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Disease Burden of NoV Acute Gastroenteritis

NoVs are the most important viral pathogens causing epi-
demics of acute gastroenteritis in both developed and developing 
countries affecting people of all ages. They also lead to endemics 
in developing countries. The viruses are highly contagious, trans-
mitted through oral/fecal route by person-to-person contact and 
often cause large outbreaks in closed and semi-closed communi-
ties and institutions through contaminated water and/or food. 
While the disease is often self-limited, increasing epidemiology 
data suggest that NoVs can cause severe diarrhea, particularly 
in young and the elderly. It is estimated that NoVs are respon-
sible for up to 21 million illnesses, 1.9 million outpatient visits, 
400 000 emergency department visits, 71 000 hospitalizations 
and 800 deaths in the United States,1 and 218 000 deaths world-
wide each year.2 Thus, NoVs are a threat to public health. Since 
introduction of rotavirus vaccines several years ago, development 
of an effective NoV vaccine has been the top priority for preven-
tion of viral gastroenteritis.

Genetic Classification and Host Receptors of NoVs

The Norovirus genus in the calicivirus family contains five 
genogroups (GI-GV), in which GI, GII and GIV infect humans. 
GI and GII, the major cause of epidemics of acute gastroenteri-
tis in humans, are genetically diverse containing over 30 geno-
types. Due to the lack of a cell culture, a classification based on 
viral neutralization of human NoVs remains unavailable. On the 
other hand, NoVs recognize the polymorphic histo-blood group 
antigens (HBGAs) as receptors or attachment factors in a strain-
specific manner. The binding of NoVs to specific HBGAs has 
been found associated with their susceptibility to humans3-5 and 
serum antibodies against NoV-HBGA interaction are found cor-
related with the protection of the individuals against NoV chal-
lenge.6 These findings are important for understanding of the 
host immunity and provide novel tools for vaccine development 
against NoVs.

Advancement of NoV-Like Particle (VLP) Vaccine

The inability to cultivate NoVs in cell culture is a major chal-
lenge in the development of NoV vaccines. As a result, the tra-
ditional strategies of live attenuate and inactivated vaccine are 
not possible, while a subunit vaccine based on recombinant NoV 
antigens must be a choice. NoVs are a group of small, single-
stranded, positive-sense RNA viruses constituting the Norovirus 
genus in the Calicivirus family. Structurally NoVs are covered 
by a protein capsid that is formed by a major (VP1) and a minor 
(VP2) structural protein. Expression of the major capsid protein 
VP1 assembles spontaneously into VLPs that are morphologi-
cally and antigenically similar to authentic capsids7-11 (Fig. 1) and 
retain binding function to HBGA receptors.12-17 VLPs generally 
preserve the virus-specific molecular patterns and high density 
of B- and T-cell epitopes to induce potent innate, humoral, and 
cellular immune responses, respectively.18,19 Thus, NoV VLPs are 
an excellent choice for a NoV vaccine. NoV VLPs can be pro-
duced by a variety of expression systems, including insect cells via 
recombinant baculoviruses,8,10 mammalian cells via a Venezuelan 
equine encephalitis (VEE) replicon,20 a vesicular stomatitis virus 
(VSV) vector,21 or a plasmid,22 yeast (Pichia pastoris),23 and sev-
eral transgenic plants, including tomato, potato, and tobacco.24-29 
Among these approaches the baculovirus expression system is 
straightforward and highly efficient for large-scale productions 
of highly purified VLPs for NoV vaccine development.30-34
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Noroviruses (Novs) are important pathogens causing 
epidemic acute gastroenteritis affecting millions of people 
worldwide. Due to the inability to cultivate Novs, current Nov 
vaccine development relies on bioengineering technologies to 
produce virus-like particles (vLPs) and other subviral particles 
of Novs as subunit vaccines. The first vLP vaccine has reached 
phase ii clinical trials and several others are under develop-
ment in pre-clinical research. Several subviral complexes made 
from the protruding (P) domains of Nov capsid share common 
features of easy production, high stability and high immuno-
genicity and thus are candidates for low cost vaccines. These 
P domain complexes can also be used as vaccine platforms to 
present foreign antigens for potential dual vaccines against 
Novs and other pathogens. Development of Nov vaccines also 
faces other challenges, including genetic diversity of Novs, 
limit understanding of Nov immunology and evolution, and 
lack of an efficient Nov animal model for vaccine assessment, 
which are discussed in this article.
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Preclinical Studies of NoV Vaccine

