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Abstract

Background—Long-term PM2.5 exposure and aging have been implicated in multiple shared 

diseases; studying their relationship is a promising strategy to further understand the adverse 

impact of PM2.5 on human health.
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Objective—We assessed the relationship of major PM2.5 component species (ammonium, 

elemental carbon, organic carbon, nitrate, and sulfate) with Horvath and Hannum DNA 

methylation (DNAm) age, two DNA methylation-based predictors of chronological age.

Methods—This analysis included 552 participants from the Normative Aging Study with 

multiple visits between 2000 and 2011 (n = 940 visits). We estimated 1-year PM2.5 species levels 

at participants’ addresses using the GEOS-chem transport model. Blood DNAm-age was 

calculated using CpG sites on the Illumina HumanMethylation450 BeadChip. We fit linear mixed-

effects models, controlling for PM2.5 mass and lifestyle/environmental factors as fixed effects, 

with the adaptive LASSO penalty to identify PM2.5 species associated with DNAm-age.

Results—Sulfate and ammonium were selected by the LASSO in the Horvath DNAm-age 

models. In a fully-adjusted multiple-species model, interquartile range increases in both 1-year 

sulfate (95%CI: 0.28, 0.74, P < 0.0001) and ammonium (95%CI: 0.02, 0.70, P = 0.04) levels were 

associated with at least a 0.36-year increase in Horvath DNAm-age. No PM2.5 species were 

selected by the LASSO in the Hannum DNAm-age models. Our findings persisted in sensitivity 

analyses including only visits with 1-year PM2.5 levels within US EPA national ambient air quality 

standards.

Conclusion—Our results demonstrate that sulfate and ammonium were most associated with 

Horvath DNAm-age and suggest that DNAm-age measures differ in their sensitivity to ambient 

particle exposures and potentially disease.
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1. Introduction

Fine particulate matter (PM2.5) remains an inescapable environmental exposure and an 

enormous global public health concern (World Health, 2014). It is estimated that at least 2.1 

million lives could be saved annually if PM2.5 guidelines were adhered to worldwide (Apte 

et al., 2015). For the millions of people exposed to PM2.5 daily, understanding the impact of 

PM2.5 on human health is critical for developing interventions aimed at reducing PM2.5-

related morbidity and mortality globally. Researchers have consistently demonstrated that 

long-term PM2.5 exposure is a major contributor to cardiopulmonary disease (Künzli et al., 

2005; Giorgini et al., 2015; Martinelli et al., 2013; Zhong et al., 2015; Kloog et al., 2015; 

Raaschou-Nielsen et al., 2016), and emerging evidence suggests that PM2.5 is a risk factor 

for previously unconsidered disease outcomes like cognitive decline (Terzano et al., 2010; 

Schikowski et al., 2015; Power et al., 2011). Nevertheless, much remains to be understood 

about how PM2.5 contributes to even its most well-documented disease outcomes. One 

promising strategy to better understand the adverse impact of PM2.5 on human health, is to 

study the relationship of PM2.5 with aging. Many studies have implicated PM2.5 as a 

contributor to accelerated aging (Chen and Schwartz, 2009; Weuve et al., 2012; Brown et al., 

2015; Scheers et al., 2015; Shan et al., 2014; Wilker et al., 2015). Moreover, independent of 

PM2.5 exposures, aging is associated with cardiopulmonary disease, cognitive decline, and 

many other PM2.5-related disease outcomes (Rowe and Kahn, 1987, 2000, 2015; Chung et 
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al., 2009). Thus, understanding how PM2.5 can contribute to aging, may provide additional 

insight into other adverse PM2.5-related health effects.

DNA methylation-based biomarkers of age have proved to be promising tools in 

understanding the relationship of PM2.5 with aging. These biomarkers have surpassed their 

initial utility of simply predicting chronological age, and have demonstrated remarkable 

usefulness in assessing individuals’ risk of mortality, malignancy, neurocognitive disease, 

and other biologically-relevant health endpoints (Marioni et al., 2015, 2016; Horvath et al., 

2015; Horvath and Ritz, 2015; Levine et al., 2015a, 2015b, 2015c). Evidence also suggests 

that these biomarkers of age are reflective of individuals’ past environmental exposures 

(Horvath et al., 2014). One such study by our group demonstrated robust associations 

between PM2.5 exposure levels and Horvath DNA methylation (DNAm) age. Horvath 

DNAm-age is a tissue-independent predictor of chronological age that is calculated from 

DNA methylation values at 353 chronological age-correlated CpG dinucleotides in 

Illumina’s HumanMethylation450 BeadChip (Horvath, 2013). Specifically, in an elderly 

cohort and with fully-adjusted models, we observed that a 1 μg/m3 increase in 1-year PM2.5 

exposure was associated with a 0.52-year increase in Horvath DNAm-age (Nwanaji-

Enwerem et al., 2016).

