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Abstract Introduction: Links between preclinical Alzheimer’s disease (AD) and driving difficulty onset
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would support the use of driving performance as an outcome in primary and secondary prevention
trials among older adults (OAs). We examined whether AD biomarkers predicted the onset of driving
difficulties among OAs.
Methods: One hundred four OAs (651 years) with normal cognition took part in biomarker mea-
surements, a road test, clinical and psychometric batteries, and self-reported their driving habits.
Results: Higher values of cerebrospinal fluid (CSF) tau/Ab42 and phosphorylated tau (ptau181)/Ab42
ratios, but not uptake on Pittsburgh compound B amyloid imaging (P5 .12), predicted time to a rating
of marginal or fail on the driving test using Cox proportional hazards models. Hazards ratios (95%
confidence interval) were 5.75 (1.70–19.53), P 5 .005 for CSF tau/Ab42; 6.19 (1.75–21.88), and
P 5 .005 for CSF ptau181/Ab42.
Discussion: Preclinical AD predicted time to receiving amarginal or fail rating on an on-road driving
test. Driving performance shows promise as a functional outcome in AD prevention trials.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Driving among older adults (OAs) is a critical and timely
public health issue. Thirty-eight million US drivers are now
imer’s Association. This is an open access article under the CC BY-NC-ND
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aged 65 years or older [1], and their number will double
within the next 40 years [2], when they will make up 25%
of all drivers. Longitudinal studies show that OAs have dete-
rioration in driving performance over time [3] and that motor
vehicle crashes are a leading cause of injury and death [4].
Driving fatalities increase with OA age, such that risk of
death for drivers 85 years or older is nine-fold greater in a
crash than it is for drivers 69 years or younger [5]. The
annual lifetime costs associated with these deaths and in-
juries are estimated at $80 billion [6].

Spurred by postmortem studies indicating that the
brains of many OA drivers killed in car accidents had
the neuropathological changes of Alzheimer’s disease
(AD) [7], we recently identified preclinical AD as cross-
sectionally linked with driving difficulty among OAs [8].
“Preclinical AD,” the condition in which abnormal levels
of AD biomarkers are present without concurrent detect-
able dementia symptoms, is present in about 30% [9] of
adults over age 65 years. Molecular biomarkers reflect
the presence of brain plaques and tangles, which are the
signature lesions of AD. In vivo imaging of fibrillar amy-
loid plaques can be obtained using radiotracers, including
Pittsburgh compound B (PIB) [10], together with positron
emission tomography (PET). Soluble, rather than fibrillar,
levels of brain amyloid (Ab42) are obtained from cerebro-
spinal fluid (CSF). CSF biomarkers are based on assays of
proteins that are pathologically misfolded, and in addition
to Ab42, include tau and phosphorylated tau (ptau181), the
principal components of neurofibrillary tangles [11]. Our
prior study results have indicated that road test perfor-
mance [8] and self-reports of previous involvement in
crashes [12] are cross-sectionally associated with abnor-
mality of these biomarker levels among persons who are
cognitively normal.

A critical next step is to determine whether these bio-
markers can predict the future onset of driving difficulties
among cognitively normal OAs. If so, this finding could
have important long-term consequences. First, the ability
to identify who will be at most risk of decline in driving per-
formance and to forecast when decline will occur would
allow intervention before or at the time of early decline,
which could extend driving life expectancy and prevent mo-
tor vehicle crashes, injuries, and deaths. The preservation of
safe driving ability would also prolong the independence and
enhance the well-being of elders.

Second, due to the failure of all previous clinical trials of
AD-modifying therapies [13], trials designed to prevent or
slow the AD pathologic process are now being conducted
among symptom-free persons at high risk for AD develop-
ment [14], before substantial neurodegeneration has
occurred [15]. Measures of very early functional change in
preclinical AD are needed for these trials [15], and these
measures must be relevant to the disease process as well as
clinically meaningful [16]. Driving is a common functional
activity that depends on a combination of cognitive, percep-
tual, and motor skills working in concert. These skills are
essential to driving and many decline with the onset and pro-
gression of AD [17].

