally, we will briefly discuss the potential contribution of
biomechanical engineering to this field through the development
of mathematical models of cell mechanics to test these hypotheses
and elucidate how biophysical stimulation of the nucleus drives
changes in cell behavior.

Nuclear Structure and Connection With Cytoskeleton

The nucleus is physically separated from the cytoplasm by a
nuclear envelope composed of an inner and outer nuclear mem-
brane (Fig. 3). On the internal surface of the nuclear envelope is
the nuclear lamina, a thin meshwork of intermediate filaments
(i.e., lamins A/C, B1, and B2), which provides the primary struc-
tural support for the nucleus [51–54]. In particular, lamin A/C
(which are isoforms produced from the same LMNA gene) exists

in dynamic equilibrium as soluble dimers within the nuclear inte-
rior (i.e., nucleoplasm) and as insoluble network assemblies
within the lamina meshwork at the nuclear periphery [46,55].
Mechanical load changes the conformation of lamin A/C, which
in turn alters accessibility to binding and phosphorylation sites
that control the assembly, disassembly, and degradation of lamin
A/C [56–60]. Such remodeling of the nuclear lamina is the pri-
mary mechanism by which the cell modulates the stiffness of its
nucleus in response to changes in microenvironmental stiffness
and mechanical loading [56,61]. In addition to their structural
role, lamins also bind chromatin and numerous other proteins
present within the nucleus (including transcription factors)
[62,63]. As will be discussed, given the varied functions of lamin
A/C, the nuclear lamina plays an important role in nuclear

Fig. 2 Extracellular forces deform the nucleus. (a)–(c) Force
applied to endothelial cells by displacing an RGD-coated bead
bound to integrins on the cell surface produces nuclear defor-
mation and displacement of intranuclear nucleoli. (d) Extracel-
lular loading also displaces fluorescently labeled YFP-coilin
and CFP-SMN proteins, which are markers for Cajal bodies
within the nucleus. Inset: Bright-field image of HeLa cell with
RGD-coated bead in black and nucleus outlined with dotted
line. Scale bar: 10 lm. (e) Prior to loading, the CFP signal is
quenched by fluorescence resonance energy transfer (FRET)
due to the association between coilin and SMN. With applied
stress, the coilin and SMN proteins separate, resulting in an
increase in CFP fluorescence. Adapted with permission from Refs.
[34] and [37]. Refer to electronic document for color images.

Fig. 1 Primary sites of cellular mechanotransduction. Cells
attach to the extracellular matrix via integrins and other associ-
ated proteins that form focal adhesions. Forces (F) generated by
extracellular strain or active cell contraction are produced at the
focal adhesions and transmitted through the cell cytoskeleton
primarily by actin stress fibers (shown in red) and intermediate
filaments (shown in green). Tension within the cytoskeleton
transmits forces to the nucleus, which initiates nuclear remodel-
ing and potential mechanotransduction mechanisms. Addition-
ally, stretch of the plasma membrane and cytoskeletal tension
may open stretch-activated ion channels. The resulting influx of
ions alters the electrochemical potential of the cell and mediates
downstream signaling. Color figures are available online.
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mechanotransduction [64,65], stem cell differentiation
[47,56,66,67], and pathology [68,69].

Chromatin is the ensemble of deoxyribonucleic acid (DNA)
and associated proteins (e.g., histones), which fills the nuclear vol-
ume. The linear DNA molecules are wrapped around core histone
complexes to form nucleosomes [70]. These nucleosomes are
compacted via internucleosomal interactions into 30 nm chroma-
tin fibers, which are condensed further into topologically associat-
ing domains (TADs) and chromosome territories [71–73].
Chromatin condensation, organization, and positioning are highly
coordinated and strongly correlated with gene density and expres-
sion [74–76]. For example, chromatin containing actively tran-
scribed genes exists in a less condensed state (i.e., euchromatin)
compared to the more compact regions (i.e., heterochromatin) that
contain silent genes. As will be discussed below, the lamina-
associated domains (LADs) within the DNA sequence that bind to
the nuclear lamina are generally heterochromatic [77]. Upon acti-
vation, these gene loci are decondensed and repositioned to spe-
cific intranuclear locations away from the nuclear periphery (i.e.,
transcription factories), which contain multiple genes, ribonucleic
acid (RNA) polymerase, and numerous transcription factors
[78–81]. Such reorganization of the genome is a characteristic fea-
ture of stem cell differentiation and may be linked to nuclear
mechanotransduction processes [44].

The nucleus is physically connected to the cytoskeleton via
linker of nucleoskeleton and cytoskeleton (LINC) complexes
present within the nuclear envelope (see Ref. [82], and Refs. [83]
and [84] for reviews) (Fig. 3). Embedded within the inner nuclear
membrane, SUN proteins attach to the nuclear lamina and other
membrane-bound proteins. In the perinuclear space between the
outer and inner nuclear membranes, these SUN molecules interact
with the KASH domain of proteins attached to the outer nuclear
membrane. These KASH proteins (in particular, nesprin-1 giant,
nesprin-2 giant, and nesprin-3) complete the LINC complex by

connecting with actin filaments, intermediate filaments, and
microtubules in the cytoplasm. Recently, several other proteins
have been discovered to play important roles in maintaining and
reinforcing these connections [41,85–87], suggesting that the
LINC complex may be the nuclear envelope analog to the more
traditional focal adhesions that are present within the plasma
membrane [88]. Furthermore, depending on the specific combina-
tions of subcomponents involved in their assembly, LINC com-
plexes play a role in numerous cell functions, including nuclear
positioning, migration, morphology, cytoskeletal organization,
and intracellular force transmission [84].

Of particular interest for cellular mechanotransduction is the
connection between the nucleus and the contractile actomyosin
stress fibers within the cytoplasm. While the exact manner in
which LINC complexes interface with the actin cytoskeleton is
not fully understood, certain details have become clear over the
last several years. Specific actin stress fibers have been found to
wrap over and around the nucleus to form the so-called perinu-
clear actin cap [31]. While these stress fibers terminate at focal
adhesions within the plasma membrane at both ends [31,89], they
are physically connected to the apical surface of the nucleus via
nesprins and form transmembrane actin-associated nuclear (TAN)
lines, which consist of linear arrays of LINC complex proteins at
the nuclear surface [90–92]. As discussed below, these actin cap
stress fibers transmit forces to the apical nuclear surface, which
can deform and concentrate intranuclear DNA [58,59,92–94].
Therefore, they are thought to serve an important role in transmit-
ting load to the nucleus, determining nuclear shape, and driving
potential nuclear mechanotransduction processes [31,32,89,95].