Still, PM2.5 is a heterogeneous mixture of carbonaceous fractions, inorganics, and metals; 

and it is widely appreciated that PM2.5 component species often differ in their health effects 

(Zanobetti et al., 2009; Ito et al., 2011; Liu et al., 2016; Laurent et al., 2016). The present 

study builds upon our previous research and examines the relationships of PM2.5 component 

species with both Horvath and Hannum DNAm-age in elderly men. Hannum DNAm-age is 

also a DNA methylation-based predictor of chronological age, but it is based on 

measurements from 71 CpG dinucleotides (Hannum et al., 2013). Only 6 CpG dinucleotides 

are shared between the Horvath and Hannum metrics. By investigating the relationships of 

PM2.5 component species with these two forms of DNAm-age, we aim to (1) better 

understand how specific PM2.5 species are related to aging, and (2) demonstrate differences 

in the biological utility of different DNAm-age measures.

2. Materials and methods

2.1. Study population

The participants in this analysis were part of the U.S. Veterans Affairs Normative Aging 

Study (NAS), a longitudinal investigation of aging men established in Eastern Massachusetts 

in 1963 (Bell et al., 1966). The men were free of known chronic medical conditions at 

enrollment, and returned for onsite, follow-up visits every 3–5 years. During these visits, 

detailed physical examinations were performed, bio-specimens including blood were 

obtained, and questionnaire data pertaining to diet, smoking status, and additional lifestyle 

factors that may impact health were collected. All participants provided written informed 

consent to the VA Institutional Review Board (IRB), and both the Harvard T.H. Chan School 

of Public Health and VA IRBs granted human subjects approval.

All NAS men with continued study participation as of the year 2000, when PM2.5 

component levels became available, were eligible for our study sample. After excluding 
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participants with a diagnosis of leukemia (n = 11), due to its potential influence on the DNA 

methylation of blood cells (Horvath, 2013), and those incomplete for the covariates of 

interest (n = 16), we had a total of 552 participants with 940 observations between the years 

2000 and 2011. Of the 552 participants, 249 (45%) had one visit, 218 (40%) had two visits, 

and 85 (15%) had three or more visits.

2.2. DNA methylation and calculation of DNAm-age

Laboratory staff extracted DNA from the buffy coat of whole blood collected from each 

participant at each NAS follow-up visit (QIAamp DNA Blood Kit, QIAGEN, Valencia, CA, 

USA). DNA samples were then treated with bisulfite conversion (EZ-96 DNA Methylation 

Kit, Zymo Research, Orange, CA, USA) and hybridized to the 12 sample Illumina 

HumanMethylation450 BeadChips (Infinium HD Methylation protocol, Illumina, San 

Diego, CA, USA). To ensure a similar age distribution and avoid confounding across chips 

and plates, study staff employed a two-stage age-stratified algorithm to randomize samples. 

For quality control, study staff removed samples where >5% of probes had a beadcount <3 

or >1% of probes had a detection P-value >0.05. The Bioconductor minfi package Illumina-

type background correction without normalization was used to preprocess the remaining 

samples and generate methylation beta values (Aryee et al., 2014). The beta values represent 

the percentage of methylation for each of the ~480,000 CpG sites in the BeadChip array. 

The 450 k arrays were run in the Genomics Core Facility at Northwestern University.

To explore potential differences in the relationship of PM2.5 and PM2.5 species with different 

forms of DNAm-age, we calculated both Horvath DNAm-age and Hannum DNAm-age 

using the 450 k beta values and Horvath’s publically available online calculator (http://

labs.genetics.ucla.edu/horvath/dnamage/). Horvath DNAm-age was derived from an elastic 

net (penalized regression) using multiple data sets of varying tissue and cell types. 21,369 

CpG probes, shared by the Illumina HumanMethylation27 and HumanMethylation450 

BeadChip platforms were regressed on a calibrated version of chronological age. The elastic 

net selected 353 CpGs that correlate with age, and the resulting model coefficients are used 

by the calculator to predict the age of each DNA sample (DNAm-age) (Horvath, 2013). 

Hannum DNAm-age was also derived using an elastic net. However, Hannum DNAm-age 

was based on a single cohort where DNA methylation values were calculated from whole 

blood. This elastic net selected 71 CpG probes in the Illumina HumanMethylation450 

BeadChip that are predictive of chronological age. Hannum DNAm-age was calculated as 

the sum of the beta values multiplied by the reported effect sizes for the Hannum predictor 

(Hannum et al., 2013). The Hannum and Horvath DNAm-ages only share 6 CpG probes 

(cg04474832, cg05442902, cg06493994, cg09809672, cg19722847, and cg22736354).

