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Noroviruses (NoVs) are important pathogens causing
epidemic acute gastroenteritis affecting millions of people
worldwide. Due to the inability to cultivate NoVs, current NoV
vaccine development relies on bioengineering technologies to
produce virus-like particles (VLPs) and other subviral particles
of NoVs as subunit vaccines. The first VLP vaccine has reached
phase Il clinical trials and several others are under develop-
ment in pre-clinical research. Several subviral complexes made
from the protruding (P) domains of NoV capsid share common
features of easy production, high stability and high immuno-
genicity and thus are candidates for low cost vaccines. These
P domain complexes can also be used as vaccine platforms to
present foreign antigens for potential dual vaccines against
NoVs and other pathogens. Development of NoV vaccines also
faces other challenges, including genetic diversity of NoVs,
limit understanding of NoV immunology and evolution, and
lack of an efficient NoV animal model for vaccine assessment,
which are discussed in this article.

Disease Burden of NoV Acute Gastroenteritis

NoVs are the most important viral pathogens causing epi-
demics of acute gastroenteritis in both developed and developing
countries affecting people of all ages. They also lead to endemics
in developing countries. The viruses are highly contagious, trans-
mitted through oral/fecal route by person-to-person contact and
often cause large outbreaks in closed and semi-closed communi-
ties and institutions through contaminated water and/or food.
While the disease is often self-limited, increasing epidemiology
data suggest that NoVs can cause severe diarrhea, particularly
in young and the elderly. It is estimated that NoVs are respon-
sible for up to 21 million illnesses, 1.9 million outpatient visits,
400000 emergency department visits, 71000 hospitalizations
and 800 deaths in the United States,! and 218000 deaths world-
wide each year.? Thus, NoVs are a threat to public health. Since
introduction of rotavirus vaccines several years ago, development
of an effective NoV vaccine has been the top priority for preven-
tion of viral gastroenteritis.
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Genetic Classification and Host Receptors of NoVs

The Norovirus genus in the calicivirus family contains five
genogroups (GI-GV), in which GI, GII and GIV infect humans.
GI and GII, the major cause of epidemics of acute gastroenteri-
tis in humans, are genetically diverse containing over 30 geno-
types. Due to the lack of a cell culture, a classification based on
viral neutralization of human NoVs remains unavailable. On the
other hand, NoVs recognize the polymorphic histo-blood group
antigens (HBGAs) as receptors or attachment factors in a strain-
specific manner. The binding of NoVs to specific HBGAs has
been found associated with their susceptibility to humans®® and
serum antibodies against NoV-HBGA interaction are found cor-
related with the protection of the individuals against NoV chal-
lenge.® These findings are important for understanding of the
host immunity and provide novel tools for vaccine development
against NoVs.

Advancement of NoV-Like Particle (VLP) Vaccine

The inability to cultivate NoVs in cell culture is a major chal-
lenge in the development of NoV vaccines. As a result, the tra-
ditional strategies of live attenuate and inactivated vaccine are
not possible, while a subunit vaccine based on recombinant NoV
antigens must be a choice. NoVs are a group of small, single-
stranded, positive-sense RNA viruses constituting the Norovirus
genus in the Calicivirus family. Structurally NoVs are covered
by a protein capsid that is formed by a major (VP1) and a minor
(VP2) structural protein. Expression of the major capsid protein
VP1 assembles spontaneously into VLPs that are morphologi-
cally and antigenically similar to authentic capsids™" (Fig. 1) and
retain binding function to HBGA receptors.'*"” VLPs generally
preserve the virus-specific molecular patterns and high density
of B- and T-cell epitopes to induce potent innate, humoral, and
cellular immune responses, respectively.'®"” Thus, NoV VLPs are
an excellent choice for a NoV vaccine. NoV VLPs can be pro-
duced by a variety of expression systems, including insect cells via

810 mammalian cells via a Venezuelan

recombinant baculoviruses,
equine encephalitis (VEE) replicon,? a vesicular stomatitis virus
(VSV) vector,” or a plasmid,** yeast (Pichia pastoris),” and sev-
eral transgenic plants, including tomato, potato, and tobacco.?**
Among these approaches the baculovirus expression system is
straightforward and highly efficient for large-scale productions

of highly purified VLPs for NoV vaccine development.****
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VvLP P particle

Figure 1. Cryo-electron microscopy of norovirus-like particle (VLP) and
P particle. The VLP (left) is composed of 180 capsid proteins (VP1s) with
the P2 subdomain on its outermost surface. The P particle that formed
by 24 P domains also has the P2 subdomain on its outermost surface.
The P2 subdomain of norovirus is responsible for virus-host interactions
and immune responses of the virus and thus both norovirus VLPs and P
particles share similar antigenic properties.