If longitudinally associated with AD biomarkers, assess-
ment of driving skills may have important implications for
safety and quality of life of OAs and would have demon-
strated potential as a functional outcome in AD primary or
secondary prevention trials. We therefore tested whether
AD biomarkers could predict the onset of future problems
with driving among cognitively normal OAs.
2. Methods

2.1. Design

Participants with normal cognition (clinical dementia rat-
ing [CDR] 5 0) [18], aged 65 years and older, with a valid
driver’s license, and who were driving an automobile at least
once per week, were recruited from the pool of individuals
already participating in longitudinal studies at the Knight
Alzheimer’s Disease Research Center. Study protocols
were approved by the Washington University Human
Research Protection Office, and written informed consent
was obtained. Participants are offered a stipend for their
participation.

At baseline and every subsequent annual visit, partici-
pants took part in clinical assessments, on-road driving tests
[19], and their current driving practices were assessed using
the Driving Habits Questionnaire (DHQ) [20]. Existing
biomarker data were used for participants who had received
amyloid imaging and CSF collection via their enrollment in
other studies within the two years preceding their baseline
driving assessment session. If existing data were not avail-
able, participants were asked to complete amyloid imaging
and/or CSF collection for inclusion in the current study.
Data from participants with processed amyloid imaging
and/or CSF biomarker results, and at least one follow-up
assessment after baseline, are reported here.

2.2. Clinical assessment

A CDR was derived by experienced clinicians who syn-
thesize information obtained from interviews with the
participant and separately with a collateral source who
knows the participant well. The clinician’s judgment about
the presence of dementia is based on the principle of intrain-
dividual change where the individual is used as his or her
own control. The CDR reflects whether the participant has
dementia, and if so, the severity of that dementia. CDRs
are derived in accordance with a standard scoring algorithm;
CDR 0 5 no dementia, CDR 0.5 5 very mild, CDR
15mild, CDR 25 moderate, and CDR 35 severe demen-
tia. The Sum of Boxes (CDR-SB) is a global measure of
cognition obtained by summing the scores on the six CDR
domains, resulting in a score ranging from 0 to 18 [18].
The CDR-SB is sensitive to the earliest changes in symptom-
atic AD and is used in clinical trials to assess longitudinal
change in cognition over time [21]. The clinical assessment
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battery also includes the Mini–Mental State Examination
[22] and psychometric tests from the uniform data set [23].
2.3. Measurement of AD biomarkers
2.3.1. Imaging
PET-PIB imaging was used to determine brain amyloid

burden [24]. Detailed information on our PET-PIBmethodol-
ogy is available [25]. Briefly, alignment of PET-MRI within a
participant is used to create three-dimensional regions-of-in-
terest (ROIs), which are applied to images of the PET dy-
namic data, yielding regional time-activity curves [25].
Using the cerebellum ROI data as the reference tissue input
function, a time-activity curve for each ROI is analyzed for
specific PIB binding. The slope of each curve reflects the
tracer distribution volume (DV) in the tissue of interest rela-
tive to the input function [25]. A binding potential (BP) value
reflecting the ROI binding value proportional to the number
of binding sites for each ROI is calculated using the equation
BP5 DV2 1. The mean cortical binding potential (MCBP)
is obtained by taking the mean of the BPs from brain regions
known to have high uptake among participants with AD: the
prefrontal cortex, gyrus rectus, lateral temporal cortex, and
precuneus [25]. The FreeSurfer image analysis suite (version
5.3) is used to obtain estimates of hippocampal volume, total
brain volume, and intracranial volume [26].