2.3. Assessment of environmental factors: ambient particles and temperature

We employed the widely used GEOS-chem chemical transport model (http://

www.geoschem.org) to generate 1-year exposure estimates for PM2.5 and the following 

major PM2.5 component species: organic carbon (OC), elemental carbon (EC), sulfate, 

nitrate, and ammonium (van Donkelaar et al., 2010). These 5 component species were 

selected because they make up a large fraction of total PM2.5 mass (~ 88.6%) and were best 

predicted by the model. GEOS-chem incorporates nonlinear chemistry, meteorology, and 
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detailed emissions inventories to simulate the formation and transportation of atmospheric 

components to give raw estimates of PM2.5 and its major chemical components. Ten-fold 

cross-validation demonstrated that the model performs well for PM2.5 mass and its 

component species with R2s ranging from 0.70 to 0.88 (Di et al., 2016). We generated daily 

estimates at the 1 × 1 km area resolution. Each participant’s residence was geocoded and 

linked to an area level grid-point. Time spent away from home (>7 days) and address 

changes were also accounted for as particle estimates were assigned to each participants’ 

address. Given that >90% of NAS participants are retired, home address exposures are 

expected to be a good proxy for their individual ambient exposures. We then generated 1-

year total PM2.5 and PM2.5 component species exposure windows by averaging daily 

exposures for the 365 days prior to the day of each participants’ NAS visit. The 1-year 

PM2.5 exposure window was utilized because it has been previously reported to be robustly 

associated with DNAm-age (Nwanaji-Enwerem et al., 2016).

We used a spatiotemporal prediction multi-step approach to generate temperature (in 

Celsius) for each participant (Kloog et al., 2014). First, we obtained 1 × 1 km resolution 

daily physical surface temperature (Ts) data from NASA satellite measurements and daily 

near surface air (Ta) data from the Environmental Protection Agency, National Climatic Data 

Center, and Weather Underground Inc. We then used mixed model regression to calibrate Ts 

to Ta. The model was validated with a mean out of sample R2 of 0.95. To generate 1-year 

temperature measurements to complement 1-year particle exposures, we averaged daily 

temperature measurements over the 365 days prior to participants’ NAS visits.

2.4. Statistical analysis

We first used generalized linear mixed effects models to determine the relationship of 

DNAm-age (Horvath and Hannum independently) with 1-year PM2.5 exposure levels and 1-

year PM2.5 component species exposure levels. All linear mixed effects models included a 

random participant-specific intercept to account for correlation between repeated measures 

(i.e. multiple visits for a participant).

We adjusted for confounders and covariates that have a priori biological/clinical relevance 

and/or are reported in the existing literature. Specifically, our previous publication was the 

first study examining associations of ambient particles and DNAm-age (Nwanaji-Enwerem 

et al., 2016). There, we used a tiered approach of adding confounders and covariates based 

on known relationships of ambient particles with DNA methylation and known relationships 

of ambient particles with older markers of aging (Horvath, 2013; Madrigano et al., 2011; 

Baccarelli et al., 2009; Bind et al., 2015; Peng et al., 2016). Tier one adjusted for 

chronological age and blood cell types. Tier two made additional adjustments for lifestyle 

and environmental factors. Tier three expanded on tier two by additionally adjusting for age-

related diseases, and tier four expanded on tier two by additionally adjusting for medications 

of age-related diseases. After considering model fit (assessed via AIC) and considering 

biological factors that are known to be important, the tier two covariates were deemed to be 

most appropriate. Thus, in line with the previously published tier two framework (Nwanaji-

Enwerem et al., 2016), the models for this analysis were adjusted for chronological age 

(continuous), six blood cell type estimates [i.e. plasma cells, CD4+ lymphocytes, CD8+ 
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lymphocytes, natural killer (NK) cells, monocytes, and granulocytes] (continuous) 

determined via Houseman and Horvath methods (Horvath, 2013; Houseman et al., 2012), 

average 1-year temperature (continuous), cumulative cigarette pack years (continuous), 

smoking status (current, former, or never), season of visit (spring [March–May], Summer 

[June–August], Fall [September–November], and Winter [December–February]), body mass 

index (BMI) (lean [<25], overweight (Horvath and Ritz, 2015; Levine et al., 2015a, 2015b, 

2015c; Horvath et al., 2014; Horvath, 2013), obese [>30]), alcohol intake (yes/no ≥2 drinks 

daily), and maximum years of education (continuous). All PM2.5 component species models 

were additionally adjusted for PM2.5 mass (Mostofsky et al., 2012).