NoV VLP vaccines derived from various production 
approaches have been extensively evaluated in preclinical ani-
mal trials (Table 1). In early studies on transgenic plant (tomato, 
potato and tobacco) -expressed Norwalk virus (NV) VLPs, spe-
cific serum IgG and secretory IgA responses were detected after 
the mice were fed with the transgenic plants.24,27 Similar results 
were obtained in mice following oral administration of the bac-
ulovirus-expressed NV VLPs with or without cholera toxin as 
adjuvant.35 Superior to oral administration, intranasal immu-
nization of VLPs without an adjuvant resulted in significantly 
higher immune responses.36 An addition of adjuvants, such as the 
mutant Escherichia coli heat-labile toxin LT(R192G)36 and a dry 
powder formulation (GelVac) of an inert in situ gelling polysac-
charide (GelSite) extracted from Aloe vera,37 further enhanced 
the immune responses.

Immune responses of animals to NoV VLPs through inocu-
lation of viral vectors expressing NoV VLPs were also studied. 
For example, inoculation of a single dose of the rVSV-VP1 to 
mice stimulated significantly stronger humoral and cellular 
immune responses than those induced by the VLP vaccination.21 
Similarly, inoculation of NV VLP-expressing alphavirus vectors 
resulted in specific systemic and mucosal immune responses in 
mice20 (Table 1). These alphavirus vectors were also used to study 
the heterotypic immune responses of VLP vaccines. Analysis of 
patient sera after infection by different GI and GII NoVs through 
NoV-HBGA blocking assays, heterotypic immune responses 
were observed.38 Such heterotypic responses were also observed 
in mice following immunization with vaccine cocktails contain-
ing multiple NoV VLPs.39

Due to the genetic diversity of human NoVs, strategies of 
NoV VLP vaccines for broad protection have also been explored. 
A GII.4 “Consensus” VLP that was engineered based on three 
GII.4 variants induced serum antibody in rabbits being reactive 
to VLPs derived from several GII.4 variants circulating in over 
30 y.40 In addition, a bivalent vaccine formulation containing the 
GI.1 NV and the GII.4 consensus VLPs induced an increased 
breadth of immune response to diverse variants within the two 

NoV genogroups in comparison with a monovalent vaccine. 
Among several vaccinations via different administration routes 
with various adjuvants, the highest homologous and heterologous 
antibody titers to the bivalent vaccine were elicited by the intra-
muscular injection using Alhydrogel [Al(OH)3] as adjuvant.40

Clinical Trials of VLP Vaccines

Following demonstrations of safety and immunogenicity in 
animals, the baculovirus-expressed NV VLPs were further stud-
ied in phase I and phase II trials for safety, immunogenicity and 
efficacy in healthy volunteers. A summary of these studies has 
been published recently.41 In a trial with 20 adults that were orally 
administered with NV VLPs (250 µg) without an adjuvant, all 
vaccinees responded with 4-folds or higher increases in serum 
IgG titers, among which 83% of the subjects responded after 
the first vaccine dose, while no further IgG titer increase was 
observed after the second dose.42 In a repeated trial with higher 
doses (–up to 2000 µg), all vaccinees developed significant rises 
in IgA anti-VLP antibody-secreting cells (ASCs), while 90% of 
the subjects who received lower dose (250 µg) vaccine developed 
rises in serum anti-VLP IgG; neither the rates of seroconversion 
nor antibody titers increased significantly at the higher doses. 
These results may suggest an immune tolerance at high doses. 
About 30–40% of volunteers developed mucosal anti-VLP IgA, 
while lymphoproliferative responses and IFN-γ production were 
observed transiently among those who received 250 µg or 500 µg 
but not 2000 µg of VLP.43 Similar responses were also observed 
in human volunteers who received transgenic potato expressing 
NV VLPs, with significant increases in the numbers of specific 
IgA antibody-secreting cells, serum IgG, and/or specific stool 
IgA.25

The immune responses of NV VLP vaccine with adjuvant of 
the monophosphoryl lipid A (MPL) and the mucoadherent chi-
tosan were further studied in volunteers following an intrana-
sal delivery. While no vaccine-related, seriously adverse effects 
observed, specific IgG and IgA antibodies increased significantly 
in all subjects who received the 50- or 100-μg vaccine dose. 
Vaccinees also developed IgA ASCs that expressed molecules 
associated with homing to mucosal and peripheral lymphoid tis-
sues.44 Further repeat of the study revealed B memory [B(M)] 
responses in volunteers. All subjects immunized with 100 μg of 
the NV VLP vaccine and 90% of those who received 50 μg had 
significant IgA or IgG B(M) responses. The B(M) cell frequen-
cies correlated with serum antibody levels and mucosally-primed 
ASC responses.45

