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Recent theoretical and experimental results point to the existence
of small barriers to protein folding. These barriers can even be
absent altogether, resulting in a continuous folding transition (i.e.,
downhill folding). With small barriers, the detailed properties of
folding ensembles may become accessible to equilibrium experi-
ments. However, further progress is hampered because folding
experiments are interpreted with chemical models (e.g., the two-
state model), which assume the existence of well defined mac-
rostates separated by arbitrarily high barriers. Here we introduce
a phenomenological model based on the classical Landau theory
for critical transitions. In this physical model the height of the
thermodynamic free energy barrier and the general properties of
the folding ensemble are directly obtained from the experimental
data. From the analysis of differential scanning calorimetry data
alone, our model identifies the presence of a significant (>35
kJ�mol) barrier for the two-state protein thioredoxin and the
absence of a barrier for BBL, a previously characterized downhill
folding protein. These results illustrate the potential of our ap-
proach for extracting the general features of protein ensembles
from equilibrium folding experiments.

experimental analysis � free energy barrier � downhill folding � two-state
folding � phenomenological model

In contrast to the situation in many fields of modern physics,
experimental results in protein folding are seldom directly inter-

pretable by analytical theory or computer simulations. The inter-
pretation typically involves a simple phenomenological model with
which experimental results are analyzed, and the outcome of such
ad hoc analysis is used to extract conclusions regarding experiments.
A paradigm of this principle is the two-state model, in which
protein-folding reactions are analyzed in terms of a chemical
equilibrium between two independent species, native (N) and
unfolded (U):

N7 U. [1]

In Eq. 1, species with intermediate degree of structure are ignored,
and the transition from one state to the other is of the first order.
The use of a two-state model and its obvious generalization (i.e., a
series of chemical equilibria between n structurally defined mac-
rostates) is deeply rooted in the tradition of describing chemical
transformations of small molecules as reaction schemes.

Despite the obvious limitations of comparing protein folding
with simple chemical reactions, the two-state protein-folding model
enjoys tremendous popularity. One of the reasons is that this model
seems to accommodate the folding behavior of a large set of
single-domain proteins (1). Two-state folding could also provide
proteins with a significant biological advantage by conferring upon
them kinetic stability in vivo (see ref. 2 for a recent discussion).
However, to make sure that the two-state character of proteins is
not a self-fulfilling prophecy (3), it is important to analyze exper-
imental data with a procedure that does not make assumptions

about the existence of a free energy barrier. A more general
procedure would also provide an opportunity to extract information
about protein-folding ensembles that is discarded in the traditional
two-state analysis.

The need for better procedures to analyze folding experiments
has become more urgent in light of recent developments. Theory
predicts that folding free energy barriers arise from the nonsyn-
chronous compensation between energy and entropy (4, 5), and are
small in the chemical sense (6). Accordingly, protein-folding tran-
sitions are expected to be of the first order (i.e., type I scenario in
the energy landscape language) or continuous (i.e., type 0 scenario,
or downhill) depending on experimental conditions (4). Kinetic
experiments in very fast-folding proteins (7) and thermodynamic
analysis of the folding kinetics of several two-state-like proteins (8)
suggest that for many natural proteins folding barriers are, indeed,
rather small. Computer-designed proteins fold faster than their
natural templates, although no selection for folding efficiency was
included in the design strategy (9). Therefore, the higher folding
barriers of the natural proteins might be the result of natural
selection, rather than an intrinsic feature of protein folding. The
theoretical analysis of protein polymer models also indicates that it
might be harder for proteins to achieve cooperativity (i.e., a large
free energy barrier) than a stable folded structure (10). Further-
more, folding barriers can be reduced by mutations resulting in a
populated ‘‘activated’’ complex (11) or can even disappear when
mutations are combined with extrinsic stabilizing agents (12). In
fact, in some proteins the folding free energy barrier can be
altogether absent in thermodynamic terms, resulting in global
downhill folding and continuous unfolding transitions (13, 14).
Proteins with such features could even have an important biological
role as molecular rheostats (14).