2.3.2. CSF biomarkers
CSF analytes [27] (Ab42, tau and ptau181; Innotest, Fujir-

ebio [formerly Innogenetics], Ghent, Belgium) were
measured using sensitive and quantitative enzyme-linked
immunosorbent assays. CSF was obtained by trained neurol-
ogists via standard lumbar puncture using a 22-gauge
Sprotte spinal needle to draw 20–30 mL of CSF at 8:00
AM following an overnight fast. CSF samples were gently
inverted and centrifuged at low speed to avoid possible
gradient effects and frozen at 284�C after aliquoting into
polypropylene tubes. Biomarker assays included a common
reference standard, within-plate sample randomization, and
standardized protocol adherence. Samples were reanalyzed
if coefficients of variability exceed 25% (per Alzheimer’s
Disease Neuroimaging Initiative criteria), if there were
“edge artifacts” or if the pooled common CSF sample
yielded widely discrepant values.

2.3.3. APOE genotyping
Briefly, all DNA samples underwent stringent quality

control, before genotyping with the Illumina 610 or the
OmniExpress chip [28]. More detailed information regarding
apolipoproteinE (APOE) genotyping has been published [28].
2.4. Driving test

The 12-mile, modified Washington University Road Test
(mWURT) takes about an hour to complete [19]. The course
begins in a closed parking lot so that the participant becomes
familiar with the study car, a 4-door sedan, then proceeds to
a public in-traffic route [19]. The participant drives through
the mWURT route as directed by an examiner sitting in the
front seat. The examiner can take control of the wheel if
needed, and the research vehicle is outfitted with a second,
passenger-side brake so that the examiner can apply the
brake if necessary. The examiner is blinded to the partici-
pant’s biomarker, clinical, and psychometric test results.

The driving examiner assigns a pass, marginal, or fail rat-
ing after each driving test. A pass rating is defined as suc-
cessfully demonstrating competency in all aspects of the
road test and across all levels of traffic density with minimal
to no errors, and no safety concerns. A marginal rating oc-
curs when errors occur indicating low to moderate risk for
safety concerns (e.g., rolling stop, speed variability, incon-
sistent scanning). A fail rating is given when the driver dem-
onstrates errors indicating moderate to maximum risk for
safety concerns (e.g., goes out of the lane, runs a stop sign/
traffic light).
2.5. Statistical analyses

Portions of the data were collected and managed using
REDCap electronic data capture tools [29]. For all analyses,
SAS statistical software version 9.4 (SAS Institute Inc.) was
used, a5 0.05 was taken to indicate statistical significance,
and all tests were two tailed.

Based on significant cross-sectional associations found in
our previous research [8], we tested whether three bio-
markers MCBP for PET using PIB [24], CSF tau/Ab42,
and CSF ptau181/Ab42 predicted longitudinal change in
driving-related behaviors. Higher values of these three bio-
markers are commonly used to define pathology due to pre-
clinical AD [30]. Similar to our previous work [8,31], we
compared the highest one-third of the biomarker values
with the lower two-thirds in our statistical analyses.

Two primary driving decline outcomes were examined:
time from baseline to receiving a rating of marginal or fail
[19] on the road test, and self-reported decline over time
on everyday driving practices (driving space, miles driven,
number of places visited, and number of trips over the previ-
ous year) [20] assessed using the DHQ.

Kaplan-Meier curves [32] illustrating the time from base-
line to first rating of marginal or fail on the yearly driving test
as a function of higher and lower biomarker values were
calculated, and the difference between the curves was
analyzed using the log-rank test. Cox proportional hazards
models [33] tested whether each biomarker variable was
associated with time from baseline to receiving a rating of
marginal or fail on the driving test while adjusting for, and
simultaneously testing the effects of age, education, gender,
race, and APOE ε4 genotype. In the Cox models, data from
participants who did not return for follow-up, or who did not
receive a rating of marginal or fail on the driving test by the
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end of the follow-up period, were censored at the date of the
most recent driving assessment session.

Linear mixed models [34], likewise adjusted for age,
education, gender, race, and APOE ε4, tested whether
higher baseline biomarker values predicted a more rapid
rate of future decline in the continuous composite scores
of interest from the DHQ. These models included the
participant, and intercept and slope terms, as random ef-
fects.