Preclinical Studies of NoV Vaccine

NoV VLP vaccines derived from various production
approaches have been extensively evaluated in preclinical ani-
mal trials (Table 1). In early studies on transgenic plant (tomato,
potato and tobacco) -expressed Norwalk virus (NV) VLPs, spe-
cific serum IgG and secretory IgA responses were detected after
the mice were fed with the transgenic plants.** Similar results
were obtained in mice following oral administration of the bac-
ulovirus-expressed NV VLPs with or without cholera toxin as
adjuvant.®® Superior to oral administration, intranasal immu-
nization of VLPs without an adjuvant resulted in significantly
higher immune responses.*® An addition of adjuvants, such as the
mutant Escherichia coli heat-labile toxin LT(R192G)*¢ and a dry
powder formulation (GelVac) of an inert in situ gelling polysac-
charide (GelSite) extracted from Aloe vera,” further enhanced
the immune responses.

Immune responses of animals to NoV VLPs through inocu-
lation of viral vectors expressing NoV VLPs were also studied.
For example, inoculation of a single dose of the rVSV-VP1 to
mice stimulated significantly stronger humoral and cellular
immune responses than those induced by the VLP vaccination.?
Similarly, inoculation of NV VLP-expressing alphavirus vectors
resulted in specific systemic and mucosal immune responses in
mice? (Table 1). These alphavirus vectors were also used to study
the heterotypic immune responses of VLP vaccines. Analysis of
patient sera after infection by different GI and GII NoVs through
NoV-HBGA blocking assays, heterotypic immune responses
were observed.?® Such heterotypic responses were also observed
in mice following immunization with vaccine cocktails contain-
ing multiple NoV VLPs.%

Due to the genetic diversity of human NoVs, strategies of
NoV VLP vaccines for broad protection have also been explored.
A GIL4 “Consensus” VLP that was engineered based on three
GIIL.4 variants induced serum antibody in rabbits being reactive
to VLPs derived from several GI1.4 variants circulating in over
30 y.** In addition, a bivalent vaccine formulation containing the
GIL.1 NV and the GIL.4 consensus VLPs induced an increased

breadth of immune response to diverse variants within the two
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NoV genogroups in comparison with a monovalent vaccine.
Among several vaccinations via different administration routes
with various adjuvants, the highest homologous and heterologous
antibody titers to the bivalent vaccine were elicited by the intra-
muscular injection using Alhydrogel [AI(OH)3] as adjuvant.®

Clinical Trials of VLP Vaccines

Following demonstrations of safety and immunogenicity in
animals, the baculovirus-expressed NV VLPs were further stud-
ied in phase I and phase II trials for safety, immunogenicity and
efficacy in healthy volunteers. A summary of these studies has
been published recently.”! In a trial with 20 adults that were orally
administered with NV VLDPs (250 pg) without an adjuvant, all
vaccinees responded with 4-folds or higher increases in serum
IgG titers, among which 83% of the subjects responded after
the first vaccine dose, while no further IgG titer increase was
observed after the second dose.** In a repeated trial with higher
doses (—up to 2000 pg), all vaccinees developed significant rises
in IgA anti-VLP antibody-secreting cells (ASCs), while 90% of
the subjects who received lower dose (250 pg) vaccine developed
rises in serum anti-VLP IgG; neither the rates of seroconversion
nor antibody titers increased significantly at the higher doses.
These results may suggest an immune tolerance at high doses.
About 30-40% of volunteers developed mucosal anti-VLP IgA,
while lymphoproliferative responses and IFN-y production were
observed transiently among those who received 250 pg or 500 pg
but not 2000 pg of VLP.** Similar responses were also observed
in human volunteers who received transgenic potato expressing
NV VLPs, with significant increases in the numbers of specific
IgA antibody-secreting cells, serum IgG, and/or specific stool
[gA.®

