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Introduction

According to UNAIDS, 35.3 million people were living with 
HIV-1 at the end of 2012, the vast majority being in sub-Saha-
ran Africa. Worldwide the number of people including children 
with new HIV-1 infection fell by 33% since 2001.1 This fragile 
although uneven success in prevention programs can be ascribed 
to the strengthening and scaling-up of antiretroviral treatment 
along with existing and new prevention methods such as behav-
ioral interventions,2 treatment of sexually transmitted diseases, 
harm reduction,3 male circumcision,4 and prevention of mother-
to-child transmission.5 New prevention strategies including pre-
exposure prophylaxis (PrEP),6 antiretroviral treatment (ART) for 
prevention,7 topical microbicides,8 and HIV-1 preventive vaccines 
must be further explored and their access ensured. A mathemati-
cal modeling analysis showed that the implementation of com-
bined strategies such as medical male circumcision, earlier ART 
and PrEP could lead to dramatic declines in HIV-1 incidence, 

but will not stop transmission completely.9 A preventive HIV-1 
vaccine as part of a comprehensive prevention package10 remains 
therefore among the best hopes for controlling the HIV/AIDS 
pandemic.11

Goals of an HIV-1 Vaccine

One would expect that an HIV-1 vaccine would bring both 
individual and public health benefits. The first goal of an HIV-1 
vaccine would be to prevent HIV-1 infection and provide steril-
izing immunity. A Phase III community-based efficacy trial con-
ducted in Thailand (RV144) in mostly heterosexual populations 
showed that the first goal was indeed achievable. The vaccine 
regimen conferred an estimated efficacy of 31% against HIV-1 
acquisition after 42 mo of follow-up, with a vaccine efficacy of 
60% at month 12 and declining thereafter.12,13 It provided the 
first opportunity to study immune correlations with vaccine effi-
cacy against HIV-1,14 which may permit rational vaccine design 
and iterative improvement.

A second goal would be to reduce peak and set point viral 
load by controlling viral replication and to stop progression to 
clinical disease in vaccine recipients who became infected. These 
2 goals are complementary. However, the acceptance of a preven-
tive vaccine that would only reduce viral load seems unlikely, as 
the validation of immune markers that counter viral replication15 
would need to be supported by the demonstration of clinical ben-
efit against progression to disease. In an era where the benefits of 
early highly active antiretroviral treatment are well established, 
this might be difficult ethically.

Scientific Challenges

The development of HIV-1 vaccines faces multiple scien-
tific challenges inherent to the biological properties of HIV-1. 
HIV-1 integrates as a provirus into the chromosomes of long-
lived reservoir memory T-cells where it can persist in a latent 
state.16 HIV-1 globally presents extraordinary sequence diversity 
within and between subtypes and multiple circulating recombi-
nant forms have been generated.17,18 Natural infection does not 
in general induce protective immunity that eradicates (steriliz-
ing) the virus or prevents progression to disease. The trimeric 
HIV-1 envelope glycoprotein is composed of variable regions 
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The development of a safe and effective preventive HIV-1 
vaccine remains a public health priority. Despite scientific dif-
ficulties and disappointing results, HIV-1 vaccine clinical devel-
opment has, for the first time, established proof-of-concept 
efficacy against HIV-1 acquisition and identified vaccine-asso-
ciated immune correlates of risk. The correlate of risk analysis 
showed that IgG antibodies against the gp120 V2 loop corre-
lated with decreased risk of HIV infection, while env-specific 
IgA directly correlated with increased risk. The development of 
vaccine strategies such as improved envelope proteins formu-
lated with potent adjuvants and DNA and vectors expressing 
mosaics, or conserved sequences, capable of eliciting greater 
breadth and depth of potentially relevant immune responses 
including neutralizing and non-neutralizing antibodies, CD4+ 
and CD8+ cell-mediated immune responses, mucosal immune 
responses, and immunological memory, is now proceeding 
quickly. Additional human efficacy trials combined with other 
prevention modalities along with sustained funding and inter-
national collaboration remain key to bring an HIV-1 vaccine to 
licensure.
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that are immunodominant and induce type-specific neutraliz-
ing antibodies of limited breadth, while the conserved regions 
such as the CD4 binding site are cryptic and poorly accessible to 
the immune system.19 Broadly neutralizing antibodies (bNAb) 
develop in roughly 20% of HIV-infected after 2–3 y, but these 
bNAb do not appear to limit disease progression.20 HIV-1 Env 
is covered with glycans that shield conserved epitopes from anti-
body recognition and evade the neutralizing antibody response.21 
An effective HIV-1 vaccine should therefore induce responses 
that differ qualitatively and quantitatively from that induced by 
natural infection, and able to cross-protect against various HIV-1 
clades.22

The limited although increasing knowledge of immune cor-
relates of protection in humans and the poor positive predictive 
value of animal models mean that further empirical proof-of-
concept trials are justified.

Human Efficacy Trials—What Works and What 
Doesn’t for Protection

Six HIV-1 vaccine efficacy trials had been conducted, which, 
put in perspective offer some insights into possible immune cor-
relates for protection (Table 1).