The problem of describing processes that, depending on condi-
tions, behave either as first-order or continuous transitions arises in
a well known branch of thermodynamics: the theory of critical
transitions. In the classical Landau theory of critical transitions (see
chapter 10 in ref. 15), this phenomenon is described with a free
energy functional expressed as a series expansion in powers of an
‘‘order parameter’’ (the property that exhibits large fluctuations
near critical conditions) and truncating the expansion at the quartic
level. The truncated expansion produces a free energy functional
with one or two free energy minima, depending on the sign of the
coefficient of the quadratic term.

Here, using the Landau free energy as a starting point, we
introduce a simple phenomenological model for the analysis of
equilibrium protein-folding experiments. The great advantage of
this model is that the height of the free energy barrier and the
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general properties of the folding ensemble are not preassumed but
are obtained directly from the experimental data. We have used this
variable-barrier model to analyze differential scanning calorimetry
(DSC) experiments of protein unfolding. Because DSC data are
directly related to the relevant protein partition function (16), their
analysis with the model highlights the potential of this approach for
investigating equilibrium folding ensembles. The model produces a
large barrier when used to analyze the DSC thermogram of the
two-state protein thioredoxin (17) and a barrierless free energy
profile when used to analyze the DSC thermogram of the downhill
folding protein BBL (14).

Theory
We are interested in describing protein-folding�unfolding transi-
tions as a continuous distribution of protein states. Therefore, we
write the partition function (Q) as

Q � ���H��exp��
H

RT� �dH , [2]

in which the system is described as an ensemble of enthalpy
microstates, H is a suitably defined enthalpy scale, and �(H) is the
density of enthalpy microstates. The enthalpy scale and �(H) are
taken strictly independent of temperature. In other words, mi-
crostates are assigned constant energy (enthalpy) values. Other
properties such as entropy and heat capacity arise from the char-
acteristic probability distribution of the ensemble of microstates,
and the heat capacity defines the temperature dependence of the
average enthalpy. We also note that Eq. 2 for the partition function
is a continuous analogue of the well known Freire–Biltonen ex-
pression (16), in which the system is divided in a series of discrete
macrostates,

I07 I17 I27 I37 · · ·7 In�27 In�17 In , [3]

and the partition function is expressed as

Q � �
i�0

i�n

exp� �Si

R � �exp��
�Hi

RT � , [4]

where the native state (I0 � N) is taken as reference and, therefore,
�Hi � H(Ii) � H(N) and �Si � S(Ii) � S(N). The term exp(�Si�R)
in Eq. 4 is equivalent to the density of states in Eq. 2.

From Eq. 2, the probability of finding the protein in a microstate
of enthalpy H at a given temperature T is given by

P�H�T� �
1
Q

��H��exp��
H

RT� , [5]

where P(H�T) is a probability density, its precise meaning being that
P(H�T)dH gives the probability of finding values of enthalpy within
the infinitesimal range {H, H � dH} at the temperature T. The
relationship between the probabilities at the temperature T and at
a ‘‘characteristic’’ temperature T0 is determined by

P�H�T� � C�P�H�T0��exp���H� , [6]

where

� �
1
R �1

T
�

1
T0
� [7]

and C is a constant determined by the normalization condition
[�P(H�T)�dH � 1].

It follows that first- and higher-order enthalpy moments (i.e.,
�Hn	 with n � 1, 2, . . .) can be expressed as

�Hn	 � �HnP�H�T��dH � C��HnP�H�T0��exp���H� �dH

[8]

and that the excess heat capacity (with reference to the native state)
can be expressed as

CP
EX �

d�H	

dT
�

�H2	 � �H	2

RT2 . [9]

Eqs. 6–9 allow us to calculate the excess heat capacity as a function
of temperature provided that the probability density at the char-
acteristic temperature (P(H�T0)) is known. In principle, the prob-
ability density could be directly extracted from the DSC data by
calculating the inverse Laplace transform of the partition function.
However, calculation of the inverse Laplace transform of experi-
mental data is a notoriously ill-defined problem, as is discussed in
the context of protein folding by Kaya and Chan (18). Instead of
attempting a model-free inversion, we seek to describe the proba-
bility density in terms of a simple and physically reasonable free
energy functional that is defined with a few parameters and can be
used in a standard fitting process. Particularly, we define P(H�T0) as