To more rigorously identify the PM2.5 component species that may be associated with 

DNAm-age, we applied the adaptive LASSO (least absolute shrinkage and selection 

operator) (Schelldorfer et al., 2011). Given that PM2.5 component species are correlated, 

placing them together within the same standard linear regression model can result in 

unaccounted for stochastic errors. The LASSO is a regression shrinkage and selection 

approach that helps overcome such limitations. The LASSO applies an l1 penalty on the 

component regression coefficients, which minimizes the sum of squared errors subject to the 

sum of the absolute values of the coefficients being less than a given value (Tibshirani, 

1996). The adaptive LASSO improves upon this procedure by utilizing weights for 

penalizing different coefficients in the l1 penalty to identify a subset of model predictors to 

achieve asymptotic normality (Zou, 2006). Furthermore, the adaptive LASSO has been 

successfully applied in air pollution and health research (Dai et al., 2016a, 2016b).

To identify and select PM2.5 component species associated with DNAm-age, we applied a 

penalty to all PM2.5 component species, but not to PM2.5 mass and the other covariates in 

the model. λ, the penalty parameter, determines how strongly the magnitude of the PM2.5 

species regression coefficients is constrained. When λ is small, the regression coefficients 

are weakly penalized and mirror those that would be given from a standard linear mixed 

effects model. When λ is large, the coefficients are strongly penalized, shrinkage is 

maximized, and all coefficients tend towards zero such that the resulting model includes 

fixed covariates only. When λ takes a value in between the extremes, the result is a 

penalized model where some PM2.5 component species will have coefficients of zero and 

others will be non-zero. PM2.5 component species with non-zero coefficients are considered 

as “selected” by the adaptive LASSO. We ran the model across a range of λs, beginning 

with a λ of 0, and selected the λ resulting in the model with the smallest Bayesian 

Information Criterion (BIC) (Schwarz et al., 1978). Following LASSO selection, we fit a 

final multiple-species linear mixed effects model using the selected PM2.5 component 

species and our fixed covariates. From this final model, we were able to estimate component 

species effect sizes and their corresponding 95% confidence intervals.

Additionally, we considered that the LASSO may not select the PM2.5 species that are most 

correlated with total PM2.5 mass. Thus, we conducted a sensitivity analysis where we 

performed LASSO selection without adjusting for PM2.5 mass. From this sensitivity analysis 

model, we fit a multiple-species linear mixed effects model using the selected PM2.5 

component species and estimated component species effect sizes and their corresponding 

95% confidence intervals.
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After finding that Horvath DNAm-age alone was significantly associated with PM2.5 

component species, we evaluated the relationships of the DNA methylation values of each of 

the 353 Horvath CpG probes with the particles in the aforementioned LASSO-selected 

multiple-species linear mixed effects model. In addition to the already described covariates, 

we included technical covariates (450 k plate, chip, row, and column) to this analysis. To 

account for multiple hypothesis testing, we also performed FDR correction in this analysis. 

We then performed gene ontology analysis on the list of significant CpGs (FDR P-value < 

0.05) using the publically available GoTermFinder tool (http://go.princeton.edu/cgi-bin/

GOTermFinder).

In an additional sensitivity analyses, we re-ran our models excluding participant visits with 

PM2.5 exposures > 12 μg/m3. This allowed us to assess if our findings persisted even at the 

PM2.5 levels currently deemed acceptable by the U.S. Environmental Protection Agency 

(EPA) National Ambient Air Quality Standards (NAAQS) (US EPA, O.A.R., n.d.).

All statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, 

Austria) and we considered a P-value <0.05 to be statistically significant.

3. Results

3.1. Descriptive results

Table 1 summarizes the characteristics of the study population. All study participants were 

Caucasian males with a mean ± SD age of 74.7 ± 6.99 years across all study visits. Average 

Horvath DNAm-age and Hannum DNAm-age were 74.0 ± 7.92 years and 75.1 ± 8.95 years 

respectively. Horvath DNAm-age (r = 0.59, p < 0.0001) and Hannum DNAm-age (r = 0.77, 

p < 0.0001) were both strongly correlated with chronological age in the study population. 

Both measures of DNAm-age were also strongly correlated to each other (r = 0.69, p < 

0.0001).

Table 2 reports 1-year PM2.5 and PM2.5 component species exposure levels across all study 

visits. The participants had a mean ± SD 1-year PM2.5 exposure level of 10.3 ± 1.60 μg/m3, 

with an interquartile range (IQR) of 2.16 μg/m3. Of the measured PM2.5 component species, 

sulfate accounted for the largest proportion of total PM2.5 mass (33%), followed by organic 

carbon (28.6%), nitrate (11.5%), ammonium (10.1%), and elemental carbon (5.4%). OC was 

the PM2.5 species most correlated with total PM2.5 mass (r = 0.67). 1-year PM2.5 and PM2.5 

species Pearson correlations across all visits are reported in Table S1. Moreover, 1-year 

PM2.5 and PM2.5 species exposure distributions across first visits are reported in Table S2.