Vax003 and Vax004
Monomeric gp120 HIV-1 envelope proteins failed to protect 

high-risk volunteers in 2 efficacy trials. Vax004 tested a bivalent 
recombinant HIV-1 subtype B (GN08 and MN) envelope gly-
coprotein subunit vaccine in US, Canada, and Netherlands men 
who have sex with men (MSM) and women at high risk for het-
erosexual transmission of HIV-1.23 The vaccine did not prevent 
HIV-1 acquisition nor did it affect HIV-1 disease progression.24 
High neutralizing antibody levels against easy-to-neutralize MN 
strain were however significantly inversely correlated with HIV-1 
incidence while low levels against more-difficult-to-neutralize 
viruses suggests that level and breadth were not sufficient for pro-
tection.25 Whether the final level of efficacy reflects positive and 

negative effects on acquisition remains speculation.26 The level 
of vaccine-induced antibody-dependent cellular virus inhibition 
activity (ADCVI) correlated inversely with the rate of acquiring 
HIV-1 infection following vaccination, However, ADCVI activ-
ity correlated poorly with neutralizing or CD4-gp120-blocking 
antibody activity measured against laboratory strains and was 
modulated by FcR polymorphisms.27 Vax003 tested a bivalent 
recombinant HIV-1 subtype B/E (A244 CRF01_AE and MN 
subtype B) envelope glycoprotein subunit vaccine in injecting 
drug users (IDU) in Bangkok, Thailand.28 The vaccine did not 
prevent HIV-1 acquisition nor did it affect HIV-1 disease pro-
gression. The failure of these 2 antibody-inducing vaccines led to 
developing and testing vaccines inducing cell-mediated immune 
responses.

Step and Phambili
The Step (HVTN 502/Merck 023) and Phambili (HVTN 

503) vaccine trials explored whether cell-mediated immune 
response-inducing vaccines could prevent infection or reduce 
post-infection plasma viral load. The Merck vaccine (MRKAd5 
HIV-1) was a mixture of replication-defective Ad5 vectors express-
ing HIV-1–1 gag, pol, and nef subtype B genes. The Step study 
enrolled predominantly high-risk populations including MSM as 
well as heterosexual women and men.29,30 The Phambili study 
enrolled heterosexual men and women in South Africa.31 The 
Step trial was halted after a pre-specified interim analysis (when 
30 per-protocol events had arisen in the group with Ad5 anti-
body titer 200 or less) that showed no protection against HIV-1 
acquisition. This finding prompted the Phambili trial Ethics 
Committee to halt the study. There were excess HIV infections 
in the vaccine group but statistical significance was not seen in 
the primary study; post-hoc follow-up of data from both Step 
and Phambili rAd5 trials has suggested increased risk of HIV 
infection in vaccine recipients, though methodologic problems 
are significant. There was no significant decrease in HIV-1 viral 
load in the vaccine group compared with the placebo recipients 
in Step or Phambili. However, Phambili was unblinded prior 
to complete enrollment and vaccination, and interpretation of 

Table 1. Phase IIb and III efficacy trials conducted in humans

Study
Year of 

publication
Vaccines Phase Volunteers’ risk Location Result

Vax004 2005 AIDSVAX B/B gp120 in alum III
MSM and women at high 

risk
USA 

europe
No efficacy

Vax003 2006 AIDSVAX B/e gp120 in alum III Injecting drug users Thailand No efficacy

HVTN 502
Step trial

2008 MRKAd5 HIV-1 gag/pol/nef B II b
MSM and heterosexual 

women and men
USA

No efficacy; transient increased 
infection rate in vaccinees

RV144 2009
ALVAC-HIV vCP1521 and 

AIDSVAX B/e rgp120 in alum
III Community-risk Thailand

31.2% efficacy at 42 mo, 60% at 
12 mo against HIV acquisition. 
No effect on plasma viral load 

and CD4 count

HVTN 503
Phambili trial

2011 MRKAd5 HIV-1 gag/pol/nef B II b
Heterosexual men and 

women

Republic 
of South 

Africa

No efficacy; increased HIV 
infection rate in vaccinees

HVTN 505 2013 DNA and rAd5 (A, B, and C) II b
MSM with Ad5-specific 

antibody titers < 
1:18 (negative)

USA
Stopped for futility; no efficacy 

on HIV acquisition, plasma 
viral load and CD4 count



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

1736 Human Vaccines & Immunotherapeutics Volume 10 Issue 6

results is subject to multiple biases.32 Post-hoc multivariate analy-
sis of the Step study suggested that risk was greatest in uncircum-
cised men with pre-existing Ad5-NAb were at greatest increased 
risk for HIV-1 acquisition,33 waned with time from vaccination,34 
and was not explained by behavioral factors.35 The presence of 
Ad5-NAb was not linked to the risk of HIV-1 acquisition among 
unvaccinated populations at elevated risk of HIV-1 infection.36 In 
addition, subjects infected during the Step trial seemed to have 
qualitative immune differences that increased their risk of HIV-1 
infection independent of vaccination.37 A sieve analysis showed 
evidence of vaccine-elicited immune pressure on the founder 
virus though no specific CD8+ CTL recognizing that epitope 
could be identified.38 Moreover vaccinees with HLA alleles asso-
ciated with HIV-1 control had a significantly lower mean viral 
load over time.39 Interestingly, the most highly conserved epit-
opes were detected at a lower frequency, suggesting that stronger 
responses to conserved sequences may be as important as breadth 
for protection.40