P�H�T0� � C
�exp��
G0�H�

RT0
� , [10]

where G0(H) is a free energy functional and C
 is a constant
resulting from application of the normalization condition
[�P(H�T0)dH � 1] once G0(H) has been obtained. Inspired by the
classical Landau theory of critical transitions (see chapter 10 in ref.
15), we now expand G0(H) as a power series of H, truncate the
expansion in the quartic term, and assume that the coefficients of
the odd powers are zero at the characteristic temperature

G0�H� � �2� ��H
�
�2

� �� � ��H
�
�4

, [11]

where we have expressed the coefficients of H2 and H4 in terms of
two parameters, � and �, which (as we show below) have a clear and
intuitive meaning. The symmetry of Eq. 11 implies that the excess
enthalpy (Eq. 8 with n � 1) at the temperature T0 is zero. This only
means that the enthalpy scale has been shifted (by adding a constant
value), a fact of no physical consequence because any constant
added to �H	 will vanish in the derivative that defines the excess heat
capacity, CP � d�H	�dT. It is important to note that, in contrast with
the classical Landau theory, the coefficients of the H2 and H4 terms
are taken to be independent of temperature in our model. There-
fore, our model is not meant to predict the transition from a
scenario with two macrostates to a scenario with a single macrostate
as temperature changes (see chapter 10 in ref. 15), and discussion
of critical exponents is not relevant here.

The parameter � in Eq. 11 may be a positive or a negative
number, but the coefficient of H4 is always positive (i.e., the absolute
value of �, ���). A positive coefficient in the quartic term is required
to guarantee stability with respect to large enthalpy fluctuations. It
can be easily shown (by solving dG0�dH � 0 and evaluating
d2G0�dT2 at the roots) that, for � � 0, G0(H) has a maximum at H �
0 and two minima at H � �� (see Fig. 1a). Thus, for � � 0, there
are two macrostates (Fig. 1b) with an enthalpy difference of 2�.
� corresponds in this case to the height of the barrier separating the
two minima at the characteristic temperature (G0(0) � G0(��) �
�) (Fig. 1a). For � � 0, G0(H) shows only a minimum at H � 0 (Fig.
1c), and there is only one macrostate (Fig. 1d). In this case, � and
� are just convenient parameters that describe the shape of the free
energy functional. Therefore, in this model the sign of the param-
eter � determines the observation of two macrostates or a single
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macrostate at the characteristic temperature T0. Of course, very
small positive � values will be essentially equivalent to the barri-
erless case.

To better attune this phenomenological variable-barrier model to
the specific properties of protein-folding reactions, we introduce an
additional modification. The inherent symmetry of Eq. 11 implies
that, for large and positive � values, the two resulting free energy
wells must have the same enthalpy fluctuations (i.e., the same heat
capacity). A free energy profile with two wells of the same shape is
a desirable property when dealing with systems that have intrinsic
symmetry, such as Ising ferromagnets. However, symmetry be-
tween the two free energy minima is at odds with the typical
situation in protein-folding�unfolding transitions in which the high-
enthalpy macrostate (i.e., thermal unfolded state) has a significantly
larger heat capacity than the low-enthalpy macrostate (i.e., native
state). To account for the asymmetry of protein folding, we
introduce one � parameter for negative values of H (�N) and
another � parameter for positive values of H (�P). The effect of this
modification is illustrated for the high-barrier scenario (� � 0; Fig.
1 e and f) as well as for the barrierless, one-state scenario (� � 0,
Fig. 1 g and h).

Fitting Procedure
The model defined in the previous section has only four parameters:
T0, �, �N, and �P. These four parameters allow for the calculation
of the first and second enthalpy moments by numerical integration
of Eq. 8 with n � 1 and n � 2 [and use of Eq. 10 for P(H�T0)].
Substitution of the calculated first and second enthalpy moments
into Eq. 9 provides the excess heat capacity, which can be directly
compared with the results of DSC experiments. For convenience in
the fitting, we express �N and �P in terms of the parameters �� and
f defined by the following relationships:

�N � �P � ��, [12]

�N � ���f�2, [13]

and

�P � ����2 � f��2. [14]

�� roughly corresponds to the difference in enthalpy between the
minima found at low and at high temperature. For the two-
macrostate scenario (i.e., � �� 0), �� is a good estimate of the
transition enthalpy at T0 (Fig. 1e). f is an ‘‘asymmetry factor.’’ If f �
1, then the heat capacity is the same for both minima at T0, whereas
if f � 1, then the heat capacity of the low-enthalpy macrostate (i.e.,
native) decreases with respect to that of the high-enthalpy mac-
rostate (i.e., unfolded).