Mechanical Loading of the Nucleus

Following the seminal studies of Guilak [35] and Maniotis
et al. [34], numerous groups have demonstrated that extracellular

Fig. 3 Schematic illustrating the structure of the nuclear envelope. Adjacent to the inner nuclear membrane is the nuclear
lamina, which is a meshwork of intermediate filaments that are the primary structural support for the nucleus. Heterochro-
matic lamina-associated domains (LADs) bind to the lamina and other proteins associated with the nuclear envelope (e.g.,
emerin). Linker of the nucleoskeleton and cytoskeleton (LINC) complexes are composed of nesprins and SUN proteins as
well as other associated molecules (e.g., emerin, FHOD1, and Samp1) and connect the nuclear lamina with the cytoplasmic
cytoskeleton. Color figures are available online.
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forces applied to cells via ligand-coated beads, microneedles, or
substrate strain are transmitted to the nucleus, producing changes
in nuclear shape and intranuclear deformations [36–38,
40,93,96–99]. The activation and transcription of many mechano-
sensitive genes appear to depend on effective transmission of load
to the nucleus and the resulting nuclear deformations
[39,40,64,99,100]. However, the primary structures that transmit
load to the nucleus and the specific nuclear deformations that
induce changes in gene expression are still debated.

As mentioned above, substantial evidence exists to suggest that
actin stress fibers transmit tensile and compressive loads to the
apical surface of the nucleus via LINC complexes. In nearly all
cases, depolymerizing actin filaments eliminates nuclear deforma-
tions in response to extracellular loads [34–37]. The presence of
an intact actin cap has also been shown to flatten and elongate the
nucleus with cell spreading [31,32]. This suggests that tension in
the actin cap stress fibers produces a downward compressive force
onto the nucleus. Indeed, indentations on the order of a few
microns are observed in the apical surface of the nucleus, which
disappear with inhibition of myosin activity [59,91,92,94] (Fig.
4). Furthermore, nuclear compression due to tension in the actin
cap induces structural reorganization of the nuclear lamina and
prevents degradation of lamin A [58,59]. This suggests that force
transmitted by the actin cap to the nucleus is sufficient to drive
load-induced remodeling of the nuclear lamina. Disruption of the
LINC complex leads to a loss of actin cap stress fibers
[31,89,101,102] and reduced nuclear deformation in response to
extracellular loads [96,99], suggesting that the LINC complex is
necessary to transmit load from the perinuclear actin cap to the
nucleus. Additionally, fluorescence resonance energy transfer
(FRET)-based tension sensors have demonstrated that nesprins are
under tension at the nuclear surface [93]. Together, this suggests
that one potential mediator of nuclear mechanotransduction is via
nuclear deformations generated by loads transmitted by actin
stress fibers through LINC complexes.

However, recent findings have also questioned the importance of
apical actin stress fibers in determining nuclear shape. Li et al.
visualized nuclear deformations within fibroblasts as they were
seeded and adhered onto glass substrates [103]. Surprisingly, they
found that eliminating cell contractility, actin stress fibers, LINC
complex components, intermediate filaments, and microtubules had
a minimal effect on nuclear deformation. In fact, the small effect
these treatments had on nuclear deformation could be explained

simply by changes in cell spread area. Only fully depolymerizing
the actin cytoskeleton and stopping cell spreading prevented the ini-
tial flattening and elongation of the nucleus, which is consistent
with additional data in the literature [31,58,102,104,105]. Further-
more, while cell contractility and intact LINC complexes are gener-
ally required to transmit extracellular loads to the nucleus
[37,96,99], this is not universally true. For example, knockdown of
nesprin-1 in endothelial cells actually increases nuclear strains in
response to extracellular loading [106]. Finally, an exogenous com-
pressive force applied to well-spread cells lacking a perinuclear
actin cap induced remodeling of the nuclear lamina only when the
cells were seeded on stiff substrates [58], suggesting that nuclear
forces generated by both cell spreading and the actin cap are neces-
sary to initiate nuclear mechanotransduction.

Together these data suggest that the overall nuclear shape is pri-
marily dictated by passive forces generated within the actin cyto-
skeleton with cell spreading and that forces transmitted by the
actin cap or LINC complexes contribute to a lesser degree. Specif-
ically, it appears that nuclear height is largely determined by cell
spread area, whereas lateral compression of the nucleus in elon-
gated cells is driven by tension in the actin cap [32]. However, it
is unclear what specific nuclear deformations are important for
activating mechanotransduction mechanisms. That is, while cell
spreading may determine global nuclear shape, the additional load
and local deformations generated by actin cap stress fibers may be
critical for nuclear mechanotransduction. For example, in mesen-
chymal stem cells and fibroblasts cytoskeletal connection to the
nucleus and actomyosin contractility are necessary to transmit
extracellular loads to the nucleus [37,96,99], which is a prerequi-
site for any nuclear mechanotransduction process. Beyond
changes in nuclear shape induced by cell spreading, forces gener-
ated by actin cap stress fibers compact chromatin by reducing
nuclear volume, which is associated with changes in cell prolifera-
tion [32]. Furthermore, nuclear loading by actin cap stress fibers
produces significant local deformations in the apical nuclear sur-
face and is necessary to induce remodeling of the nuclear lamina
[58,59,92], which may be an important mediator of downstream
signaling and gene transcription (discussed below). Finally, actin
cap stress fibers are more sensitive than basal stress fibers to
changes in substrate stiffness [89], suggesting that they are one of
the primary actin structures involved in cell mechanotransduction.

Mechanisms of Nuclear Mechanotransduction

Mechanotransduction Via Physical Reorganization of
Chromatin

Load-Induced Gene Activation and Repositioning. The spatial
organization of the genome has a strong influence on gene expres-
sion [76,81,107,108]. In particular, chromatin contained in LADs
is generally heterochromatic and repressed [51,77,109,110].
Decondensation and detachment of heterochromatic gene loci
from the nuclear periphery and their translocation to the nuclear
interior are associated with elevated transcription. For example,
during stem cell commitment and differentiation, lineage-specific
genes are untethered from the nuclear lamina and are relocated to
the nucleoplasm (Fig. 5) where they form intra- and interchromo-
somal interactions at transcription factories within the nucleus
[78–80,111–113]. Furthermore, genes associated with pluripo-
tency are repressed and also repositioned with differentiation
[78,80,114].