Similar Ad5 vector–based vaccines did not protect macaques 
from infection with SHIV89.6P but reduced viral load and pre-
served CD4+ T cell post-infection, findings that were not repro-
duced in the human trials.41 The outcome of the Step trial was 
recapitulated in an Indian rhesus macaque study where animals 
vaccinated with a regimen similar to that employed in the Step 
trial were not protected against a SIVE660 challenge.42 Rhesus 
macaques chronically infected with a host-range mutant Ad5 
(Ad5hr) and immunized with a rAd5 SIVmac239 gag/pol/nef vac-
cine were challenged with a series of escalating dose penile expo-
sures to SIVmac251. Despite inducing CD8+ T-cell responses in 
70% of the monkeys the vaccine did not protect vaccinated ani-
mals from penile SIV challenge.43

HVTN 505
Aiming at inducing both functional antibodies and cell-

mediated responses,44 a regimen with DNA vaccine prime com-
posed of DNA plasmids encoding Gag, Pol, and Nef from HIV-1 
subtype B and Env from subtypes A, B, and C and replication-
defective rAd5-HIV-1 vaccine boost containing a mixture of 4 
rAd5 vectors encoding the HIV-1 subtype B Gag-Pol and Env 
matching the DNA Env components was tested in Phase I45-47 
and IIa48 clinical trials. As opposed to the MRKAd5 HIV-1 vac-
cine that did not contain an envelope gene, the HVTN 505 vac-
cine contained 3 envelope genes. The vaccine regimen induced 
polyfunctional CD4+ and CD8+ T-cells, multi-clade anti-Env 
binding antibodies, and Nab against easy to neutralize Tier 1 
viruses. The Phase IIB trial (HVTN 505) was recently stopped 
for futility, showing no efficacy and no statistically significant 
effect on viral load and a non-significant excess of HIV infection 
in the vaccinated group.49 Further analysis is ongoing.

This prime-boost vaccine regimen failed to protect NHP 
against SIVmac251 infection, but 50% of vaccinated monkeys 
were protected from infection with SIVsmE660 with about a 
one-log reduction in peak plasma virus RNA in Mamu-A*01-
positive animals, suggested a role of cytotoxic T lymphocytes in 
the control of SIV replication. However, low levels of neutral-
izing antibodies and an envelope-specific CD4+ T-cell response 
were associated with vaccine protection in these monkeys.50 

SIV-specific CD8+ T cells of effector memory phenotype showed 
strong virus-inhibitory activity (VIA) and correlated with high 
levels of CD107a mobilization and perforin expression.51

RV144
A Phase III community-based trial conducted in Thailand 

(RV144) provided the first evidence that an HIV-1 vaccine could 
confer protective efficacy against HIV-1 acquisition. The prime-
boost vaccine regimen consisted of a recombinant canarypox 
vector, ALVAC-HIV prime (vCP1521, expressing gag, protease 
subtype B [LAI] and env gp120 CRF01_AE with a gp41 subtype 
B [LAI] transmembrane anchor) and a bivalent AIDSVAX® 
gp120 B/E MN and CRF01_AE (A244) boost. The vaccine 
regimen was safe and well tolerated.52 The modified intent-to-
treat analysis showed an estimated 31.2% efficacy after 42 mo 
of follow-up post first vaccination.12,53 Post hoc analysis of the 
interaction of risk status and acquisition efficacy was significant 
with greater benefit in low-risk individuals.13 Vaccine efficacy 
appeared to be higher (60%) at 12 mo post first vaccination, sug-
gesting an early, but nondurable, vaccine effect. There was no 
effect on early post-infection HIV-1 RNA VL or CD4+ T-cell 
count. Vaccination did not affect the clinical course of HIV-1 
disease after infection, though there was evidence of reduction in 
seminal fluid viral load.54

IFN-γ ELISPOT positive responses were detected in 41% 
of the vaccinees and predominantly CD4+ T cell-mediated. 
Responses were targeted within the HIV-1 Env region, with 
up to 60% of vaccinees recognizing peptides derived from the 
Env V2 region, which includes the α4β7 integrin binding site. 
Intracellular cytokine staining confirmed that Env responses pre-
dominated and were mediated by polyfunctional effector mem-
ory CD4+ T cells displaying a cytolytic phenotype.55

Binding antibody against Env was nearly uniformly present to 
the MN and A244 vaccine antigens, but dropped 15-fold after 6 
mo; p24 responses were less frequent. Antibody-dependent cell-
mediated cytotoxicity (ADCC) in vaccine recipients and medi-
ated by monoclonal (mAb) antibodies from vaccine recipients 
were described.56,57 Neutralization of Tier 1 viruses was detected 
in both RV144 and Vax003. The RV144 regimen was superior 
to 2 gp120 protein administrations alone, confirming a prim-
ing effect for ALVAC-HIV, but was inferior to a 12-mo regimen 
of 4 AIDSVAX® B/E inoculations.58 Further analysis suggested 
that the lack of response to a vaccine designed to induce clade-
specific HIV-1 NAb is associated with the presence of certain 
HLA class II alleles in Southeast Asians.59