Following these studies, two candidate VLP vaccines that are 
derived from VLPs of the prototype NV (GI.1)8 and a consen-
sus GII.4 VLP based on a 2002 and two 2006 GII.4 isolates,40 
respectively, have been moved to clinical trials for safety and 
efficacy through human volunteer challenge studies. In a study 
of the GI.1 NV VLP vaccine, volunteers were vaccinated intra-
nasally and then challenged orally with the homologous NVs.46 
NV-specific IgA seroresponse with 4-folds or higher increase 
of serum antibody titer was detected in 70% of the 47 vaccine 

Figure 1. Cryo-electron microscopy of norovirus-like particle (vLP) and 
P particle. The vLP (left) is composed of 180 capsid proteins (vP1s) with 
the P2 subdomain on its outermost surface. The P particle that formed 
by 24 P domains also has the P2 subdomain on its outermost surface. 
The P2 subdomain of norovirus is responsible for virus-host interactions 
and immune responses of the virus and thus both norovirus vLPs and P 
particles share similar antigenic properties.
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recipients. Vaccination significantly reduced the frequencies of 
gastroenteritis and virus infection. These data indicated NV VLP 
vaccine effectively protected vaccinees from infection and illness 
of NV.46

In a mostly recent study on a bivalent VLP vaccine (GI.1 
NV/GII.4 consensus) performed by Takeda Pharmaceutical 
Company Limited (http://www.takeda.com), volunteers were 
vaccinated intramuscularly with two doses followed by an oral 
challenge with a GII.4 2003 NoV (Cin-1) (http://www.takeda.
com/news/2013/20131007_6021.html). The results showed a 
52% reduction against vomiting and/or diarrhea of any severity. 
In those who experienced symptoms, severity of illness as mea-
sured by the Vesikari scoring system47,48 was significantly reduced 
in vaccinees vs. placebo recipients. In summary, the non-repli-
cating NoV VLP vaccines are safe and effective for protection 
against infection and illness of NoVs.

NoV P Domain Complexes as Vaccine Candidates

The NoV capsid protein VP1 comprises two major domains, 
the shell (S) and the protruding (P) domains, linked by a short 
flexible hinge.9 Expression of the P domain in E. coli results in 
variable complexes, including the P domain dimers,49-52 the P 
particle that contains 12 P dimers53,54 (Fig. 1), the smaller P par-
ticle that contains 6 P dimers55 and polyvalent P domain com-
plexes that contain many P dimers.56 All these P complexes retain 
HBGA binding property. Among the complexes the P particle 
is highly stable, easily to produce and highly immunogenic and 
therefore has been selected as vaccine candidate for further devel-
opment. The polyvalent P domain complexes that are made by 
fusion of two to three NoV P domains representing different GI 
and GII NoVs56 provide an opportunity to develop a dual or mul-
tivalent vaccine for broad protection against NoVs.

Both the P particle and the polyvalent P domain complexes 
induced significantly higher antibody and CD4+ T cells responses 

in mice than those induced by the free P dimers.56,57 The P par-
ticles also induced high titers of NoV-specific immunoglobulin 
in chicken egg yolks (IgY), providing a strategy for therapeutic 
treatment against NoV diseases.58,59 Thus, these P domain com-
plexes are excellent vaccine candidates against NoVs.

NoV P Complexes as a Vaccine Platform  
for Dual Vaccine Development

The NoV P complexes have also been proposed as vaccine plat-
forms for presentation of foreign antigens for immune enhance-
ment. There are six surface loops on the distal end of each P 
dimer (three for each P domain), corresponding to the outermost 
surface of the P particle60 and VLP.9 Thus, insertion of a foreign 
antigen into one of the loops results in 24 copies of the antigen 
on the surface of the P particle, or many copies on the polyvalent 
P complex, and therefore significantly enhances the immunoge-
nicity of the inserted antigen. A number of small peptides and 
protein antigens have been inserted into the loops and are well 
presented by the P domain complexes.56,61-63 Importantly, the 
immunogenicity of the P domain complexes retained, making 
these chimeric P domain complexes dual vaccines against NoVs 
and other pathogens.