Based on these findings, it has been postulated that mechanical
force might dislodge chromatin from the nuclear periphery and
initiate gene activation. Numerous proteins attached to the inner
nuclear membrane (including lamins) directly bind chromatin and
act in a cooperative fashion to maintain LADs at the nuclear
periphery [62,63,77,109,115–118]. Experiments utilizing fluores-
cence resonance energy transfer (FRET) demonstrated that extrac-
ellular forces can separate protein complexes within Cajal bodies
inside the nucleoplasm [37]. Similar load-induced dissociation of

Fig. 4 Compressive loading of the apical nuclear surface. (a)
Apical actin stress fibers (green) form deep indentations within
the nucleus, which deform the nuclear lamina (red) and intranu-
clear chromatin (blue). Scale bar: 3 lm. (b) and (c) Cross-
sectional images of nucleus showing actin stress fibers within
nuclear indentations and substantial local nuclear deforma-
tions. Scale bars: 1.5 lm. Adapted with permission from Ref.
[92]. Color figures are available online.
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protein complexes at the nuclear envelope could result in unte-
thering LADs from the nuclear lamina, thereby initiating gene
repositioning and/or transcription.

Rather than directly untethering gene loci, mechanical forces
could also decondense silent heterochromatic genes at the nuclear
lamina, which could allow better access for transcription machin-
ery and initiate changes in gene transcription. Indeed, the forces
required to alter chromatin condensation and potentially initiate
transcription are physically reasonable. A force of approximately
5 pN is required to decondense a 30 nm chromatin fiber [119],
which is the same as that required to unfold talin at a focal adhe-
sion within the plasma membrane [120]. Additionally, the level of
decondensation necessary to initiate transcription is likely small,
given that gene loci expand only 1.5–3 times upon artificially
induced transcription [121]. For context, this is about half the
level of compaction present within a 30 nm chromatin fiber [122].
Furthermore, chromatin decondensation by itself is capable of
untethering gene loci from the nuclear periphery [123].

An excellent recent study in this area demonstrated that chro-
matin stretching induced by exogenous forces is indeed capable of
activating gene transcription [124]. Using magnetic beads,
researchers from the labs of Wang and Belmont applied shear
forces to the cell surface, which generated strains throughout the
nucleus. More importantly, by inserting multiple copies of a fluo-
rescently labeled bacterial artificial chromosome (BAC) into the
same chromatin locus, they were able to directly observe the
stretching of a single chromatin fiber. Furthermore, this stretching
enabled the binding of RNA polymerase II to dihydrofolate

reductase (DHFR) genes within the BAC construct and upregu-
lated DHFR transcription. Fluorescent in situ hybridization dem-
onstrated that the generated messenger RNA colocalized with the
DHFR transgene and that upregulation occurred within 15 s, sug-
gesting that the response was indeed due to the mechanical
stretching of the chromatin and not signaling cascades. Finally,
these effects required active cytoskeletal tension and chromatin
tethering to the nuclear membrane via lamin A/C, SUN 1/2, and
other proteins associated with the nuclear lamina. These results
demonstrate for the first time that forces applied to the cell surface
can physically stretch chromatin within the nucleus and that such
stretching can activate local gene transcription. However, a major
caveat is that this work focused on a transgene that was not under
endogenous transcriptional regulation. That is, the inserted loci
were not part of highly condensed heterochromatin attached to the
nuclear periphery, but were rather likely pre-activated and located
near the nuclear interior.

An example supporting gene activation of endogenous hetero-
chromatin is seen with induced pluripotent stem cell (iPSC)
reprograming. While heterochromatin is associated with gene
repression, gene loci within these condensed regions are still gen-
erally accessible to transcription factors [125–127]. However, het-
erochromatin with trimethylation of histone 3 (i.e., H3K9me3) is
impenetrable to the transcription factors Oct-4, Sox2, and Klf4,
which poses a barrier for fibroblast reprograming [128]. Removal
of these repressive marks, and presumably decondensation of the
affected genes, is necessary for iPSC reprograming [129,130].
Interestingly, H3K9 methylation is particularly enriched in LADs
and is associated with the nuclear lamina [79,130,131]. If mechan-
ical force could promote the decondensation of these regions and
allow transcription factor penetration, then increased nuclear load-
ing should improve reprograming efficiency. Intriguingly, increas-
ing nuclear elongation by culturing cells on patterned substrates
improves reprograming efficiency fourfold [132]. Importantly,
this effect required tension within actin cap stress fibers, suggest-
ing that mechanical force transmitted to the nucleus mediated this
improved reprograming. However, encapsulation of fibroblasts in
soft hydrogels, which causes cell rounding and presumably
reduced contractility and nuclear deformation, also improves
reprograming [133]. Clearly, additional data are necessary to
determine whether direct loading of intranuclear chromatin may
contribute to iPSC reprograming and to cellular mechanotransduc-
tion in general.

Protection of Chromatin From Load Transmission. There is
also evidence suggesting that force-induced untethering or decon-
densation of chromatin at the nuclear lamina is an unlikely mecha-
nism for driving changes in gene transcription and ultimately cell
behavior. First of all, gene association with the nuclear lamina or
the nuclear periphery is not uniformly repressive [76,107,114,
134–137]. Recruitment of RNA polymerase II and transcription
can occur at the nuclear periphery and precede locus repositioning
[111,138]. Conversely, gene silencing often precedes relocation to
the periphery [139] and ectopic tethering to the nuclear envelope
does not always impede expression [140–142]. Second, physically
detaching genes from the nuclear envelope does not necessarily
enhance their expression. In a study where inactive gene loci were
artificially untethered from the nuclear lamina, the genes remained
silent [143]. Additionally, genes naturally relocated away from
the periphery do not become active until after additional modifica-
tions involving hyperacetylation and promoter–enhancer interac-
tions [78,144]. Finally, translocation of gene loci from the nuclear
periphery toward the nuclear interior is a highly coordinated pro-
cess involving numerous factors and is not simply due to untether-
ing from the nuclear envelope. For example, intranuclear actin
polymerization and myosin activity is necessary to reposition
gene loci, suggesting that translocation events are active processes
driven by nuclear actomyosin motor complexes [145–148]. Fur-
thermore, recurrent repositioning of gene loci to and from the
nuclear periphery in embryonic stem cells is observed with

Fig. 5 Relocation of gene loci within the nucleus during stem
cell differentiation. (a) In stem cells, pluripotent and housekeeping
genes are actively transcribed within the nuclear interior while
lineage-specific genes are silenced at the nuclear periphery. (b)
With lineage commitment, lineage-specific genes are detached
from the nuclear lamina and relocated to the nuclear interior. In
contrast, pluripotent genes are silenced and attach to the nuclear
lamina. (c) Additionally, some lineage-specific genes remain inac-
tive despite being displaced from the nuclear envelope and are
transcribed only after terminal differentiation. Adapted with per-
mission from Ref. [78]. Color figures are available online.
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circadian oscillation of gene expression and in the absence of
mechanical stimulation [116].