Correlates of protection—new perspectives
The RV144 trial provided a unique opportunity to perform 

a case control study of correlates of risk. Plasma IgG binding 
antibody to scaffolded gp70 V1V2 envelope proteins correlated 
inversely with risk of infection (higher antibody levels correlated 
with lower rates of infection.), while Env plasma IgA correlated 
directly with a higher rate of infection, raising the hypotheses that 
IgA responses against Env and IgG responses directed against 
V1V2 may be mechanistically associated with protection. Neither 
low levels of V1V2 antibodies nor high levels of Env-specific IgA 
antibodies were associated with higher rates of infection than in 
the placebo group. In vaccinees with low levels of Env-specific 
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IgA antibodies, IgG avidity, ADCC, neutralizing antibodies, and 
Env-specific CD4+ T cells, correlated inversely with risk of infec-
tion.14,60-62 Two weeks post last vaccination 97% of RV144 stud-
ied plasma samples from vaccine recipients contained antibodies 
to V2 region synthetic peptides, falling to 19% at 48 wk, suggest-
ing that waning vaccine efficacy may be correlated with waning 
V2 antibody response. Interestingly, gp70 V1V2 antibodies were 
lower in HVTN 505 compared with RV144.63 The response to 
V3 CRF01_AE also correlated inversely with the risk of HIV 
infection in vaccine recipients with lower levels of Env-specific 
plasma IgA and neutralizing antibodies. In Vax003 and Vax004 
(no protection), serum IgG responses targeted the same epitopes 
as in RV144 with the exception of an additional C1 reactivity in 
Vax003 and infrequent V2 reactivity in Vax004. These results 
along with a recent sieve analysis64 generate the hypothesis that 
IgG to linear epitopes in the V2 and V3 regions of gp120 are part 
of a complex interplay of immune responses that contributed to 
protection in RV144.65

Approximately 90% of incident infections in RV144 were 
CRF01_AE, the predominant circulating strain in much of 
South East Asia. A sieve analysis identified 2 vaccine-associated 
genetic signatures in V2 corresponding to sites 169 and 181, fur-
ther supporting the hypothesis that vaccination-induced immune 
responses directed against the V2 loop were associated with pro-
tection.66 Monoclonal antibodies from RV144 vaccine recipients 

contact the V2 K169 residue, providing further evidence that 
vaccine-induced antibodies correspond to the observed sieve 
effect. These V2-specific antibodies can mediate ADCC, neu-
tralization, and low-level virus capture.67,68 These findings gen-
erate the hypothesis that V2 IgG may play a role in protection 
against HIV-1 acquisition but do not provide evidence of a mech-
anistic or non-mechanistic correlate of protection.69

Sequences in gp70 V1V2 antigens other than V2, such as C1 
and V1, may significantly contribute to the binding responses. 
Some light has recently been shed on the role of plasma IgA in 
RV144. In the presence of low anti-Env IgA, both ADCC and 
NAb responses correlated with decreased risk of infection. ADCC 
responses were predominantly directed to the C1 conformational 
region of gp120.57,70,71 IgA antibodies elicited by RV144 block C1 
region-specific IgG-mediated ADCC.72 Whether V2 antibodies 
might block the gp120-α4β7 interaction73,74 and contribute at 
least partially to the protective effect against HIV-1 sexual trans-
mission remains to be demonstrated.75 In future trials, assessing 
IgG and IgA to V1V2 binding antibody immune responses in the 
mucosal compartments will be key.

In previous clinical studies, monomeric gp120 induced high 
levels of Env-specific IgG4 antibodies76 while ALVAC (vCP1452) 
prime and gp120 MN in alum boost elicited lower IgG4 relative 
to IgG1 and IgG3 antibodies.77 Antigen-specific IgG3 antibodies 
are associated with long-term control of Plasmodium falciparum78 

Table 2. Correlates of protection: lessons learned in human efficacy trials

Vax004: No prevention of HIV acquisition or disease progression

High neutralizing antibody levels against MN strain inversely correlated with HIV incidence

ADCVI correlated inversely with the rate of acquiring HIV infection

ADCVI correlated poorly with neutralizing or CD4-gp120-blocking antibody activity and was modulated by FcR 
polymorphisms

Vax003: No prevention of HIV acquisition or disease progression

No correlate whatsoever identified

Step (HVTN 502) and Phambili (HVTN 503): No prevention of HIV acquisition or disease progression

Sieve analysis showed evidence of vaccine-elicited immune pressure on the founder virus though no specific CD8+ CTL 
recognizing that epitope could be identified

Vaccinees with HLA alleles associated with HIV-1 control had a significantly lower mean viral load

HVTN 505: No prevention of HIV acquisition or disease progression

Analysis on going

RV144: 31.2% efficacy for HIV acquisition at 42 mo, 60% at 12 mo. No prevention of disease progression

Plasma IgG binding antibody to scaffolded gp70 V1V2 envelope proteins and V3 peptide correlated inversely with risk of 
infection (high antibody level correlated with lower rate of infection.)
env IgG3 antibodies correlate inversely with risk of infection.

env plasma IgA correlated directly with higher rate of infection

Low levels of env-specific IgA antibodies, IgG avidity, ADCC, neutralizing antibodies, and env-specific CD4+ T cells, were 
inversely correlated with higher rate of infection.
Plasma env IgA can block ADCC.

Sieve analysis identified 2 vaccine-associated genetic signatures in V2 corresponding to sites 169 and 181, further supporting 
the hypothesis that vaccination-induced immune responses directed against the V2 loop were associated with protection. 
Sieve analysis identified a V3 signature suggesting a potential role of V3 antibodies in protection.