Three promising dual vaccine candidates have been made and 
evaluated through preclinical animal trials. The first P particle 
chimeric vaccine (P particle-VP8*) contains a surface insertion 
of the neutralization antigen VP8* of rotavirus (RV).61,64 This 
vaccine induced strong immune responses to both the RV VP8* 
and NoV P antigens and protected mice against RV infection.56,61 
Another dual vaccine (P particle-M2e) contains an insertion 
of the conserved M2e epitope of influenza A viruses. It elicited 
high titers of M2e- and P domain-specific antibody and fully 
protected mice from lethal challenges with influenza viruses.62 
Finally, the complex vaccine (NoV P-HEV P) containing the 
P antigens of NoV and hepatitis E virus (HEV) induced strong 

Table 1. Summary some preclinical trials for development subunit vaccine against norovirus

Particles expression system
Animal
model

Dose (µg/animal)
Delivery 

route
Adjuvant immune responses ref

vLP Transgenic plants mouse 40–90 oral none igG, igA 24,27

vLP Baculovirus mouse 10–20 i.N. Mutant toxin LT igG, igA 36

vLP Transgenic plants mouse 5–25 i.N. Resiquimod, CT igG, igA 100

vLP rvSv mouse 106 PFU of rvSv i.N., oral none igG, igA, T cell 101

vLP vee/alphavirus mouse 107 infectious units Foot pad/oral none igG, igA 20

vLP Alphavirus mouse
2.5x106 infectious 

units
Foot pad none

igG, igA, cross reactivity
/neutralization

38

vLP Alphavirus mouse 2 Foot pad
null vRP or
CpG DNA

igG, igA, cross reactivity
/neutralization

39

vLP Baculovirus rabbit 50–150 i.M./i.N.
Al(OH)3, MPL, 

chitosan
igG, cross reactivity 40

P particle Bacteria mouse 30 i.N. none igG, T cell 102

Al(OH)3, Alhydrogel; CT, cholera toxin; igA, immunoglobulin A; igG, immunoglobulin G; MPL, monophosphoryl lipid A; Mutant toxin LT, mutant Escherichia 
coli heat-labile toxin LT(R192G); Resiquimod (R848) or TLR7/8, an imidazoquinoline-based Toll-like receptor 7 and/or 8 agonist; rvSv, recombinant vesicular 
stomatitis virus; vee, venezuelan equine encephalitis replicon expression system; vLP, virus-like particle, i.N., intranasal; i.M., intramuscular.
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antibody responses against both NoV and HEV with high neu-
tralizing or HBGA blocking activity against the two viruses.63 
These three NoV P antigen-based complexes are promising dual 
vaccine candidates against NoV and RV, NoV and influenza 
virus, and NoV and HEV.

Efforts in Development of Animal Models for NoVs

Large efforts have been made in developing an animal model 
for NoVs in different species, including non-human primates, pigs, 
calves, and mice. However, due to apparent host species barriers, 
an efficient small animal model that fully supports the replication 
and illness of human NoVs remains lacking. Among those animal 
models that demonstrated limit NoV replication and/or illness, the 
gnotobiotic (Gn) pig model could be a choice for vaccine assess-
ment, although further improvement of the model is needed.

Non-human primate models
Early studies in the 1970s revealed that NV-challenged chim-

panzees exhibited subclinical infections, including seroresponses 
and virus shedding, but not vomiting or diarrhea.65 Similar sce-
nario was also observed in rhesus macaques after NoV inocu-
lation.66 Subsequent studies in seeking an efficient non-human 
primate model for NoVs observed both clinical illness and viral 
shedding in newborn pigtail macaques (Macaca nemestrina).67 
However, none of these models was used afterward, excepted for 
the chimpanzee model that was used recently to study the dura-
tion of immunity after NV infection and to assess the NV and 
GII.4 VLP vaccine against NV infection.68 Unfortunately, further 
use of great apes for invasive experimentation has been banned in 
the United States (http://blogs.nature.com/news/2012/07/bill-
ending-us-chimp-research-advances.html).

The gnotobiotic (Gn) pig model
Gn pigs are another promising animal model for human NoVs 

partially due to their similarities with human in gut structure 
and physiology, including the common A and H HBGAs.69,70 
Challenge of pigs with human NoVs revealed mild to modest 
diarrhea with modest virus shedding in stools, rectal swab fluids 
and intestinal contents.69,71 Like in human, NoVs mainly replicate 
in pigs in some epithelial cells in the duodenum and jejunum. 
In addition, infected Gn pigs resulted in systemic and intestinal 
humoral and cellular immune responses.72 Neonatal pigs (4–5 
d of age) appeared more susceptible to human NoVs than older 
pigs (33–34 d of age).69 Interestingly, administration of a choles-
terol-lowering drug, simvastatin, increased the susceptibility of 
the older pigs to a comparable level of the neonatal pigs.69,73 The 
Gn pig model has helped our understanding in NoV pathogen-
esis69-71 and is current used for evaluation of vaccines and antivi-
rals against human NoVs73 (Yuan and Jiang, unpublished data).