3.2. 1-year PM2.5 and PM2.5 component species as predictors of DNAm-age

Table 3 summarizes the results of three model frameworks where PM2.5 and its component 

species were modeled as predictors of both Horvath and Hannum DNAm-age. Residuals 

from all models appeared normally distributed. In the model framework 1, PM2.5 was 

modeled as a predictor of Horvath and Hannum DNAm-age independently. In the fully 

adjusted model, an IQR increase in 1-year PM2.5 exposure was significantly associated with 

a 0.64-year increase in Horvath DNAm-age (p = 0.005). However, an IQR increase in 1-year 
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PM2.5 exposure was not significantly associated with Hannum DNAm-age (β = 0.06, p = 

0.74).

Under the model framework 2, each PM2.5 component species was modeled as an 

independent predictor of Horvath and Hannum DNAm-age adjusting for all covariates and 

total PM2.5 mass. 1-year IQR increases in OC (β = 0.93, p = 0.001), sulfate (β = 0.59, p < 

0.0001), nitrate (β = 0.58, p = 0.01), and ammonium (β = 0.59, p = 0.0004) were all 

significantly associated with increases in Horvath DNAm-age of at least 0.58 years. No 

PM2.5 component species were significantly associated with Hannum DNAm-age (Table 3).

The model 3 framework reflects the results of the multiple-species fully-adjusted linear 

mixed effects models with the PM2.5 component species selected by the adaptive LASSO. 

The adaptive LASSO selected sulfate and ammonium as important predictors of Horvath 

DNAm-age. Fig. 1A depicts the relationship between BIC, the model selection criterion, and 

λ, the adaptive LASSO penalty parameter. The model with the smallest BIC had λ = 11. 

Fig. 1B shows the LASSO coefficient paths for the PM2.5 component species. Each 

component species coefficient is expressed as the difference in mean Horvath DNAm-age 

per an IQR increase in the 1-year component species exposure level. Each curve depicts the 

rate at which the component species coefficient shrinks towards zero as λ increases. At λ = 

0, all components species have a non-zero coefficient.

In the multiple-species fully-adjusted linear mixed effects model, both sulfate (β = 0.51, p < 

0.0001) and ammonium (β = 0.36, p = 0.04) remain significant positive predictors of 

Horvath DNAm-age. The adaptive LASSO did not select any PM2.5 component species as 

important predictors of Hannum DNAm-age.

In our sensitivity analysis – where LASSO selection was performed without adjusting for 

total PM2.5 mass – sulfate, ammonium, and OC were selected as important predictors of 

DNAm-age (Fig. S1). Nonetheless, in a multiple-species fully-adjusted linear mixed effects 

model, both sulfate (β = 0.45, p = 0.0003) and ammonium (β = 0.34, p < 0.05) remained 

significant positive predictors of Horvath DNAm-age, but OC (β = 0.42, p = 0.16) was not a 

significant predictor of Horvath DNAm-age (Table S3). Again, the sensitivity analysis 

adaptive LASSO did not select any PM2.5 component species as important predictors of 

Hannum DNAm-age.

Significant findings from the main analysis multiple-species fully-adjusted linear mixed 

effects model persisted in the second sensitivity analyses excluding participant visits with 

PM2.5 exposures > 12 μg/m3, the annual PM2.5 exposure level currently deemed acceptable 

by the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality 

Standards (NAAQS) (Table S4).

3.3. Associations between 1-year PM2.5 and PM2.5 component species levels and 
methylation values at Horvath DNAm-age CpG sites

After FDR correction, 47 out of 353 Horvath DNAm-age CpG sites had methylation values 

that were significantly associated with total PM2.5 levels in the fully-adjusted multiple-

species linear mixed effects model. PM2.5 levels were positively or negatively associated 
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with CpG methylation values depending on the CpG site (Table 4). 46 of the 47 CpG sites 

mapped to known genes. 9 of these 46 genes (ENPP2, FAM50B, LZTFL1, SGCE, 

C14orf105, ZBTB5, TMEM132E, CATSPERG, and NDUFA13) were previously reported in 

a similar, previously published PM2.5 Horvath CpG analysis (Nwanaji-Enwerem et al., 

2016). Gene ontology of our 46 genes combined with the genes in the previously reported 

study returned the GO term “regulation of translational initiation” (Table S5).

Only 1 out 353 CpG sites (cg02275294) had methylation values that were significantly 

associated with ammonium levels in the fully-adjusted multiple-species linear mixed effects 

model. No individual CpG sites had methylation values that were significantly associated 

with sulfate levels after FDR correction.