Despite the complex processes involved in repositioning genes,
mechanical stimuli applied to chromatin regions containing spe-
cific gene loci may still initiate such processes. This would imply
that cell-specific mechanosensitive genes are positioned in a
“mechanically poised” state at the nuclear periphery. Interest-
ingly, while knocking out LMNA increased nuclear deformation,
the expression of mechanosensitive genes was reduced in
response to extracellular strains [64]. This suggests that wide-
spread chromatin deformation alone is not sufficient for gene acti-
vation and that specific interactions between gene loci and the
nuclear lamina (which are lost with lamin A/C knockout) are nec-
essary to induce transcription of mechanically activated genes.
This would further suggest that the genes associated with the
nuclear lamina are cell-type specific. However, this does not
appear to be the case.

After mitosis, the LADs that associate with the nuclear lamina
are not conserved from mother to daughter cells [149]. Instead, a
proportion of LADs randomly associate with the surface of nucle-
oli, which is also a site for heterochromatin positioning [150]. In
fact, LADs share a significant overlap with nucleoli-associated
domains (NADs) across the genome [151,152]. Although nuclear
loading does deform intranuclear chromatin and structures (e.g.,
nucleoli) [34,37,124], the gene loci that assemble on the nucleoli
surface are presumably partially insulated from mechanical forces
applied at the nuclear periphery. The stochastic nature of the posi-
tioning of heterochromatin suggests that mechanosensitive genes
are not targeted to the nuclear envelope for the purpose of mecha-
notransduction. This is consistent with the finding that disruption
of the LINC complex, which reduced nuclear deformations in
response to extracellular loading, did not alter fibroblast expres-
sion of numerous mechanosensitive genes [96]. However, in car-
diomyocytes, disruption of the LINC complex via knockout of
nesprins 1 and 2 does eliminate the expression of the same mecha-
nosensitive genes [100]. This discrepancy may be due to the fact
that, besides reducing nuclear loading, loss of nesprins 1 and 2
also alters the localization of other proteins associated with LINC
complexes, including lamin A/C [100,153]. Therefore, it is
unclear whether the different effects produced by LINC disruption
between cell types are due to altered nuclear loading or altered
tissue-specific signaling pathways involving the mislocalized pro-
teins (discussed in detail below).

Consistent with this evidence against load-induced gene activa-
tion is the alternative hypothesis that the nuclear lamina serves to
prevent forces from being transmitted to the nuclear interior and
protect the delicate chromatin structure and organization from
force-induced disruption. As mentioned above, the nuclear lamina
is the primary structural support for the nuclear envelope. In cells
lacking lamin A/C, large nuclear deformations and chromatin dis-
placements are observed as a result of applied extracellular forces
or active actomyosin contraction [33,64,154,155] (Fig. 6). Such
disturbances of the nucleus may negatively impact cell behavior.
For example, mutations in the gene coding for lamin A/C result in
numerous disorders (termed laminopathies) that primarily affect
mechanically loaded tissues like muscle and bone [68,69]. This
suggests a mechanical origin to these diseases resulting from
defects in the nuclear lamina and alterations in nuclear mechanics
or mechanotransduction. Indeed, lamin mutations that produce
muscular disorders also reduce the stiffness of cell nuclei, whereas
laminopathies that lack muscular phenotypes do not affect nuclear
mechanics [156]. Recent data also suggest that nuclear lamins
help prevent nuclear rupture, DNA breakage, and chromatin dam-
age induced during cell migration through tight pores, which may
be related to cancer development and metastasis [157–160].

To prevent such damage, the nuclear lamina actively remodels
itself in response to forces applied to the nucleus. When loaded,
lamin A/C undergoes a conformational change that enhances its
assembly at the nuclear envelope and protects it from being phos-
phorylated and ultimately degraded [56–60]. This self-assembly

process is fully coordinated by the nucleus itself, as mechanical
stimulation of isolated nuclei is sufficient to initiate lamin A/C
assembly at the nuclear envelope [41]. This demonstrates that one
potential outcome of nuclear mechanotransduction is a stiffening
of the nuclear membrane, which may protect the nucleus and its
contents from further loading [161]. In fact, lamin A/C content in
primary cells from various tissues scales with the in situ tissue
stiffness, suggesting that a stiffer lamina is necessary to protect
cells from a stiffer microenvironment [56]. However, it is unclear
if cells in a stiff extracellular matrix experience increased loads/
strains since the stiffer microenvironment would shield the cells
from mechanical forces [162,163]. As discussed below, it is also
possible that such nuclear stiffening serves to enhance tension in
the cytoskeleton and increase the sensitivity of mechanotransduc-
tion mechanisms at the nuclear envelope, within the cytoplasm, or
at the plasma membrane.

Mechanotransduction at the Nuclear Envelope

Signaling at the Inner Nuclear Membrane. While load may not
directly reposition chromatin or alter endogenous gene expression,
it may initiate a remodeling process at the nuclear envelope that
plays an important role in downstream signaling pathways. This
distinction is best exemplified by the numerous laminopathies that
result from defects in the LMNA gene [68,69]. One of the most
well-studied laminopathies is Hutchinson–Gilford progeria syn-
drome (HGPS), which is characterized by accelerated aging and
early death [55]. This disease is caused by a C1824T mutation
that alters the splicing of LMNA mRNA, preventing the removal
of the farnesylated end of the protein. In cells from HGPS
patients, this results in increased lamin A at the nuclear periphery
and increased nuclear stiffness, which is similar to the effects of
lamin A overexpression [164–166]. However, mouse models of
progeria, which exhibit remarkably similar phenotypes to HGPS
patients, have softer nuclei and reduced nuclear loading due to the
lack of actin cap stress fibers as well as a lack of properly organ-
ized LINC complexes [31,167,168]. The fact that both nuclear
stiffening and softening produce similar disease states suggests
that altered nuclear mechanics and mechanotransduction are not
necessarily the cause of disease.