The Gn calf model
Gn claves were also studied as a potential animal model of 

human NoVs. Like pigs, claves share similar A antigens with 
humans.74 Inoculation of human NoV (GII.4-HS66) to Gn 
claves caused diarrhea and virus shedding in feces.75 Intestinal 
lesions were observed in duodenum and jejunum with detection 
of viral capsid antigen in the jejunum. Seroconversion with the 

high numbers of ASCs in the intestine was also observed. These 
data indicated NoV replication and entero-pathogenicity in Gn 
calves. However, the higher cost of the Gn calf model compared 
with the Gn pig model may limit its application as an evaluation 
tool of NoV vaccine.

A mouse model
This small animal model was proposed recently by show-

ing limited replication of human NoVs in immune-deficient 
mice.76 After challenged through an intraperitoneal route, both 
humanized and nonhumanized BALB/c Rag-γc-deficient mice  
seemingly supported replication of a GII.4 NoV, as shown by 
increased viral loads over input and expression of the structural 
and nonstructural NoV proteins in macrophage-like cells in the 
spleens and livers. While this model may not be useful for vaccine 
evaluation due to the requirement of immune-deficient status of 
the mice for NoV replication, it may be useful for studying the 
pathogenesis and assessment of antivirals against NoVs.

Development of Human Challenge Models for NoVs

The early human challenge studies in the 1970s with the 
prototype NV (GI.1) and Hawaii virus (GII.1) provided large 
amount of information on the onset of disease, clinical mani-
festations, duration of illness of NoV gastroenteritis, and host 
immunity after NoV infection.77-82 The observation that NV 
infected subjects were protected against subsequent challenge of 
the same virus for 6 to 24 months, indicating the feasibility of a 
NoV vaccine,80 although such protection may be strain-specific.82 
Thus, the highly diverse NoVs, comprising of 9 GI and 22 GII 
genotypes83,84 with unknown antigenic relationships, represent a 
further challenge in NoV vaccine development.

Another important factors related to human challenge model 
is HBGA phenotypes of human subjects that may control the 
host susceptibility to NoV infections, which has been shown for 
two NoVs, NV (GI.1) and Cin-1 (GII.4),4,85 but not for the Snow 
Mountain virus (SMV, GII.2).86 In vitro experiments showed 
that human NoVs are diverse in interaction with the polymorphic 
HBGAs. In addition, volunteers who were experimentally infected 
with NV revealed a strong correlation of HBGA blocking antibod-
ies with protection against clinical gastroenteritis and therefore, the 
HBGA blocking assay is considered as a surrogate of neutraliza-
tion for NoVs.6,87 Thus, the host geno- and phenotypes of HBGAs 
should be considered in selecting subjects for a challenge study as 
this may significantly impact the outcomes of clinical infection.

Currently human challenge models of GI.1 NV, GII.4 Cin-1, 
and GII.2 SMV, have been established, among which the ones 
for the NV and Cin-1 have been used for the safety and efficacy 
studies of two VLP vaccines representing GI.1 and GII.4, respec-
tively.46,85 Further improvement of the available human challenge 
models and establishment of models for more NoV types are nec-
essary. First, challenge models for additional NoV types would 
help the determination of cross-protection among different anti-
genic types of NoVs, which is an important issue in NoV vaccine 
development. Second, the role of HBGAs in the host suscepti-
bility of the SMV and other genotypes needs to be determined. 
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Third, since the subjects in a challenge model are normally 
adults who usually have pre-existing NoV specific antibodies, the 
roles of such antibodies in protection against NoV infection and 
impact on subsequent vaccination of non-replicating NoV vac-
cine need to be clarified. Furthermore, the 50% human infection 
doses (ID50s) for NV have been determined recently for subjects 
with specific HBGA types.88 Such infection doses should also be 
determined for the remaining challenge viruses for an optimal 
evaluation of vaccines for maximal protection. Finally, the dura-
tion of immune response and protective immunity following a 
vaccination needs to be studied, particularly for the elderly whose 
immunity may be weaned by aging.