The immune responses of NV VLP vaccine with adjuvant of
the monophosphoryl lipid A (MPL) and the mucoadherent chi-
tosan were further studied in volunteers following an intrana-
sal delivery. While no vaccine-related, seriously adverse effects
observed, specific IgG and IgA antibodies increased significantly
in all subjects who received the 50- or 100-pg vaccine dose.
Vaccinees also developed IgA ASCs that expressed molecules
associated with homing to mucosal and peripheral lymphoid tis-
sues.*® Further repeat of the study revealed B memory [B(M)]
responses in volunteers. All subjects immunized with 100 pg of
the NV VLP vaccine and 90% of those who received 50 g had
significant IgA or IgG B(M) responses. The B(M) cell frequen-
cies correlated with serum antibody levels and mucosally-primed
ASC responses.®

Following these studies, two candidate VLD vaccines that are
derived from VLPs of the prototype NV (GI.1)® and a consen-
sus GII.4 VLP based on a 2002 and two 2006 GIL.4 isolates,*
respectively, have been moved to clinical trials for safety and
efficacy through human volunteer challenge studies. In a study
of the GI.1 NV VLP vaccine, volunteers were vaccinated intra-
nasally and then challenged orally with the homologous NVs.
NV-specific IgA seroresponse with 4-folds or higher increase
of serum antibody titer was detected in 70% of the 47 vaccine
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Table 1. Summary some preclinical trials for development subunit vaccine against norovirus

. ) Animal . Delivery )
f
Particles Expression system model Dose (pg/animal) route Adjuvant Immune responses re
VLP Transgenic plants mouse 40-90 oral none 19G, IgA 24,27
VLP Baculovirus mouse 10-20 I.N. Mutant toxin LT 19G, IgA 36
VLP Transgenic plants mouse 5-25 I.N. Resiquimod, CT 19G, IgA 100
VLP rvVsv mouse 10° PFU of rvVSV I.N., oral none IgG, IgA, T cell 101
VLP VEE/alphavirus mouse 107 infectious units | Foot pad/oral none 19G, IgA 20
o ! -
VLP Alphavirus mouse 2.5x10 |r7fect|ous Foot pad none 19G, 19A, cross rgactmty 38
units /neutralization
. null VRP or 19G, IgA, cross reactivity
VLP Alphavirus mouse 2 Foot pad CpG DNA Ineutralization 39
VLP Baculovirus rabbit 50-150 I.M./I.N. AI(OH)3, MPL, IgG, cross reactivity 40
chitosan
P particle Bacteria mouse 30 I.N. none 19G, T cell 102

Al(OH),, Alhydrogel; CT, cholera toxin; IgA, immunoglobulin A; IgG, immunoglobulin G; MPL, monophosphoryl lipid A; Mutant toxin LT, mutant Escherichia
coli heat-labile toxin LT(R192G); Resiquimod (R848) or TLR7/8, an imidazoquinoline-based Toll-like receptor 7 and/or 8 agonist; rVSV, recombinant vesicular
stomatitis virus; VEE, Venezuelan equine encephalitis replicon expression system; VLP, virus-like particle, I.N., intranasal; I.M., intramuscular.

recipients. Vaccination significantly reduced the frequencies of
gastroenteritis and virus infection. These data indicated NV VLP
vaccine effectively protected vaccinees from infection and illness
of NV.4¢

In a mostly recent study on a bivalent VLP vaccine (GI.1
NV/GIL4 consensus) performed by Takeda Pharmaceutical
Company Limited (http://www.takeda.com), volunteers were
vaccinated intramuscularly with two doses followed by an oral
challenge with a GIL.4 2003 NoV (Cin-1) (http://www.takeda.
com/news/2013/20131007_6021.html). The results showed a
52% reduction against vomiting and/or diarrhea of any severity.
In those who experienced symptoms, severity of illness as mea-

sured by the Vesikari scoring system**®

was significantly reduced
in vaccinees vs. placebo recipients. In summary, the non-repli-
cating NoV VLP vaccines are safe and effective for protection

against infection and illness of NoVs.

NoV P Domain Complexes as Vaccine Candidates

The NoV capsid protein VP1 comprises two major domains,
the shell (S) and the protruding (P) domains, linked by a short
flexible hinge.” Expression of the P domain in E. coli results in
variable complexes, including the P domain dimers,*>* the P
particle that contains 12 P dimers®** (Fig. 1), the smaller P par-
ticle that contains 6 P dimers® and polyvalent P domain com-
plexes that contain many P dimers.’® All these P complexes retain
HBGA binding property. Among the complexes the P particle
is highly stable, easily to produce and highly immunogenic and
therefore has been selected as vaccine candidate for further devel-
opment. The polyvalent P domain complexes that are made by
fusion of two to three NoV P domains representing different GI
and GII NoVs* provide an opportunity to develop a dual or mul-
tivalent vaccine for broad protection against NoVs.