4. Discussion

In this study, we report positive associations of 1-year PM2.5 exposure levels with Horvath 

DNAm-age in a population of community-dwelling, elderly men. Additionally, we utilized 

the adaptive LASSO to identify 1-year sulfate and ammonium levels as the PM2.5 

components most robustly associated with Horvath DNAm-age. To our knowledge, this is 

the first report of associations of multiple PM2.5 component species with DNAm-age and the 

second time that satellite-derived PM2.5 exposure levels have been found to be associated 

with Horvath DNAm-age. In addition to being consistent with the existing literature 

(Nwanaji-Enwerem et al., 2016), our findings also demonstrate important public health 

relevance as they persist in sensitivity analyses including only participant visits with 1-year 

PM2.5 levels within current US EPA national ambient air quality standards (US EPA, 

O.A.R., n.d.). Our study also extends the literature by exploring PM2.5 relationships with 

Hannum DNAm-age although these relationships were found to be null. Furthermore, we 

identified 47 CpG sites, 9 of which were previously reported, whose methylation values 

were significantly associated with PM2.5 levels in fully-adjusted linear mixed effects models. 

Only 1 CpG was associated with ammonium levels and 0 were associated with sulfate levels.

Given our prior report of robust associations of PM2.5 levels from satellite-based 

spatiotemporal models with Horvath DNAm-age, we expected to observe a similar positive 

relationship using PM2.5 levels from the GEOS-chem chemical transport model. As 

expected, we observed that an IQR increase in 1-year PM2.5 exposure was associated with a 

0.64-year increase in Horvath DNAm-age. Since PM2.5 component species are highly 

related to total PM2.5, we also expected that PM2.5 component species would be associated 

with Horvath DNAm-age, even when adjusting for PM2.5 mass. Given the existing literature 

concerning the differential health effects of PM2.5 component species, we speculated that 

some component species may be more robustly associated with Horvath DNAm-age than 

others. In particular, we expected the carbonaceous fractions to be among the species most 

robustly associated with DNAm-age due to the extensive literature (including work from our 

group) on the adverse nature of carbonaceous fraction exposures on health (Nwanaji-

Enwerem et al., 2016; Baccarelli et al., 2009; Colicino et al., 2014; Zanobetti et al., 2014; 

McCracken et al., 2010). In our fully adjusted one-species linear mixed effects models, we 

observed strong positive associations of 4 out of the 5 component species examined with 
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Horvath DNAm-age. IQR range increases in organic carbon, sulfate, nitrate, and ammonium 

were all significantly associated with at least a 0.58-year increase in Horvath DNAm-age.

Despite the results from our fully adjusted one-species linear mixed effects models, we 

desired a method to more comprehensively identify the component species most associated 

with DNAm-age. Nevertheless, we were aware that simply modeling highly-correlated 

PM2.5 species together would result in unaccounted for stochastic errors. Thus, we employed 

the adaptive LASSO as a penalized regression method to help overcome this difficulty. The 

literature has shown that carbonaceous fractions are robustly associated with age-related 

health outcomes (Nwanaji-Enwerem et al., 2016; Baccarelli et al., 2009; Colicino et al., 

2014; Zanobetti et al., 2014; McCracken et al., 2010); however, neither elemental or organic 

carbon were selected in our models. Rather, sulfate and ammonium were selected. This 

difference may be explained by the fact that a majority of the aforementioned studies did not 

consider other PM2.5 component species in addition to the carbonaceous fractions. Even in 

our single-species linear mixed effects models, we note that organic carbon was among the 

four species significantly associated with Horvath DNAm-age (Table 3). However, when all 

five component species are considered together in the adaptive LASSO, only sulfate and 

ammonium were selected. It is also possible that the LASSO did not select the carbonaceous 

fractions because the selection was performed under PM2.5 adjustment and PM2.5 may be 

capturing most of the variability of organic and elemental carbon. Thus, we performed 

LASSO selection not adjusting for total PM2.5 mass as a sensitivity analysis. This time 

LASSO did select organic carbon along with sulfate and ammonium. However, when these 

three component species were modeled with PM2.5 in a multiple-species fully-adjusted 

linear mixed effects model, organic carbon was the only species that was not a significant 

predictor of DNAm-age. This suggests that organic carbon was selected in the sensitivity 

analysis because of its strong correlation with PM2.5 mass and not because organic carbon 

itself is a good predictor of DNAm-age. This finding also reiterates the notion that 

adjustment for PM2.5 mass in component species models is very important as PM2.5 mass 

often confounds the relationship between the outcome and species (Mostofsky et al., 2012). 