V2-specific antibodies can mediate ADCC, neutralization and low-level virus capture
FcγRIIC polymorphism is associated with vaccine efficacy and correlates of HIV-1 infection risk

exploration of mucosal immune responses on going in follow-up Phase II trials
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and monocyte-mediated cellular inhibition of parasite growth in 
vitro.79 Similarly, early appearance of chikungunya virus-specific 
IgG3 neutralizing antibodies is associated with clearance of 
the virus and long-term clinical protection.80 Conversely, IgG4 
have been associated with progression to AIDS.81 IgG3 can fix 
the complement and has high affinity for FcγR. A recent com-
parison of RV144 and Vax003 showed that Env-specific IgG3 
and V1/V2 IgG3 response rates were higher in recipients of the 
RV144 vaccine compared with those of Vax003 vaccinees and 
conversely that IgG4 were considerably lower in RV144. V1/V2 
IgG3 responses and IgG3 responses specific for V1/V2 169K cor-
related with decreased risk of HIV-1 infection after IgA adjust-
ment.82 It is speculated that ALVAC priming due to its unique 
proinflammatory cytokine and chemokine response following 
vaccination in rhesus monkeys and infection in human PBMC83 
may shape the IgG subclass response to IgG3 in response to 
envelope protein boost in humans compared with envelope vac-
cination alone. The contribution of Fc–FcγR interaction-medi-
ated antibody function through mechanisms including ADCC, 
antibody-dependent cell mediated viral inhibition (ADCVI), 
and antibody-dependent cellular phagocytosis (ADCP) remains 
to be explored.84,85 A recent post hoc analysis of RV144 showed 
an association between the FcγRIIC polymorphism and vaccine 

efficacy and correlates of risk, emphasizing the potential role of 
FcR genetics in predicting vaccine efficacy.86

Lessons learned from non-human primate challenge studies
Several NHP studies support the RV144 findings. ALVAC-

SIV conferred protection from infection in neonates macaques 
exposed to repeated low-dose challenge.87 An immunization regi-
men recapitulating the RV144 regimen protected against muco-
sal challenge of SIVmac251 acquisition in 30% of the vaccinated 
animals. Protected animals had a higher avidity antibodies to 
gp120, recognized the V2 variable envelope region, and reduced 
SIVmac251 infectivity in cells expressing high level of α4β7, sug-
gesting a functional role of V2 antibodies.88 Microarray analy-
sis showed that NK cell-associated genes were upregulated after 
the first protein boost with increased frequency of NK22 cells 
expressing CCR6 (a gut homing marker) at mucosal sites and of 
NKG2A+ cells expressing either CD107a or IFN-γ.89

Similarly, an Ad26 prime and MVA boost regimen using 
vaccines expressing gag-pol and env from SIVsme543 conferred 
80–83% reduction in the per-exposure probability of infection 
against repeated low dose intrarectal inoculations of the heter-
ologous neutralization-resistant SIVmac251. Post-infection set 
point viremia was reduced of 2.3 log by vaccination and was 
correlated with magnitude and breadth of T-cell responses to 

Figure 1. Possible vaccine-induced immune mechanisms of protection against HIV-1 acquisition in humans.
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Gag. Protection against SIV acquisition correlated with Env and 
V2-specific binding and Tier 1 strain-neutralizing antibodies. 
Responses to Env are critical to prevent acquisition, as monkeys 
vaccinated with an Ad35/Ad26 prime-boost regimen expressing 
either Gag-Pol and Env or only Gag-Pol showed significantly 
greater protection when Env was present. Both vaccine regimens 
resulted in significant reductions of set point viral loads com-
pared with controls. Immunological correlates of protection 
were consistent with the first experiment.90 A recent intrarectal 
SIVsmE660 NHP challenge study where animals were vacci-
nated with DNA/Ad5 expressing mosaic envelopes confirmed 
that Env-elicited immune responses are necessary and sufficient 
to provide protection from acquisition.91 The availability of 
pathogenic SHIV constructs with HIV-1 E, C, or B envelopes 
remains critically needed for assessing the efficacy of the ALVAC-
AIDSVAX combination, other new HIV vaccines, passive HIV-
1-specific immunoglobulin studies (e.g., V2-specific mAb from 
RV144 vaccine recipients, bNAb).

The predictive value of NHP studies is challenged by the 
results of the Step study41 and more recently of HVTN 505. 
Several rhesus macaque studies support the role of CD8+ T cells 
in preventing HIV-1 infection and disease92-94 but results widely 
differ depending on the modes of administration, virus chal-
lenge, and immunological endpoints used.95-98 Rhesus macaques 
were generally immunologically more responsive to vaccination 
than humans while the hierarchy in potency of single-modality 
(same vaccine product) prime–boost regimens using several vec-
tor approaches seem well predicted. In contrast, prime–boost 
vaccine regimens and vaccines using adjuvant formulations did 
not correlate between rhesus macaques and humans.99