2.5.1. Secondary analyses
Secondary analyses tested the extent of biomarker-

associated declines in global cognitive measures in the
same individuals over the same follow-up period. In these
analyses, a psychometric composite score was calculated
for each assessment for each participant using methods
similar to those previously published [35]. The composite re-
flects tests measuring the domains of attention, processing
speed, executive function, episodic memory, and language
[23]. Adjusted linear mixed models tested whether the slope
of change across time on the psychometric composite, CDR-
SB, and MMSE differed for the higher and lower biomarker
groups. Because CDR-SB andMMSE are sometimes subject
to ceiling effects among participants who are cognitively
normal, we also used Kaplan-Meier and adjusted Cox pro-
portional hazards models to test whether the biomarker
values were associated with time to a one-or-more unit in-
crease in the CDR-SB, and a two-or-more unit decrease in
the MMSE.
3. Results

Data were collected from August 28, 2012 through April
6, 2016. One hundred four individuals aged 65.8–88.2 years
met inclusion criteria (Table 1). Follow-up time ranged
from 0.96 to 3.45 years, with a mean of 1.86 years.
Cutoff values for the higher and lower biomarker groups
were 0.436 pg/mL, 0.089 pg/mL, and 0.140 units for CSF
tau/Ab42, CSF ptau181/Ab42, and MCBP for PIB, respec-
tively.
Table 1

Demographics (N 5 104)

Age at driving assessment, mean (SD), years 72.5 (4.6)

Women, no. (%) 52 (50.0)

African American,* no. (%) 10 (9.6)

Education, mean (SD), years 16.1 (2.5)

APOE ε41, no. (%) 31 (29.8)

MMSE, mean (SD)y 29.3 (1.0)

CDR Sum of Boxes, mean (SD)z 0.01 (0.05)

Follow-up time, mean (SD), years 1.9 (0.6)

Abbreviations: SD, standard deviation; APOE ε4, apolipoprotein E ε4;

MMSE, Mini–Mental State Examination; CDR, clinical dementia rating.

*All remaining participants reported their race as Caucasian.
yMMSE scores range from 0 (worst performance) to 30 (best perfor-

mance).
zCDR Sum of Boxes scores range from 0 (best performance) to 18 (worst

performance).
Fig. 1 shows Kaplan-Meier survival curves for the unad-
justed association of the biomarker groups with the driving
test results. Of the 104 participants with two or more driving
tests, 88 (84.6%) passed all driving tests administered during
the follow-up period, 12 (11.5%) received a marginal rating,
and 4 (3.9%) received a fail rating.

The Cox proportional hazards models indicated that
higher values of the ratios of CSF tau/Ab42 and ptau181/
Ab42, but not MCBP for PIB, predicted time to a rating of
marginal or fail on the driving test. Hazards ratios (95% con-
fidence interval) were 5.75 (1.70–19.53), P 5 .005 for CSF
tau/Ab42; 6.19 (1.75–21.88), P 5 .005 for CSF ptau181/
Ab42; and 2.65 (0.73–9.00), P 5 .12 for MCBP for PIB
(Fig. 1, panels A, B, and C). No significant effects of age, ed-
ucation, gender, race, or APOE ε4 were found (P . .08).
Mixed linear model analyses indicated no difference be-
tween the biomarker groups in self-reported change across
time in driving space, miles driven, number of places visited,
and number of trips (P . .15) as measured by the DHQ.
There was no significant decline in self-reported driving
across the follow-up period (P . .25).

Secondary analyses showed no difference between the
high and low groups for any of the biomarkers on the slopes
of change across time for the psychometric composite score
(P. .57), the CDR-SB (P. .56), and the MMSE (P5 .66).
Time to a one-or-more point increase in the CDR-SB
(P . .20) and to a two-or-more point increase on the
MMSE (P . .18) were not associated with the biomarker
groups in the Cox proportional hazards models.

The associations of CSF tau/Ab42 and CSF ptau181/Ab42
with time to receiving a marginal or fail rating on the driving
test were confirmed using the Benjamini-Hochberg [36]
method to correct for multiple testing.