Failing to include PM2.5 mass may lead to misleading findings about species. In all, our data 

suggests that of the considered species, sulfate and ammonium have the most important 

relationships with DNAm-age. Furthermore, existing studies that do consider a range of 

PM2.5 components demonstrate that other non-carbonaceous components are important to 

age-related outcomes (Dai et al., 2016b; Wu et al., 2013; Wu et al., 2015). These data, 

together with our findings, also suggests the important need to consider a range of PM2.5 

components, rather than one or two species, in air pollution and health studies.

Both sulfate and ammonium are classified in the inorganic fraction of PM2.5. Sulfates are 

often produced from oxidation or photochemical reactions involving primary gases derived 

from sources like coal-burning power plants (Huang et al., 2014). Additionally, ammonia 

from organic sources including animal feeds and fertilizers can contribute to the existence of 

sulfates in the form of atmospheric ammonium sulfate (Frank, n.d.). As far as direct ambient 

sulfate and ammonium toxicity to human health is concerned, existing studies are limited. 

Yet, there has been extensive evidence describing the ability of acidic sulfates, like 

ammonium sulfate, to increase the number and toxicity of biologically harmful secondary 

particles (Mostofsky et al., 2012; Popovicheva et al., 2011; Rubasinghege et al., 2010; Li et 
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al., 2011; Lepeule et al., 2012; Schwartz and Lepeule, 2012). For instance, ammonium 

sulfate aerosols have been shown to influence the photo-chemical reactions of nitrogen 

oxides and toluene hastening the production of secondary organic aerosols (Wu et al., 2007). 

Moreover, sulfur concentrations have been found to be directly proportional to the ability of 

soluble particle extracts to generate biologically damaging oxidants (Ghio et al., 1999). 

Furthermore, a prior study in the NAS has reported a 27% decrease in long interspersed 

nucleotide element-1 methylation per every IQR increase in 90-day sulfate exposure. This 

study provides evidence for the influence of sulfates on DNA methylation, which may be a 

potential pathway for sulfate toxicity (Madrigano et al., 2011). It is still unclear what the 

molecular relevance of Horvath DNAm-age is, but our findings along with the existing 

literature will be helpful in providing additional insight for future work.

Following the selection of sulfate and ammonium by the adaptive LASSO, we constructed a 

final multiple-species linear mixed effects model adjusted for PM2.5 mass and all covariates. 

Even in this model, sulfate and ammonium remained significant positive predictors of 

Horvath DNAm-age. We then looked to see if there were specific Horvath DNAm-age 

component CpG sites with methylation values that were associated with PM2.5, sulfate, 

and/or ammonium in our fully-adjusted multiple-species linear model. From this analysis, 

we identified 47 significant CpG sites after FDR adjustment. These sites mapped to 46 

genes, and 9 of them were reported in a previous CpG-level analysis of the same 353 sites in 

the Horvath algorithm that we conducted using PM2.5 levels from a satellite-based 

spatiotemporal model. To better grasp the impact of PM2.5 levels on methylation, we divided 

the coefficients for each significant CpG site (i.e. difference in methylation per IQR increase 

in particle level) by the standard deviation of the respective particle level. We were pleased 

to see that 5 of the 9 CpGs that were shared between both PM2.5 prediction models were in 

the top 20% of our gene list. We then combined the gene lists from both PM2.5 prediction 

models (removing any duplicates) and performed a gene ontology (GO) analysis. The GO 

analysis returned the term “regulation of translational initiation” with the following genes 

from our list falling into this category: RXRA, EIF3M, EIF31. Though the GO term itself is 

not highly specific, combining this pathway with what is known about the toxicity of PM2.5 

will be useful in further understanding how PM2.5 may contribute to aging and disease. Only 

1 CpG was associated with ammonium levels and it mapped to the gene SOAT1, which is 

involved in fatty-acyl-CoA binding. SOAT1 has been implicated in a number of diseases 

including familial hypercholesterolemia (Peters et al., 2011). No CpG sites were specifically 

associated with sulfate levels. The finding that almost no CpGs sites were associated with 

ammonium and sulfate further demonstrates that Horvath DNAm-age is simply not a 

reflection of its 353 component CpGs, and reiterates the need for work focused on defining 

the molecular relevance of DNAm-age.