Instead, the tissue-specificity of laminopathies may be due to
the elimination of binding sites in the mutated lamin A protein for
specific gene loci, chromatin remodeling complexes, or other
nuclear proteins. For example, chromosome positioning is altered
within HGPS cells and the actomyosin machinery that actively
repositions chromosomes is disabled [169]. HGPS cells also dis-
play a loss of heterochromatin, with specifically fewer
H3K27me3 and H3K9me3 marks as well as altered localization
and chromatin association of heterochromatin protein 1 (HP1)
[170]. Furthermore, the LMNA mutation responsible for
Emery–Dreifuss muscular dystrophy (EDMD) blocks muscle-
specific gene relocation [171]. Finally, mutations associated with
both HGPS and EDMD affect F-actin bundling by lamin A, which
may be the cause of the inhibited gene relocation [172]. These
findings suggest that the diversity and tissue-specificity of lamino-
pathies may be due to altered binding of the nuclear lamina with
chromatin and tissue-specific nuclear proteins [173] rather than
altered mechanotransduction.

Similarly, the mechanisms by which nuclear loading affects
gene transcription may be mediated by remodeling of the nuclear
lamina, which then changes the binding properties of nuclear
envelope proteins and transcription factors. Numerous lamina-
associated polypeptides (LAPs) directly bind lamins at the nuclear
envelope and play important roles in chromatin binding, histone
modification, assembly of protein complexes, and transcription
factor sequestration [63,174] (Fig. 7). For example, LAP2a medi-
ates soluble lamin A/C binding to actively transcribed euchroma-
tin within the nuclear interior [175], whereas lamin-B receptor
(LBR) mediates binding of heterochromatin to the nuclear periph-
ery [176]. LAP2b, emerin, and MAN1 each contain LEM domains
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that bind barrier-to-autointegration factor (BAF), which mediates
chromatin binding to the nuclear envelope [63]. The CCCTC-
binding factor (CTCF) is an insulator that spatially organizes the
genome into TADs, controls heterochromatin spreading, and con-
nects LADs to the nuclear lamina [77,116–118]. Many of these
LAPs also bind and sequester numerous transcription factors at
the nuclear periphery, including c-Fos, sterol regulatory element-
binding protein 1 (SREBP1), retinoblastoma protein, germ
cell-less (GCL), octamer-binding transcription factor 1 (Oct-1),
b-catenin, and Smads [45,174]. It is also worth noting that small
isoforms of nesprins 1 and 2 exist within the nucleoplasm and
directly bind lamin A, emerin, and b-catenin [177–179]. Force-
induced remodeling of the nuclear lamina may alter the affinity of
these LAPs with the nuclear envelope, thereby affecting chroma-
tin binding, enhancer–promoter interactions, and transcription fac-
tor accessibility, ultimately altering gene expression.

Two particularly compelling examples of mechanical loading
influencing factor binding to the nuclear lamina involve emerin
and histone deacetylase 3 (HDAC3). As mentioned above, force
applied to isolated nuclei via nesprins increases lamin A assembly
at the nuclear envelope and stiffens the nucleus. This is dependent
on emerin phosphorylation by Src, which likely alters emerin
binding with lamin A and reinforces binding between SUN and
the nuclear lamina [41]. In living cells, while emerin knockout
does not change nuclear deformation in response to extracellular
strain, the expression of mechanosensitive genes is repressed
[155]. This may be linked to the role emerin plays in sequestering
various transcription factors at the nuclear periphery. For exam-
ple, binding of b-catenin to emerin negatively regulates Wnt sig-
naling by restricting its accumulation within the nucleoplasm
[180]. Furthermore, emerin maintains the proper position of myo-
sin IIB at the nuclear membrane [181] and nucleates actin poly-
merization [182], which suggests that it could be a critical
component of the actomyosin machinery used to relocate gene
loci and activate transcription [183].

Like other HDACs, HDAC3 inactivates gene transcription by
removing acetyl groups from lysines on H3 and H4 core histones,
which compacts chromatin in a more condensed state [184].
Beyond its catalytic activity, HDAC3 also mediates heterochro-
matin binding to the nuclear lamina [185,186]. Furthermore,
HDAC3 nuclear localization is dependent on cell contractility,
with greater contractility leading to less nuclear retention and
increased histone acetylation [187]. Interestingly, histone hyper-
acetylation resulting from tension in actin cap stress fibers is
localized to the nuclear lamina [59] and lamin A/C knockdown
eliminates the mechanically mediated repression of HDAC activ-
ity [188]. Decreased HDAC activity and increased histone hyper-
acetylation were also shown to contribute to the increased iPSC
reprograming efficiency as a result of nuclear loading and elonga-
tion on microgrooved substrates [132]. Finally, emerin also
directly binds HDAC3 at the nuclear envelope and together they
coordinate the nuclear positioning and expression of the myogenic
regulatory factors Myf5, MyoD, and Pax7 during myogenesis
[80,189]. These findings strongly suggest that binding of emerin
and HDAC3 to the nuclear lamina is sensitive to nuclear loading
and that force-induced alterations of their interaction with the
lamina affect histone modifications, chromatin condensation, gene
positioning, transcription, and cell fate.

Signaling at the Outer Nuclear Membrane. Mechanical stimuli
may also alter protein complexes located on the outer nuclear
membrane. The LINC complex is slowly being appreciated as an
organizational structure on par with focal adhesions at the plasma
membrane, with numerous interacting subcomponents that
dynamically assemble and disassemble in response to various sig-
nals, including mechanical load [45,88]. While components of the
LINC complex are distributed across the nuclear envelope
[58,59], nesprins 1 and 2 (and the corresponding SUN proteins
within the inner nuclear membrane) are enriched at sites along
actin cap stress fibers running over the nuclear surface [90,92,94].

This suggests that LINC complexes may form higher-order struc-
tures in response to mechanical force similar to focal adhesions.
Indeed, nesprins can interact directly and through supporting pro-
teins like formin homology 2 domain containing 1 (FHOD1)
[86,190–192], which could potentially form interconnected
assemblies of individual LINC complexes. Additionally, despite
the concentration of LINC complex proteins at actin cap stress
fibers, tension within these structures at the nuclear envelope is
uniform across the nuclear surface, suggesting that LINC complex
enrichment may be driven by achieving an optimal tensional load
[93]. Formation and maintenance of LINC complexes at the
nuclear envelope are also likely influenced by the remodeling of
the nuclear lamina, given that numerous LINC complex proteins
are improperly localized with lamin A/C mutations and knockouts
in some cell types [82,168,178,193–195]. Finally, the outer
nuclear membrane contains mechanosensitive ion channels and
functions as an activation scaffold for numerous enzymes, sug-
gesting that stretch of the nuclear envelope itself may initiate
mechanotransduction [196].