Both the P particle and the polyvalent P domain complexes
induced significantly higher antibody and CD4* T cells responses

www.landesbioscience.com

in mice than those induced by the free P dimers.”*”” The P par-
ticles also induced high titers of NoV-specific immunoglobulin
in chicken egg yolks (IgY), providing a strategy for therapeutic
treatment against NoV diseases.”®” Thus, these P domain com-
plexes are excellent vaccine candidates against NoVs.

NoV P Complexes as a Vaccine Platform
for Dual Vaccine Development

The NoV P complexes have also been proposed as vaccine plat-
forms for presentation of foreign antigens for immune enhance-
ment. There are six surface loops on the distal end of each P
dimer (three for each P domain), corresponding to the outermost
surface of the P particle®® and VLP.? Thus, insertion of a foreign
antigen into one of the loops results in 24 copies of the antigen
on the surface of the P particle, or many copies on the polyvalent
P complex, and therefore significantly enhances the immunoge-
nicity of the inserted antigen. A number of small peptides and
protein antigens have been inserted into the loops and are well

presented by the P domain complexes.’®¢!¢3

Importantly, the
immunogenicity of the P domain complexes retained, making
these chimeric P domain complexes dual vaccines against NoVs
and other pathogens.

Three promising dual vaccine candidates have been made and
evaluated through preclinical animal trials. The first P particle
chimeric vaccine (P particle-VP8*) contains a surface insertion
of the neutralization antigen VP8* of rotavirus (RV).®"¢* This
vaccine induced strong immune responses to both the RV VDP8*
and NoV P antigens and protected mice against RV infection.”®¢!
Another dual vaccine (P particle-M2e) contains an insertion
of the conserved M2e epitope of influenza A viruses. It elicited
high titers of M2e- and P domain-specific antibody and fully
protected mice from lethal challenges with influenza viruses.®
Finally, the complex vaccine (NoV P-HEV P) containing the

P antigens of NoV and hepatitis E virus (HEV) induced strong
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antibody responses against both NoV and HEV with high neu-
tralizing or HBGA blocking activity against the two viruses.®
These three NoV P antigen-based complexes are promising dual
vaccine candidates against NoV and RV, NoV and influenza
virus, and NoV and HEV.

Efforts in Development of Animal Models for NoVs

Large efforts have been made in developing an animal model
for NoVs in different species, including non-human primates, pigs,
calves, and mice. However, due to apparent host species barriers,
an efficient small animal model that fully supports the replication
and illness of human NoVs remains lacking. Among those animal
models that demonstrated limit NoV replication and/or illness, the
gnotobiotic (Gn) pig model could be a choice for vaccine assess-
ment, although further improvement of the model is needed.

Non-human primate models

Early studies in the 1970s revealed that NV-challenged chim-
panzees exhibited subclinical infections, including seroresponses
and virus shedding, but not vomiting or diarrhea.® Similar sce-
nario was also observed in rhesus macaques after NoV inocu-
lation.®® Subsequent studies in seeking an efficient non-human
primate model for NoVs observed both clinical illness and viral
shedding in newborn pigtail macaques (Macaca nemestrina).”
However, none of these models was used afterward, excepted for
the chimpanzee model that was used recently to study the dura-
tion of immunity after NV infection and to assess the NV and
GIIL.4 VLP vaccine against NV infection.®® Unfortunately, further
use of great apes for invasive experimentation has been banned in
the United States (http://blogs.nature.com/news/2012/07/bill-
ending-us-chimp-research-advances.html).

The gnotobiotic (Gn) pig model

Gn pigs are another promising animal model for human NoVs
partially due to their similarities with human in gut structure
and physiology, including the common A and H HBGAs.%7
Challenge of pigs with human NoVs revealed mild to modest
diarrhea with modest virus shedding in stools, rectal swab fluids

and intestinal contents.®®”!