An emerging understanding of the early events in mucosal SIV, 
SHIV, and HIV-1 infections has been recently reviewed100,101 justi-
fying the need to develop vaccines inducing both humoral (either 
local produced or resulting from transudation of plasma antibod-
ies) and cell-mediated mucosal immune responses. A relatively 
small number of immune effectors at the mucosal site of entry 
might be at the right place at the right time to be “enough and soon 
enough” to clear infection. T cell-inducing HIV-1 and SIV vac-
cines using non-replicating vectors classically induce CD8+ central 
memory T-cell (TCM) responses whose protective ability depends 
on an anamnestic expansion to combat infection. In contrast, a 
replication-competent Rhesus cytomegalovirus (RhCMV)-based 
vaccine expressing SIV proteins was able to induce and maintain 
high frequency of SIV-specific CD4+ and CD8+ T-cell effector 
memory (TEM) responses at extra-lymphoid sites without mea-
surable antibody responses to SIV. Fifty percent of vaccinated 
monkeys showed a stringent control of intra-rectally administered 
highly pathogenic SIVmac239 for more than a year. The outcome 
of challenge in RhCMV vector-vaccinated monkeys was predicted 
by peak SIV-specific CD8+ TEM frequencies in peripheral blood 
pre-challenge.102,103 RhCMV vectors are unaffected by pre-existing 
CMV-specific immunity and can repeatedly super-infect RhCMV-
positive monkeys and elicit high frequency SIV-specific CD4+ and 
CD8+ TEM responses.104

Prior infection of rhesus macaques with an attenuated SHIV 
conferred protection against vaginal challenge associated with 

SIV-specific CTL in cervical vaginal tissues,105 suggesting that a 
modest vaccine-induced CD8+ T-cell response in the context of 
immunoregulatory suppression of T-cell activation may protect 
against vaginal HIV-1 transmission.106 Supporting this hypoth-
esis, macaques immunized with an oral vaccine comprised of 
Lactobacillus plantarum, a commensal bacterium that favors 
immune tolerance, and inactivated SIVmac239 induced CD8+ 
regulatory T cells (Tregs) completely protected 15 of 16 animals 
without inducing SIV-specific antibodies or CTL. Infection 
was seen after re-challenge but viral load was undetectable. 
Infusion of CD8 antibodies confirmed the role of CD8+ Tregs 
in preventing/suppressing SIV in vivo in the absence of vac-
cine-induced antibodies in mucosal secretions. These findings 
suggest a new avenue of research toward developing an HIV-1 
vaccine.107

Interestingly, human dimeric IgA1 mAb-treated rhesus 
macaques remained free of virus after intrarectal SHIV chal-
lenge while treatment with dimeric IgA2 was much less effec-
tive. Protection was correlated with virus capture and inhibition 
of transcytosis of cell-free virus.108

New vaccine concepts
The various vaccine concepts tested in humans and lessons 

learned have recently been reviewed.109 Countering HIV-1 vari-
ability remains one of the main hurdles for HIV-1 vaccines. 
Although considerable efforts are deployed to better understand 
the mechanisms of neutralization and develop a vaccine capable 
of inducing broadly neutralizing antibodies,110,111 these con-
cepts have not yet been evaluated in human clinical trial. Other 
Env subunit protein approaches aim at improving the results 
observed in RV144. The analysis of A244 gp120 used in RV144 
demonstrated that the deletion of 11 N terminus aminoacids of 
gp120 (Δ11) enhanced the antigenicity to gp120 C1 region and 
to V2 conformational epitopes. Conformational V1/V2 mAbs 
gave significantly higher levels of blocking of plasma IgG from 
A244 Δ11 gp120 immunized animals than IgG from animals 
immunized with unmodified A244 gp120.112 Another approach 
using gp41 protein and derived peptide administered by mixed 
intramuscular and intranasal modalities was capable of pro-
tecting immunized monkeys against SHIV challenge113 and of 
eliciting systemic and mucosal antibodies inhibiting HIV tran-
scytosis in the absence of neutralizing antibodies in humans.114

Bypassing the immune system by intramuscular delivery of 
an adeno-associated virus type 1 gene transfer vector expressing 
HIV-1-specific broadly neutralizing antibodies is an attractive 
strategy and is now in clinical trial with vector-expressed bNAb 
PG9. HIV-1-specific antibodies are endogenously synthesized 
in myofibers and passively distributed to the peripheral blood. 
Long-lasting neutralizing activity in serum of macaques admin-
istered with a vector expressing SIV-specific antibodies con-
ferred complete protection against SIV intravenous challenge.115 
The same strategy was immunogenic in humanized mice116 and 
able to protect against SHIV challenge.117

Vectors encoding conserved HIV-1 sequences118 are now 
tested in humans.119 Vaccine-elicited responses toward conserved 
regions could afford partial protection against a high-dose 
intrarectal SIVmac251 challenge.120 However, NHP immunized 
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with full-length HIV-1 immunogens elicited increased magni-
tude and breadth of cellular immune responses compared with 
conserved-region-only HIV-1 immunogens, including against 
conserved sequences.121 Mosaic HIV-1 antigens expressed by 
Ad26 vectors markedly augmented both the breadth and depth 
of antigen-specific CMI responses as compared with consen-
sus or natural sequence HIV-1 antigens in rhesus monkeys.122 
Recently, Ad26/MVA and Ad26/Ad35 vector-based vaccines 
expressing HIV-1 mosaic Env, Gag, and Pol afforded a signifi-
cant reduction in the per-exposure acquisition risk following 
repetitive, intrarectal SHIV-SF162P3 challenges. Protection 
against acquisition of infection correlated with vaccine-elicited 
binding (although not with V2 responses), neutralizing, and 
functional non-neutralizing antibodies, suggesting that the 
coordinated activity of multiple antibody functions may con-
tribute to protection against difficult-to-neutralize viruses.123 
In-depth analysis of the HVTN 505 results and underlying 
immune responses and sieve analysis might inform the develop-
ment of other non-Ad5 rare serotype adenoviruses vectors such 
as Ad26, Ad35,124 or ChAdV63125 and more generally of T-cell-
inducing vaccine strategies. DNA administered intramuscu-
larly by electroporation augmented elicited T-cell immune 
responses compared with needle injection.126 While successful 
in macaques,95 the adjuvant effect of added genes expressing 
IL-12 or IL-15 cytokines did not dramatically improve T-cell 
immune responses in humans.127