Mechanotransduction at the Plasma Membrane Resulting
From Nuclear Remodeling. In addition to possible mechano-
transduction mechanisms that may take place within the nucleus

Fig. 6 A stiff nuclear lamina prevents large deformations of the
nucleus. (a) Kymographs of the nuclear envelope demonstrate
that elongated cells on rectangular micropatterned islands
(gray lines) have significantly smaller local perturbations of the
nuclear surface compared to round cells on circular islands (red
lines). These differences in the stability of the nuclear envelope
are due to remodeling of the nuclear lamina, since (b) knockout
of lamin A/C in elongated cells produces larger fluctuations in
the nuclear surface, whereas (c) overexpression of lamin A/C in
round cells has the opposite effect. Adapted with permission
from Ref. [154]. Color figures are available online.
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or at the nuclear envelope, recent evidence suggests that nuclear
remodeling in response to load may also influence mechanotrans-
duction events throughout the cytoplasm and even at focal adhe-
sions [197]. As the stiffest organelle in the cell, the mechanical
properties of the nucleus strongly affect the mechanics of the
entire cell [198]. For example, embryonic stem cells, which lack
lamin A/C, have nuclei and cytoplasms that are more compliant
than terminally differentiated cells [67]. Furthermore, knocking
out lamin A in differentiated cells not only reduces the nuclear
stiffness to that of naive stem cells [199] but also reduces the cyto-
plasmic stiffness of the cell [64,168]. Similar reductions in cyto-
plasmic stiffness are also seen with LINC complex disruption
[200].

Such changes in cytoplasmic stiffness are likely mediated by
alterations in cytoskeletal organization in response to remodeling
of the nuclear structure. As mentioned above, alterations in the
nuclear lamina can disrupt the integrity and function of the LINC
complex [168,178,193–195], which interfaces with the cytoskele-
ton. This then disrupts or eliminates the actin cap stress fibers
[31,101,102], which are a primary contractile element of the actin
cytoskeleton [89], as well as inhibits F-actin polymerization
[201,202]. Furthermore, loss of lamin A/C or LINC complex com-
ponents can also disrupt the architecture of intermediate filaments
and microtubules within the cytoplasm [54,96,203]. These
changes in cytoskeletal organization and tension affect mechano-
transduction at focal adhesions and potentially throughout the
cytoplasm via mechanosensitive actin binding partners, including
filamin, a-actinin, and 14-3-3 proteins [16–19]. For example, dis-
ruption of the LINC complex leads to alterations in focal adhesion
size and number [89,168,204] as well as altered nuclear localiza-
tion of important transcription factors associated with the cyto-
skeleton, like yes-associated protein (YAP) and megakaryoblastic
leukemia (translocation) 1 (MKL1) [99,205,206]. Finally, cytos-
keletal architecture is further modulated by downstream changes
in expression of numerous proteins involved in the organization
of actomyosin and intermediate filaments [57,207]. These data
suggest the existence of a dynamic feedback loop (Fig. 8), where
force-induced nuclear remodeling leads to reorganization of the

cytoskeletal structure, which in turn alters the loads transmitted to
the nucleus and affects mechanotransduction processes acting
within the cytoplasm and at the plasma membrane.

Mathematical Models of Nuclear Mechanotransduction

Clearly, future work is necessary to conclusively determine the
specific mechanisms underlying nuclear mechanotransduction and
to decipher their interplay with one another as well as with addi-
tional mechanotransduction processes located in the cytoplasm or
at the plasma membrane. Use of cutting edge experimental techni-
ques on living cells, including molecular force probes [93], label-
ing of individual gene loci [124,145,208], super-resolution and
fluorescence-lifetime imaging microscopy (FLIM) [209,210], and
methods for applying localized force [33,211], will further our
understanding of how load transmitted to the nucleus alters gene
expression [45]. In addition, the development and application of
new mechanical models that capture load transmission through
the cytoskeleton and to the nucleus, nuclear remodeling, and the
changing mechanics of the nuclear lamina and chromatin can be a
powerful tool for testing specific hypotheses concerning the mech-
anisms of nuclear mechanotransduction.

Numerous mechanical models have been used to successfully
replicate cell mechanics and various cell behaviors at the whole
cell level as well as the mechanical behavior of individual intra-
cellular structures [212–214], including focal adhesions
[215–223] and the actin cytoskeleton [224–232]. Several models
have additionally included force transmission through the cyto-
skeleton and to the nucleus [225,227,233]. While these models
incorporate phenomenological representations describing the
mechanics of the nucleus [103,220,233–238], they generally
neglect the mechanical response of specific nuclear substructures,
like the nuclear lamina and intranuclear chromatin. However,
mechanical models of these nuclear components currently exist.
For example, network models have been used to explain the
behavior of the lamina during nuclear swelling [239,240] and
even the formation of nuclear blebs observed in cells from HGPS
patients [241]. Models based on polymer physics and molecular

Fig. 7 Proteins associated with the nuclear lamina. In addition to the components of the LINC complex, numerous lamina-
associated polypeptides (LAPs) bind to the nuclear lamina and serve various functions. Emerin, LAP2b, and MAN1 help connect
heterochromatic LADs to the nuclear lamina via their interaction with BAF. In addition, HDAC3 and LBR directly bind chromatin.
These proteins, as well as the nuclear lamina itself, also bind various transcription factors (TFs) involved in important signaling
pathways (e.g., c-Fos, SREB1, b-catenin, and Smads). CTCF helps position chromatin at the nuclear envelope and also flanks regions
of histone modifications associated with gene silencing (i.e., H3K9me3 and H3K27me3). Soluble lamin A/C dimers associate with
actively transcribed euchromatin within the nuclear interior via LAP2a. Lamin A/C and emerin are also likely involved in the actomyosin
machinery potentially responsible for relocating gene loci to the nuclear interior upon activation. Color figures are available online.
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dynamics have also successfully replicated key features of chro-
matin organization and mechanics, including nucleosome folding
and chromatin condensation [242], forced chromatin decondensa-
tion with the application of load [119,243], and even looping out
of gene loci from their chromosomal territories [244]. Further-
more, the self-organization of replication, transcription, and splic-
ing factories within the nucleus has been explained by entropy-
driven processes [245,246].