Given these results, several post hoc tests were conduct-
ed. First, to examine whether specific types of cognitive pro-
cessing predicted time to a marginal or fail driving test
rating, we repeated the Cox models including scores on an
episodic memory test and on an attention and processing
speed subscale and its component tests (described here
[35]) in turn. There was no association between the episodic
memory score (P . .241), the attention and processing sub-
scale (P . .191), scores on the individual tests comprising
that subscale (P . .090), and time to receiving a marginal
or fail rating. Second, we examined whether the AD bio-
markers were associated with changes on tests assessing spe-
cific cognitive domains by repeating the mixed models using
the episodic memory measure, the attention and processing
subscale, and its component tests, as the cognitive outcomes.
No significant relationships were found (P . .064).

There have been three driving examiners involved over
the course of the study. Each used the same trichotomous
scale, but because there was no overlap between examiners,
we were unable to calculate a kappa statistic. However, a
separate study found strong kappa (k 5 0.84) on the same
pass/marginal/fail ratings when comparing an evaluator in
the front and one in the back seat [19].



Fig. 1. Kaplan-Meier curves. Kaplan-Meier curves showing relationships between biomarkers and time to a rating of marginal or fail on the road test (A–C) and

change in some of the cognitive outcomes as a function of baseline CSF tau/Ab42 values (D–F). Dotted lines 5 lower biomarker values, solid lines 5 higher

biomarker values. Abbreviations: CDR, clinical dementia rating; CSF, cerebrospinal fluid;MCBP,mean cortical binding potential; PIB, Pittsburgh compound B.
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4. Discussion

Among cognitively normal OAs, we found that higher
values of CSF tau/Ab42 and ptau181/Ab42 predicted time to
a marginal or fail rating on an on-the-road driving test, indi-
cating that driving performance declines more rapidly
among participants with preclinical AD. Thus, as with
cognitive outcomes [9], the risk of developing driving prob-
lems appears to be greatest when the preclinical AD
biomarker profile is characterized by both cerebral beta-
amyloidosis and markers of neural injury, such as elevated
levels of CSF tau and ptau181, rather than cerebral beta-
amyloidosis levels alone.

Although driving problems occurred faster for those with
preclinical AD, these participants did not correspondingly
change their everyday driving behavior over the same time
period. As self-reported on the DHQ, changes in miles
driven, number of trips, number of places visited, and
driving space were similar for the normal and abnormal
biomarker groups. There are several possible reasons for
this result. First, individuals with preclinical AD may not
have noticed any change in their driving skills over time.
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Or, participants could have noticed changes in their driving
but did not believe that those changes warranted any modi-
fication of their driving behavior. Another possibility is
that the effects of preclinical AD on driving may not occur
in everyday driving but only manifest when an individual
is “pushed” or “stressed,” such as driving an unfamiliar
vehicle, on unfamiliar roads, while being evaluated under
controlled conditions (as in a road test) [37]. Future research
should test this hypothesis via driving simulators, which can
be used to safely vary the level of demandingness of the
traffic situation and crash risk [38].

Importantly, although study participants showed
biomarker-linked decline in driving performance across
the study period, there was no association between bio-
markers and global cognitive test scores (CDR-SB,
MMSE, a psychometric composite) for the same participants
over the same period. These results suggest that the effects of
preclinical AD may be detected earlier when driving, rather
than global cognition, is tested. Larger samples examined
over a longer period are needed to thoroughly examine this
question.

There has been some skepticism regarding whether suit-
able functional outcomes for preclinical AD trials can be
found [39]. However, driving test performance meets two
essential criteria for functional outcomes [16,40] in
primary and secondary prevention trials for AD: driving is
a clinically meaningful outcome and is related to the
underlying biological disease process. Driving tests may
allow earlier and more rapid testing of potential treatments
in primary and secondary AD prevention trials.