The degree of live-attenuated SIV vaccine-mediated pro-
tection against SIVmac239 challenge strongly correlated with 
the magnitude and function of SIV-specific, effector-differen-
tiated T cells in the lymph node but not with the responses 
of such T cells in the blood or with other cellular, humoral, 
and innate immune parameters. The maintenance of protective 
T-cell responses was associated with persistent live-attenuated 
vaccine replication in the lymph node, which occurred almost 
exclusively in Tfh cells. The maintenance of lymphoid tissue-
based, effector-differentiated, SIV-specific T cells that intercept 
and suppress early wild-type SIV amplification and can control 
and perhaps clear infection, provides a rationale for the devel-
opment of persistent vectors that can elicit and maintain such 
response.128 Several replication-competent vectors are in pre-
clinical development or early clinical development.129

Research Priorities

New efficacy trials of pox-protein vaccines
The pox-protein or DNA-pox-protein vaccine strategies 

remain the most likely to proceed to new efficacy trials. Although 
RV144 protective efficacy was 31.2% 42 mo after first vaccina-
tion, the highest efficacy (60%) was observed at 6–12 mo. The 
Pox Protein Public Private Partnership or P5 (Sanofi Pasteur, 
Novartis, Bill and Melinda Gates Foundation, US National 
Institutes of Health, HIV Vaccine Trial Network, and US 
Military HIV Research Program) is dedicated to building on 
the RV144 result and developing pox-protein HIV-1 vaccines 
with the potential for broad public health impact. A vaccination 

regimen with ALVAC-HIV prime and gp120 Env subunit pro-
tein boost will be tested in efficacy studies in Thailand and 
South Africa in high risk populations (MSM and heterosexual, 
respectively) with different HIV-1 subtypes (CRF01_AE and 
subtype C, respectively).

Independently, a Phase IIB trial with subtype C DNA prime 
followed by another recombinant pox vector (replication-defec-
tive vaccinia, NYVAC) boost with or without additional envelope 
protein subunit boost is planned in high-risk heterosexual popu-
lations Southern Africa. A similar strategy using DNA prime and 
replicating vaccinia Tiantan boost130 is under consideration for 
efficacy testing in a Phase IIB in MSM in China.

However, less advanced in development, it is anticipated that a 
next wave of efficacy trials might test vaccines expressing bNAb, 
mosaic antigens or conserved sequences or other less advanced 
vaccine strategies such as gp41 virosomes (described above) as 
well as full-length single chain gp120-CD4 complex (FLSC)131 
in prime-boost with a pox vector.

Correlates of risk
Table 2 summarizes the main findings on correlates of risk 

identified in the different human efficacy trials while Figure 1 dis-
plays possible immune mechanisms involved in protection. The 
identification of potential immune correlates of risk in RV144 has 
raised numerous scientific questions. Follow-up clinical trials are 
planned to assess the respective roles of the RV144 vaccination reg-
imen components (ALVAC-HIV and AIDSVAX B/E) in eliciting 
immune responses in the peripheral blood and in mucosal compart-
ments, the patterns of gene activation immune signature and their 
prediction of immune responses, the levels of innate apolipopro-
tein B expression, whether HIV-specific antibody titers, in particu-
lar V2 antibodies can be increased and sustained with additional 
envelope boosts, and the immune memory with late (>7 y) booster 
injections to RV144 vaccine recipients. The role of humoral and 
cell-mediated immune responses in the mucosal compartments 
deserves further exploration including the fine specificity of HIV-
1-specific antibody response in mucosal secretions (IgG subclasses, 
IgA, and IgG V2 antibodies) and their possible hindrance of HIV 
mobility132,133 and virus replication ex vivo.134 While V2 antibodies 
generated by the RV144 vaccine regimen are cross-reactive with 
other HIV-1 subtypes, it remains equally critical to assess whether 
Env subunit proteins derived from different HIV-1 subtypes can 
elicit cross-reactive V2 antibodies.