Incorporating the mechanics of nuclear substructures into
whole cell models is required in order to test the hypotheses
regarding nuclear mechanotransduction described above. To dem-
onstrate the power and need for such modeling approaches, con-
sider a simple calculation regarding how force is transmitted to a
lamina-associated chromatin fiber due to a local force applied at
the nuclear envelope and the likelihood that this could initiate
chromatin decondensation (Fig. 9). Micropipette aspiration has
provided an estimate of the network elastic modulus of the nuclear
lamina as approximately 25 pN/nm in differentiated fibroblasts
and mesenchymal stem cells [56,199,239]. This measurement was
based on the Young-Laplace equation [239], which can be con-
verted to a force–displacement relation

F ¼ 2pEL (1)

where F is the force applied at a point on the nuclear lamina, L is
the radial displacement of that point, and E is the network elastic
modulus of the nuclear lamina. The term 2pE represents the stiff-
ness of the lamina in response to a force applied perpendicular to
its surface and is approximately 157 pN/nm. Additionally, tensile
testing of condensed individual chromatin fibers demonstrates that
they have a stiffness of approximately 0.0125 pN/nm and decon-
dense at about 5 pN [119]. Assuming that the far-field displace-
ment of the nucleus is zero and that the chromatin fiber and
nuclear lamina are loaded in parallel, these estimates suggest that
only about 0.008% of the load applied to the nuclear lamina is
transmitted to the chromatin. Furthermore, if we assume that an
actin stress fiber terminates at the nuclear surface, applying the
full 5 nN of force generated at a typical focal adhesion to a point
on the nucleus [247,248], this would produce a displacement of
about 32 nm at the nuclear envelope and a force on the chromatin
fiber of about 0.4 pN, which are both about an order-of-magnitude
too low to induce decondensation of the chromatin fiber [119].
This would contradict the hypothesis that nuclear mechanotrans-
duction is mediated by direct manipulation of chromatin

Fig. 8 Changes in biophysical stimuli dynamically modulate nuclear and cytoskeletal structure. (Left) Force applied to the
nucleus promotes assembly of the lamina and nuclear stiffening. This in turn increases the forces at focal adhesions generated
by actomyosin contractility, which leads to further growth of focal adhesions and stress fibers. Increased actin polymerization
and nuclear loading induce import of transcription factors (e.g., MKL1 and YAP), which drive further structural remodeling in
the cytoplasm via upregulation of several cytoskeletal proteins (e.g., myosin-IIA). (Right) Loss of nuclear loading causes disas-
sembly and degradation of lamin A/C. This softens the nucleus and disrupts existing LINC complexes, causing reductions in
stress fiber and focal adhesion size as well as cytoskeletal tension. Increased levels of G-actin and loss of nuclear loading lead
to sequestration of MKL1 and YAP within the cytoplasm and downregulation of cytoskeletal proteins.

Fig. 9 Simple calculation of forces required to locally deform
nuclear lamina and decondense chromatin. (a) Application of
local force (F) via micropipette aspiration of isolated nuclei dis-
places the nuclear lamina a distance L, while the intranuclear
chromatin is excluded from the pipette lumen. This provides an
estimate of the network elastic modulus of the nuclear lamina.
(b) Force applied to the nuclear envelope is transmitted to the
nuclear lamina and attached chromatin fiber, which act in paral-
lel and have stiffnesses Knl and Kchr, respectively. (c) Micropip-
ette aspiration of live adherent fibroblasts produces substantial
local deformation of the nucleus, which is more than sufficient
to decondense chromatin and potentially initiate gene tran-
scription. Adapted with permission from Refs. [33] and [239].
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organization and supports the idea that assembly of lamin A/C at
the nuclear periphery and nuclear stiffening in response to load pro-
tects chromatin from forces transmitted by the cytoskeleton. How-
ever, recent data demonstrate that 5 nN applied to the nuclear
surface of live adherent fibroblasts is sufficient to produce localized
nuclear protrusions of about 4 lm in length [33], which is 100 times
larger than the estimate calculated above and more than sufficient
to decondense (or possibly untether) gene loci from the nuclear
periphery. Clearly, improved mechanical models and additional
measurements of the dynamic mechanical properties of the nucleus
and subnuclear structures are needed to investigate how loads
impact nuclear mechanics and alter cellular mechanotransduction.

Finally, inclusion of active remodeling of the nuclear lamina
and the cytoskeleton would elucidate the mechanical interplay
between the two cell compartments. Such an approach would ena-
ble the modeling of dynamic mechanotransduction processes, sim-
ilar to the benefits provided by cell models incorporating active
cytoskeletal contraction [214,219,220,222,225–227,230,231,
249–255]. Furthermore, these models could capture the influence
of load-induced nuclear remodeling on mechanotransduction
processes that occur within the cytoplasm and plasma membrane.
For example, we recently showed that stiffening of the nucleus
leads to the formation of larger focal adhesions [220]. Addition-
ally, Zemel demonstrated that nuclear stiffness and the entropic
swelling forces of chromatin can affect actomyosin organization
[234]. The complexity of representing numerous dynamic struc-
tures across a wide range of length and time scales is of course a
large obstacle for developing such models [45,213]. Novel
approaches, like the cytoskeleton divided medium (CDM) model,
can overcome such obstacles by representing the cell and intracel-
lular structures with dynamic particles that interact via simple
force–displacement relations [256]. This approach has recently
been used to successfully recapitulate the dynamic remodeling of
the cytoskeleton and nuclear deformations in response to cell
spreading and contraction [257,258]. Such advances in mechani-
cal models are essential for determining the role of nuclear load-
ing and mechanotransduction on gene expression, cell behavior,
and differentiation.

Conclusions

Substantial evidence suggests that nuclear loading plays an
important role in cellular mechanotransduction. However, the spe-
cific mechanisms that mediate these effects remain elusive. Of the
three main hypotheses discussed in this review, alterations in
intranuclear signaling pathways as a result of force-induced
remodeling of the nuclear lamina appear to be the most clearly
supported mechanism for nuclear mechanotransduction. The inner
nuclear membrane and nuclear lamina provide a scaffolding for a
vast array of important proteins and transcription factors (Fig. 7),
and the interactions between these elements are highly sensitive to
lamina assembly and remodeling. Furthermore, mutations in lam-
ins and inner nuclear membrane proteins (e.g., emerin) alter cell
function and response to mechanical loading, even in cases where
the nuclear mechanics remain unaffected [155,156]. Still, addi-
tional research is necessary to identify the means by which
nuclear loading alters protein interactions at the nuclear envelope
and to clearly define the intranuclear signaling pathways that lead
to changes in gene transcription.