In addition to their potential usefulness in clinical trials
research, our results help inform the appropriate timing of
driving interventions targeted at individuals with preclinical
AD. If interventions occur too long before the onset of
driving problems, the skills learned during the intervention
may not be maintained. If occurring too late, once frank de-
mentia symptoms are present, it may be difficult for an indi-
vidual to learn and remember to successfully use the
intervention components. Given that the association be-
tween preclinical AD and driving performance is newly
demonstrated, there are no existing interventions designed
to maintain driving skills among individuals with preclinical
AD. However, promising interventions for individuals who
are cognitively normal as well as those with very mild or
mild dementia may be appropriate for those with preclinical
AD [41]. By being able to predict when driving decline is
likely to occur, these interventions can be applied when peo-
ple are cognitively normal, or only very mildly demented.
Although CSF biomarkers are now primarily used in clinical
trials, standardization work is underway to develop auto-
mated clinical-grade assays that will hopefully become as
clinically useful as chemistry tests for other common human
diseases [30].

Our study has limitations. Participants were willing to un-
dergo amyloid imaging and/or lumbar puncture tests, many
had a friend or relative with AD, and therefore may not be
representative of the larger US population of OAs. We
used on-road driving tests as our measure of driving perfor-
mance. Therefore, our results are subject to the same limita-
tions as other research using that methodology [37],
including the extent to which associations between preclin-
ical AD and results obtained using driving tests will gener-
alize to everyday driving. Driving research has therefore
increasingly shifted focus to naturalistic outcomes using
global positioning systems methodologies [42–44]. It is
likely that driving measures such as these will improve
objectivity, replication, and generalizability to the real
world.

The effect of amyloid imaging, but not CSFAb42, on time
to driving problems approached significance in the unad-
justed (P5 .054) analysis, with the significance of the effect
lessened (P5 .12) when adjusted for demographic variables
in the Cox model. Therefore, although the effect of amyloid
imaging on time to driving problems may be weaker than
that found for the CSF biomarkers reflecting both amyloid
and tau/ptau181, a significant relationship may be found in
studies using a larger sample size, or longer follow-up.

Unfortunately, clinical use of driving tests (together with
other evaluation procedures) for fitness-to-drive purposes is
currently paid out-of-pocket in most cases and can be pro-
hibitively expensive for persons on a fixed income. However,
the cost of driving tests conducted in a research setting can
be affordable. In our research program, the cost of an on-
road driving assessment by a professional driving instructor
is less than the costs of imaging, CSF studies, and of admin-
istering the clinical and psychometric assessment batteries.

Finally, driving tests would not be suitable outcomes for
persons who have never driven or have ceased driving. Thus,
inclusion of driving tests as the primary outcome in clinical
trials would not be generalizable to the larger OA popula-
tion. The value of using road tests as clinical trial outcomes
will need to be weighed against this restriction in generaliz-
ability in future research.

In summary, our findings indicated that preclinical AD is
related to time to receiving a marginal or fail rating on an on-
road driving test. Participants with preclinical AD did not
report changing their daily driving habits, and there was no
association of preclinical AD with change in cognition,
over the same follow-up period. Driving performance shows
promise as a functional outcome in primary and secondary
AD prevention trials.
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RESEARCH IN CONTEXT

1. Systematic review: After reviewing the literature,
most publications on driving performance center on
older adults (OAs) with symptomatic Alzheimer’s
disease (AD), mild cognitive impairment, or are
cognitively normal without biomarkers. No study
has examined whether decline in driving perfor-
mance is associated with AD biomarkers among
cognitively normal OAs.

2. Interpretation: AD biomarkers predict time to a mar-
ginal/fail rating on a road test indicating that driving
performance declines more rapidly among OAs with
preclinical AD. OAs with preclinical AD did not
report changing their daily driving habits, and there
was no association of preclinical AD with change
in cognition, over the same follow-up period.

3. Future directions: Driving performance has promise
as a functional outcome in primary and secondary
AD prevention trials. Examination of driving
behavior can inform the appropriate timing of
driving interventions targeted at individuals with pre-
clinical AD.
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