Like in human, NoVs mainly replicate
in pigs in some epithelial cells in the duodenum and jejunum.
In addition, infected Gn pigs resulted in systemic and intestinal
humoral and cellular immune responses.”” Neonatal pigs (4—5
d of age) appeared more susceptible to human NoVs than older
pigs (33-34 d of age).” Interestingly, administration of a choles-
terol-lowering drug, simvastatin, increased the susceptibility of
the older pigs to a comparable level of the neonatal pigs.®>”* The
Gn pig model has helped our understanding in NoV pathogen-
esis®7! and is current used for evaluation of vaccines and antivi-
rals against human NoVs” (Yuan and Jiang, unpublished data).

The Gn calf model

Gn claves were also studied as a potential animal model of
human NoVs. Like pigs, claves share similar A antigens with
humans.”® Inoculation of human NoV (GII.4-HS66) to Gn
claves caused diarrhea and virus shedding in feces.”” Intestinal
lesions were observed in duodenum and jejunum with detection

of viral capsid antigen in the jejunum. Seroconversion with the
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high numbers of ASCs in the intestine was also observed. These
data indicated NoV replication and entero-pathogenicity in Gn
calves. However, the higher cost of the Gn calf model compared
with the Gn pig model may limit its application as an evaluation
tool of NoV vaccine.

A mouse model

This small animal model was proposed recently by show-
ing limited replication of human NoVs in immune-deficient
mice.”® After challenged through an intraperitoneal route, both
humanized and nonhumanized BALB/c Rag-yc-deficient mice
seemingly supported replication of a GIL.4 NoV, as shown by
increased viral loads over input and expression of the structural
and nonstructural NoV proteins in macrophage-like cells in the
spleens and livers. While this model may not be useful for vaccine
evaluation due to the requirement of immune-deficient status of
the mice for NoV replication, it may be useful for studying the
pathogenesis and assessment of antivirals against NoVs.

Development of Human Challenge Models for NoVs

The early human challenge studies in the 1970s with the
prototype NV (GI.1) and Hawaii virus (GII.1) provided large
amount of information on the onset of disease, clinical mani-
festations, duration of illness of NoV gastroenteritis, and host
immunity after NoV infection.””#* The observation that NV
infected subjects were protected against subsequent challenge of
the same virus for 6 to 24 months, indicating the feasibility of a
NoV vaccine,® although such protection may be strain-specific.
Thus, the highly diverse NoVs, comprising of 9 GI and 22 GII
genotypes®#4
further challenge in NoV vaccine development.

Another important factors related to human challenge model
is HBGA phenotypes of human subjects that may control the
host susceptibility to NoV infections, which has been shown for
two NoVs, NV (GI.1) and Cin-1 (GII.4),%% but not for the Snow
Mountain virus (SMV, GIL.2).% In vitro experiments showed
that human NoVs are diverse in interaction with the polymorphic
HBGA:s. In addition, volunteers who were experimentally infected
with NV revealed a strong correlation of HBGA blocking antibod-
ies with protection against clinical gastroenteritis and therefore, the

with unknown antigenic relationships, represent a

HBGA blocking assay is considered as a surrogate of neutraliza-
tion for NoVs.®®” Thus, the host geno- and phenotypes of HBGAs
should be considered in selecting subjects for a challenge study as
this may significantly impact the outcomes of clinical infection.
Currently human challenge models of GI.1 NV, GII.4 Cin-1,
and GIL.2 SMYV, have been established, among which the ones
for the NV and Cin-1 have been used for the safety and efficacy
studies of two VLP vaccines representing GI.1 and GIIL.4, respec-
tively. ¢
models and establishment of models for more NoV types are nec-
essary. First, challenge models for additional NoV types would
help the determination of cross-protection among different anti-

% Further improvement of the available human challenge

genic types of NoVs, which is an important issue in NoV vaccine
development. Second, the role of HBGAs in the host suscepti-
bility of the SMV and other genotypes needs to be determined.
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Third, since the subjects in a challenge model are normally
adults who usually have pre-existing NoV specific antibodies, the
roles of such antibodies in protection against NoV infection and
impact on subsequent vaccination of non-replicating NoV vac-
cine need to be clarified. Furthermore, the 50% human infection
doses (ID50s) for NV have been determined recently for subjects
with specific HBGA types.® Such infection doses should also be
determined for the remaining challenge viruses for an optimal
evaluation of vaccines for maximal protection. Finally, the dura-
tion of immune response and protective immunity following a
vaccination needs to be studied, particularly for the elderly whose
immunity may be weaned by aging.