Less is known about the potential effects of load transmission
to intranuclear chromatin or the effects of nuclear mechanics on
mechanotransduction processes outside the nucleus. Directly
observing load-induced changes in chromatin organization or
positioning is difficult, and isolating the effects of such physical
manipulations from the myriad other known (and unknown)
mechanosensitive pathways has been a challenge. While a recent
study demonstrated that stretching of transgenic chromatin due to
forces applied at the cell surface can alter gene expression [124],
it is unclear if similar mechanisms regulate the activation of
endogenous genes, particularly those silenced within

heterochromatin at the nuclear periphery. Additionally, significant
evidence exists to refute this hypothesis and suggests that nuclear
remodeling is an attempt to protect chromatin from extracellular
forces or cell-mediated contraction [161]. Alternatively, recent
data suggest that remodeling of the nuclear lamina and the result-
ing changes in nuclear stiffness affect cytoskeletal tension and
mechanotransduction processes within the cytoplasm. Beyond
additional experiments, improved mechanical models incorporat-
ing subnuclear structures as well as cytoskeletal and focal adhe-
sion organization would be extremely valuable to test these
hypotheses and elucidate the mechanisms of nuclear
mechanotransduction.

Apart from the specific questions addressed in this review, sig-
nificant other open areas remain to be investigated. For example,
besides assembly of lamin A/C at the nuclear periphery, the
nuclear envelope also undergoes numerous remodeling activities
including nuclear pore complex formation, release of large ribo-
nucleoprotein particles too big to pass through nuclear pores,
microautophagy of the nucleus, and nuclear envelope dissolution
during mitosis [259]. Each of these processes requires local break-
down of the nuclear lamina and reorganization of the nuclear
envelope as a whole. Interestingly, much of the same machinery
involved in such remodeling is also necessary for the repair of
nuclear rupture resulting from migration through constricted
micropores [157,158]. Still, how these processes work in concert
to establish or interrupt nuclear mechanotransduction processes is
completely unknown [259,260]. Additionally, while apical stress
fibers have been shown to be critical elements of nuclear mecha-
notransduction, much of this research has been performed with
cells on two-dimensional substrates. Other than in the endo- or
epithelium, cells in native three-dimensional contexts lack this
apical–basal polarization [261], and it is unclear whether such api-
cal stress fibers (or stress fibers generally) even form [3,262,263].
While recent work shows that deep nuclear invaginations pro-
duced by actin and intermediate filaments exist in three-
dimensional organoid cultures [264], additional work is still
needed to evaluate the role of nuclear mechanotransduction in
native cell environments.

Finally, the persistence of changes in nuclear structure and
mechanics may play an important role in the establishment of stable
cellular phenotypes. For example, nuclei in cells that migrated
through small micropores or cells exposed to shear loading remain
deformed and stiffened even after isolation from the cell [265,266].
Similarly, the effects of substrate stiffness or extracellular loading
persist even after cells are exposed to new environments
[1,267–269]. It is possible that such “mechanical memory” is a
result of permanent alterations in nuclear structure and mechanical
properties. Clearly, many open questions remain in the rapidly
changing field of nuclear mechanotransduction with new and excit-
ing discoveries constantly emerging. Indeed, during the publication
of this review article, two particularly relevant studies were
released. One investigates the role of nuclear mechanics on cellular
mechanosensation and mesenchymal stem cell differentiation [270].
The other provides a chemomechanical model to describe nuclear
deformation and rupture during cell migration through small con-
strictions [271]. The combination of such sophisticated experimen-
tal techniques and advanced mathematical models will continue to
enhance our understanding of the role of the nucleus in the mecha-
notransduction processes driving numerous critical cell functions.
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Nomenclature

BAC ¼ bacterial artificial chromosome
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BAF ¼ barrier-to-autointegration factor
CDM ¼ cytoskeleton divided medium
CFP ¼ cyan fluorescent protein

CTCF ¼ CCCTC-binding factor
DHFR ¼ dihydrofolate reductase

DNA ¼ deoxyribonucleic acid
E ¼ network elastic modulus of the nuclear lamina

EDMD ¼ Emery–Dreifuss muscular dystrophy
F ¼ force

F-actin ¼ filamentous actin
FHOD1 ¼ formin homology 2 domain containing 1

FLIM ¼ fluorescence-lifetime imaging microscopy
FRET ¼ fluorescence resonance energy transfer

G-actin ¼ globular actin
GCL ¼ germ cell-less

HDAC ¼ histone deacetylase
HGPS ¼ Hutchinson–Gilford progeria syndrome

HP1 ¼ heterochromatin protein 1
iPSC ¼ induced pluripotent stem cell
Kchr ¼ stiffness of chromatin fiber
Knl ¼ stiffness of nuclear lamina

Klf4 ¼ Kruppel-like factor 4
KASH ¼ Klarsicht, ANC-1, SYNE/nesprin homology

L ¼ radial displacement of the nuclear lamina
LAD ¼ lamina-associated domain
LAP ¼ lamina-associated polypeptide
LBR ¼ lamin-B receptor
LEM ¼ LAP2, emerin, MAN1
LINC ¼ linker of nucleoskeleton and cytoskeleton

mRNA ¼ messenger ribonucleic acid
MKL1 ¼ megakaryoblastic leukemia (translocation) 1
Myf5 ¼ myogenic factor 5

MyoD ¼ myogenic differentiation 1
NAD ¼ nucleoli-associated domain

Oct-1/4 ¼ octamer-binding transcription factor 1/4
Pax7 ¼ paired box 7

PRC1 ¼ polycomb-group repressive complex 1
RGD ¼ arginylglycylaspartic acid
SMN ¼ survival motor neuron

SOX2 ¼ SRY (sex determining region Y)-box 2
SREBP1 ¼ sterol regulatory element-binding protein 1

SUN ¼ Sad1, UNC-84
TAD ¼ topologically associating domain
TAN ¼ transmembrane actin-associated nuclear

TRAAK ¼ TWIK related arachidonic acid activated Kþ channel
TREK ¼ TWIK related Kþ channel

TRPV4 ¼ transient receptor potential cation channel, subfamily
V, member 4

YAP ¼ yes-associated protein
YFP ¼ yellow fluorescent protein
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