Skip to main content
. 2017 Apr 19;7:46421. doi: 10.1038/srep46421

Figure 1. Schematic of the computation of LZc and SCE.

Figure 1

LZc: (a) xi is the activity of the ith channel and ai is the (Hilbert) amplitude of xi. (b) bi is ai binarised, using the mean activity of ai as the binarisation threshold. (c) After binarisation of all n signals, (d) the multidimensional time series are concatenated observation-by-observation into one binary sequence k and then (e) repeated patterns are searched and listed into a dictionary of binary words via a Lempel-Ziv algorithm. Lempel-Ziv complexity LZc is proportional to the size of this dictionary. SCE: (a) Two time series. (b) The analytic signals of these two, which are complex signals with the real part being the original signal and the imaginary part being the Hilbert transform of the original signal. (c) A binary synchrony time series is created for this pair of signals; a 1 indicates that the phases of the complex values of the analytic signals are similar (difference of less than 0.8 modulo 2π). (d) Such time series are obtained to represent each channel’s synchrony with seed channel i. e) SCE(i) is the entropy over observations in the resulting data matrix. The overall SCE is then the mean value of SCE(i) across choices of seed channel i.