Finally, our study demonstrates that all DNAm-age measures are not the same. In the 

literature there is evidence of both Horvath and Hannum DNAm-age reflecting the same 

disease outcome and evidence where they differ in their reporting ability. For instance, both 

Horvath and Hannum DNAm-age appear to be useful in predicting mortality (Chen et al., 

2016; Wolf et al., 2016). However, in a study of male and female veterans, Hannum DNAm-

age was associated with post-traumatic stress disorder and neural integrity, but Horvath 

DNAm-age was not (Perna et al., 2016). The differences in these two DNAm-age measures 
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may stem from the fact that they are derived from almost entirely different CpG sites or from 

the fact that Horvath DNAm-age was constructed using many datasets of multiple tissue 

types and the Hannum DNAm-age was based only on blood from one dataset (Horvath, 

2013; Hannum et al., 2013). Our results suggest that Hannum DNAm-age is not sensitive to 

exposure levels of PM2.5 and its component species. Additional studies in different 

populations will be necessary to confirm these findings more broadly. Nonetheless, 

continued research exploring the specific sensitivity of DNAm-age measures will be a 

crucial next step in the growth of this field of research. Once more is known about the 

profiles of these markers, we can begin to use them more effectively in answering questions 

concerning human health.

Strengths of our study include rigorous statistical methods and access to a large cohort with 

extensive and repeated information regarding pollutant exposures, potential confounders, 

and DNA methylation data from multiple study visits. However, our study does have several 

limitations. First, although we used a validated chemical transport model to estimate the 

levels of ambient PM2.5 and its component species at participants’ addresses, we recognize 

that these estimates may differ from personal exposures. Nonetheless, we know that a 

majority of NAS participants are retired and spend most of their time at home. Moreover, 

our approach is expected to result in non-differential misclassification that is likely to 

underestimate the observed associations rather than bias them away from the null 

(Kioumourtzoglou et al., 2014). Secondly, it is known that LASSO regression is limited to 

linear relationships. Given the linear relationship of our particle exposures with DNAm-age 

and the scope of this paper, the adaptive LASSO was a good tool for identifying PM2.5 

components that are independently important to DNAm-age. However, for future studies 

potentially interested in the interactions between PM2.5 components, another technique may 

be necessary as PM2.5 species interactions that are important for the prediction of DNAm-

age may be more complex (i.e. not linear). Third, we note that our findings are based on an 

elderly cohort of Caucasian males that reside in a lightly-polluted environment. Hence, 

additional studies involving other demographic groups and in different environments will be 

necessary to confirm our findings more broadly. Finally, we used the existing literature and a 
priori knowledge of biological/clinical relevance to adjust for potential confounders. 

Nonetheless, we cannot rule out the possibility of unknown or residual confounding in our 

analyses.

5. Conclusion

Our study utilizes the GEOS-chem chemical transport model to validate novel positive 

associations between long-term PM2.5 exposure levels and Horvath DNAm-age. For the first 

time, we demonstrate that sulfate and ammonium are among the PM2.5 component species 

most associated with Horvath DNAm-age in this population of elderly men. In contrast, we 

observed no relationships of long-term PM2.5 and PM2.5 component species exposure levels 

with Hannum DNAm-age. These results suggest that DNA methylation-based biomarkers of 

age differ in their sensitivity to ambient particle exposures and potentially disease outcomes. 

Future studies in other populations will be critical for defining the environmental and disease 

sensitivity profiles of DNAm-age measures.
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Fig. 1. 
A) The relationship between BIC, a criterion for model selection and λ (lambda), the 

adaptive LASSO penalty parameter, for DNAm-age. The vertical line at λ = 11 denotes the 

penalty parameter with the lowest BIC. B) LASSO coefficient paths: plot of coefficient 

profiles for PM2.5 components as a function of λ. At λ = 11, sulfate and ammonium are the 

only PM2.5 components with a non-zero coefficient.
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Table 1

Characteristics of study subjects (2000–2011).

Variable First visit (N = 552) All visits (N = 940)

Age (years), mean (SD) 73.3 (6.82) 74.7 (6.99)

Horvath DNAm-age (years), mean (SD) 73.7 (7.77) 74.0 (7.92)

Hannum DNAm-age (years), mean (SD) 73.8 (8.80) 75.1 (8.95)

Temperature (°C), mean (SD) 11.5 (1.12) 11.3 (1.00)

Pack years, mean (SD) 20.7 (24.7) 20.5 (24.4)

Smoking status, N (%)

 Current 25 (4) 40 (4)

 Former 355 (64) 614 (65)

 Never 172 (32) 286 (31)

Season, N (%)

 Spring 145 (26) 241 (26)

 Summer 115 (21) 199 (21)

 Fall 177 (32) 313 (33)

 Winter 115 (21) 187 (20)

BMI, N (%)

 Healthy/lean 119 (21) 216 (23)

 Overweight 302 (55) 493 (52)

 Obese 131 (24) 231 (25)

Alcohol consumption, N (%)

 <2 drinks/day 441 (80) 761 (81)

 ≥2 drinks/day 111 (20) 179 (19)

Education, N (%)

 ≤12 years 146 (27) 242 (26)

 12–16 years 262 (47) 434 (46)

 >16 years 144 (26) 264 (28)
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