Broadly neutralizing antibodies
The study of bNAb and their induction by immunogens remains 

a focus of research activity and were recently reviewed.19,110,135 
Broadly cross-reactive HIV-1 NAb selected from the bone mar-
row (BM) of HIV-1-infected long-term non-progressors contains 
numerous somatic mutations. The recent finding that a transmit-
ted/founder Env can be the stimulator of a potent bNAb and bind 
optimally to that bNAb unmutated ancestor may be key for vac-
cine design and could allow the induction of bNAb by targeting 
unmutated ancestors and intermediate ancestors of bNAb clonal 
lineage trees.136 The overall architecture of a soluble trimeric enve-
lope, as well as the secondary, tertiary, and quaternary interactions 
between gp120 and gp41 involved in its assembly were recently 
described. In particular, the gp120 subunits are held together by 
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association of the V1/V2/V3 regions at the apex of the trimer.137 
The complete definition of how neutralization epitopes are pre-
sented in the context of a trimeric envelope should help the design 
of new immunogens as candidate vaccines. The study of B cells 
in the peripheral blood, BM and gut of vaccine recipients may 
help elucidate the rapidly waning antibody response observed in 
RV144.138 It remains however critical to demonstrate that bNAb 
may confer protection against HIV infection in humans.

T-helper cells
Immunization with soluble Env was reported to induce 

short-lived antibody responses with robust peak followed by 
rapid contraction of circulating antibody and memory B cells.139 
Optimizing CD4+ T-cell responses in HIV-1 vaccine develop-
ment has gained renewed attention,140 in particular T follicular 
helper cells (Tfh). Tfh play an essential role for B-cell selection 
and proliferation in germinal centers, for somatic hypermuta-
tions and the development of high-affinity and broadly neutral-
izing antibodies. The frequency of a subpopulation of circulating 
memory PD-1+ CXCR5+ CD4+ T cells that are resting memory 
cells most related to bona fide germinal center Tfh cells by gene 
expression profile, cytokine profile, and functional properties 
was correlated with the development of HIV-specific bNAbs in 
HIV-infected individuals.141 A better understanding of CD4+ 
T-cell fine specificity and functions in particular the coordinat-
ing mechanisms that lead to persistent protective CD8+ T-cell 
and B-cell responses, is critically needed to improve the effi-
cacy of HIV-1 vaccine candidates. Experiments of nanoparticle 
malaria vaccines suggest that an increased antigen deposition/
retention locally in the tissue drives B-cell responses, enhanc-
ing dendritic cell antigen presentation, compared with soluble 
protein immunizations.142 Prolonged antigen presentation medi-
ated by nanoparticle vaccines may have also contributed to the 
stimulation the formation of germinal centers143 with enhanced 
development of CD4+ Tfh cells,144 which provide critical cyto-
kines and signals required to initiate somatic hypermutation and 
affinity maturation for effective B cell memory.145

Non-human primates studies
It has been argued that NHP challenge studies were not predic-

tive of the outcome of HIV-1 vaccine efficacy trials and therefore 
should not be gatekeepers of efficacy trials in humans. However, it 
must be acknowledged that the methodology used varied greatly 
and might not have been representative of human transmission 
risk. Although imperfect, the recently improved repeat, low-dose 
mucosal NHP challenge model146 with better standardized SIV 
and, to a lesser extent, SHIV challenge viruses, is likely closer to 
recapitulating HIV-1 transmission in humans.147 The availability 
of new SHIV constructs derived from different HIV-1 clades (C, 
A, and E) would allow assessing the homologous or heterologous 
protective efficacy of V2-specific monoclonal antibodies derived 
from B cells of RV144 vaccine recipients (CH58 and CH59), of 
new HIV-1 subtype C or A-specific vaccine regimens, in par-
ticular Env subunit proteins. Humanized mice models have been 
recently improved and may offer an interesting alternative to 
non-human primates in testing HIV vaccines.148

Although non-human primate studies may help defin-
ing immunogenicity selection criteria for advancing candidate 

vaccines into human testing as well as correlates of protection 
jointly with human efficacy trials, they remain of poor positive 
predictive value and are in no case substitutes of human clinical 
trials, in particular efficacy trials.149

Deployment, impact, and cost-benefits
Several models have emphasized the public health and cost-

benefit advantages of HIV-1 vaccines.150 According to the World 
Health Organization, cost-effective vaccines provide an additional 
year of life at a cost less than a country’s per capita Gross National 
Income. Vaccines that provide cost-savings are those in which the 
cost of vaccination multiplied by the number of infections averted 
by vaccination is less than the lifetime cost of treatment averted.151 
Immunization strategies of a safe and efficacious HIV-1 vaccine 
will largely depend on its acceptability by target populations, the 
type, level and duration of vaccine efficacy for a given mode of 
HIV-1 transmission within the community, stability and thermo-
stability, and the possible need to couple vaccination with other 
prevention technologies. It is important to recognize that the cost 
of a vaccine is more than the price. It includes the logistics around 
vaccine deployment (transportation, storage, delivery mechanisms, 
and mode of administration). Local production of vaccines may 
alleviate the costs and contribute to better access at the regional 
level. Deployment strategies will require ample consultations with 
regulatory, scientific and health authorities, and civil society stake-
holders on a country-by-country basis.

Conclusion

Knowledge of the immune correlates of protection against 
HIV-1 is key to accelerating HIV-1 vaccine development. RV144 
and further studies of correlates of risk have opened large and 
unforeseen avenues of exploration and hope for the most exciting 
time of HIV-1 vaccine development. The still uncertain predic-
tive value of animal models and biomarkers of immune protec-
tion against HIV-1 necessitate however that vaccines be tested in 
clinical efficacy trials. A long-term strategy to ultimately end the 
AIDS pandemic must include both scale-up of existing HIV-1 
combination prevention, treatment, and care programming, and 
sustained investment in research and development for a preven-
tive HIV-1 vaccine.152
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