Vaccine for Broad Protection against
Diverse NoV Types

NoVs are highly diverse containing over 30 genotypes in the
two major genogroups of human NoVs.* The antigenic diversity
behind this genetic diversity is a further challenge in the devel-
opment of NoV vaccine for broad protection. In addition, the
antigenic types of different variants in the single predominant
GIIL.4 genotype change continually, probably were driven by the
host herd immunity in a way similar to the epochal evolution of
the influenza viruses.*° Genetic and in vitro blocking studies
have identified several antigenic epitopes on the GII.4 NoVs that
are correlated with the chronological changes of GII.4 variants in
the past decades.”” Thus, continual monitoring the NoV epide-
miology to predict epidemic GII.4 variants for future vaccines is
necessary. Noteworthy, genetic analysis of NoVs showed that the
HBGA binding interfaces of NoVs are conserved among geno-
types within each of the two major genogroups (GI and GII) of
human NoVs, indicating a strong positive selection by the human
HBGAs. In fact, the amino acid sequences of the HBGA bind-
ing sites are almost 100% conserved among all GII.4 variants
circulated in the past three decades.”® Thus, in addition to the
herd immunity, the human HBGAs should also play a role in the
epochal evolution of GII.4 NoVs.

Characterization of GII.4 variants by monoclonal antibod-
ies (mAbs) supported the antigenic changes predicted by genetic
analysis. MAbs recognizing either type-common or type-specific
epitopes among GII.4 variants have been identified.”*?*>%7 Cross-
reactive antigenic types among different GII.4 variants also have
been shown by polyclonal serum antibodies of patients infected
by a GI1.4 NoV.” Four-fold or higher increases of antibody titers
between the acute and convalescent serum samples against dif-
ferent GIL.4 variants were measured by both antibody detection
ELISA and HBGA blocking assays.”® These results suggest that
the shared antigenic epitopes among GII.4 variants could be tar-
gets for broadly protective vaccines against different GIL.4 vari-
ants. Thus, after determination of the levels of shared antigenic
types among different genotypes within each of the two major
genogroups of human NoVs, a cocktail vaccine containing the
major antigenic types of NoVs may be developed for broad pro-
tection. The aforementioned bivalent GI.1/GII.4 VLP vaccine is
an example of such cocktail vaccine. Similarly, a cocktail vaccine

www.landesbioscience.com

against NoV and RV based on mixed NoV VLPs (GIL.4 or GI1.4
and GI.3) with the tubular RV recombinant VP6 protein®®*®’ has
been developed, which induced cross-reactive antibodies to het-
erologous NoV VLPs (GII.12 and GI.1 VLPs) and to different
RVs. In addition, two bivalent vaccines comprising polyvalent P
domains of GI1.4 (VA387)/GIL9 (VA207) and GIL.4 (VA387)/
GI.3 (VA115) NoVs, respectively, provided a good example for
simple, efficient cocktail vaccines.”® Thus, after elucidation of the
antigenic relatedness among different NoVs in both GI and GII,
a broadly protective NoV vaccine is possible.

Conclusion and Future Perspective

By taking advantages of recombinant technology, variable
subviral particles, including VLPs and P domain complexes
of NoVs, have been developed and studied as subunit vaccines
against NoVs. The first VLP vaccines derived from the proto-
type NV and the predominant GI1.4 NoVs have reached phases
IT clinical trials with a promising outcomes, while a number of
other VLP and P domain complex-based vaccines are following
in preclinical researches. The P particle-based vaccine candidates
are easily produced in E. coli and stable and therefore a promising
low cost vaccine. The P domain complexes also serve as vaccine
platforms to present foreign antigens for potential dual or even
multivalent vaccines against NoVs and other pathogens.

Due to apparent a host species barrier, a highly efficient, low
cost small animal model for human NoVs remains lacking. The
Gn pig model supports limited viral replication and clinical ill-
ness after NoV-challenge, therefore may be a choice for further
improvement as a tool for evaluation of NoV vaccines. Human
volunteer challenge model for three NoVs are readily available for
phases I and II clinical trials of NoV vaccines. On the other hand,
further improvement of the models for better understanding of
host-pathogen interaction and immunology and for better vac-
cine evaluation is needed. Due to the genetic and antigenic diver-
sity of NoVs and the antigenic drift of some genotypes, selection
of a cocktail vaccine containing the major antigenic types is nec-
essary for broad protection. In this regard new human challenge
models for additional genotypes will be needed.
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