Vaccine for Broad Protection against  
Diverse NoV Types

NoVs are highly diverse containing over 30 genotypes in the 
two major genogroups of human NoVs.84 The antigenic diversity 
behind this genetic diversity is a further challenge in the devel-
opment of NoV vaccine for broad protection. In addition, the 
antigenic types of different variants in the single predominant 
GII.4 genotype change continually, probably were driven by the 
host herd immunity in a way similar to the epochal evolution of 
the influenza viruses.89,90 Genetic and in vitro blocking studies 
have identified several antigenic epitopes on the GII.4 NoVs that 
are correlated with the chronological changes of GII.4 variants in 
the past decades.91-95 Thus, continual monitoring the NoV epide-
miology to predict epidemic GII.4 variants for future vaccines is 
necessary. Noteworthy, genetic analysis of NoVs showed that the 
HBGA binding interfaces of NoVs are conserved among geno-
types within each of the two major genogroups (GI and GII) of 
human NoVs, indicating a strong positive selection by the human 
HBGAs. In fact, the amino acid sequences of the HBGA bind-
ing sites are almost 100% conserved among all GII.4 variants 
circulated in the past three decades.96 Thus, in addition to the 
herd immunity, the human HBGAs should also play a role in the 
epochal evolution of GII.4 NoVs.

Characterization of GII.4 variants by monoclonal antibod-
ies (mAbs) supported the antigenic changes predicted by genetic 
analysis. MAbs recognizing either type-common or type-specific 
epitopes among GII.4 variants have been identified.92,93,95,97 Cross-
reactive antigenic types among different GII.4 variants also have 
been shown by polyclonal serum antibodies of patients infected 
by a GII.4 NoV.96 Four-fold or higher increases of antibody titers 
between the acute and convalescent serum samples against dif-
ferent GII.4 variants were measured by both antibody detection 
ELISA and HBGA blocking assays.96 These results suggest that 
the shared antigenic epitopes among GII.4 variants could be tar-
gets for broadly protective vaccines against different GII.4 vari-
ants. Thus, after determination of the levels of shared antigenic 
types among different genotypes within each of the two major 
genogroups of human NoVs, a cocktail vaccine containing the 
major antigenic types of NoVs may be developed for broad pro-
tection. The aforementioned bivalent GI.1/GII.4 VLP vaccine is 
an example of such cocktail vaccine. Similarly, a cocktail vaccine 

against NoV and RV based on mixed NoV VLPs (GII.4 or GII.4 
and GI.3) with the tubular RV recombinant VP6 protein98,99 has 
been developed, which induced cross-reactive antibodies to het-
erologous NoV VLPs (GII.12 and GI.1 VLPs) and to different 
RVs. In addition, two bivalent vaccines comprising polyvalent P 
domains of GII.4 (VA387)/GII.9 (VA207) and GII.4 (VA387)/
GI.3 (VA115) NoVs, respectively, provided a good example for 
simple, efficient cocktail vaccines.56 Thus, after elucidation of the 
antigenic relatedness among different NoVs in both GI and GII, 
a broadly protective NoV vaccine is possible.

Conclusion and Future Perspective

By taking advantages of recombinant technology, variable 
subviral particles, including VLPs and P domain complexes 
of NoVs, have been developed and studied as subunit vaccines 
against NoVs. The first VLP vaccines derived from the proto-
type NV and the predominant GII.4 NoVs have reached phases 
II clinical trials with a promising outcomes, while a number of 
other VLP and P domain complex-based vaccines are following 
in preclinical researches. The P particle-based vaccine candidates 
are easily produced in E. coli and stable and therefore a promising 
low cost vaccine. The P domain complexes also serve as vaccine 
platforms to present foreign antigens for potential dual or even 
multivalent vaccines against NoVs and other pathogens.

Due to apparent a host species barrier, a highly efficient, low 
cost small animal model for human NoVs remains lacking. The 
Gn pig model supports limited viral replication and clinical ill-
ness after NoV-challenge, therefore may be a choice for further 
improvement as a tool for evaluation of NoV vaccines. Human 
volunteer challenge model for three NoVs are readily available for 
phases I and II clinical trials of NoV vaccines. On the other hand, 
further improvement of the models for better understanding of 
host-pathogen interaction and immunology and for better vac-
cine evaluation is needed. Due to the genetic and antigenic diver-
sity of NoVs and the antigenic drift of some genotypes, selection 
of a cocktail vaccine containing the major antigenic types is nec-
essary for broad protection. In this regard new human challenge 
models for additional genotypes will be needed.
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