Therefore, �� and T0 are the two main parameters for describing
the general thermodynamic properties of the transition. The shape
of the free energy functional, which is mainly defined by � and f,
determines the enthalpy fluctuations associated with the unfolding
transition. The DSC data also include enthalpy fluctuations arising
from the intrinsic heat capacity of proteins. To eliminate this
contribution, we perform a native baseline subtraction (see below),
which should result in an infinitely narrow distribution function for
a fully native protein (i.e., f3 0 and T03 �). In practice, we have
not observed significant differences once f � 0.25, which probably
reflects the existence of a limit in the resolution of the procedure
and experimental data. Here, we have used a constant f � 0.1
because it is well within the appropriate range and is still large
enough to facilitate numerical integration and produce a T0 not
much higher than the temperature at which both macrostates are
equally populated, Tm. The critical parameter � determines the
height of the barrier and affects the magnitude of the enthalpy
fluctuations in the transition region for unfolding.

In our fitting procedure we fit (in the least-squares sense) T0 and
�� to DSC data using fixed � values and a constant f � 0.1. This
procedure is repeated for a set of � values in an exhaustive grid
search to generate plots of � (the standard deviation between the
experimental and predicted excess heat capacity values) vs. �. Such
exhaustive analysis is tedious and time-consuming, but it gives us
some degree of confidence that the fitting is not trapped in local
minima. Furthermore, the ��� plots facilitate the classification of
the unfolding transition as one dominated by crossing a free energy
barrier (� �� 0, two macrostates) or as a barrierless transition (� 	
0, downhill) by simple visual inspection.

Application of the Model to the Thermal Unfolding of Thioredoxin.
The DSC thermogram for the thermal unfolding of thioredoxin
from Escherichia coli shows a single calorimetric transition (‘‘peak’’)
(Fig. 2a). These results have been previously interpreted as a
first-order transition (i.e., two macrostates separated by a barrier)
on the basis of the analysis with a chemical two-state model (17).
At pH 7.0, the chemical two-state model produces a Tm of 362 K,
a �Hm of 431 kJ�mol�1, and a �CP of 6.5 kJ�K�1�mol�1 (17).

Fig. 3a shows plots of � vs. � for the fitting of our model to the
experimental excess heat capacity data for thioredoxin unfolding.
The fitting has been carried out by directly taking the heat capacity
values in the 333–343 K range to trace the native baseline (baseline
1 in Fig. 2a) and by downshifting this baseline by 2 kJ�K�1�mol�1 to
test the sensitivity of the analysis to native baseline tracing (baseline
2 in Fig. 2a). Inspection of Fig. 3a reveals that low values of � (good
fits) can only be obtained for positive and large � values. Baseline
1 produces lower � values than baseline 2, which is not surprising
because, for a protein with a DSC thermogram such as the one
shown in Fig. 2a, tracing the native baseline directly from the data
is straightforward. The best overall fit produces the parameters � �
39.5 kJ�mol, T0 � 96.6°C, and �� � 451 kJ�mol. The result of this
fit is shown in Fig. 2a together with the experimental data and a fit

Fig. 1. Plots of free energy [G0(H)] vs. enthalpy (a, c, e, and g) and probability
distributions [P(H�T0)] vs. enthalpy (b, d, f, and h) at the characteristic temperature
(T0). (a and c) Free energy profiles calculated with an asymmetry factor of 1 and
with positive (a) or negative (c) � values. (b and d) The probability distributions
corresponding to the free energy profiles in a and c. (e and g) Free energy profiles
calculated with an asymmetry factor of �1, and with positive (e) or negative (g)
� values. (f and g) The probability distributions corresponding to the free energy
profiles of e and g.
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with a slightly negative � value for comparison. The fitted param-
eters indicate that there is a free energy barrier separating two
distinct macrostates in the unfolding of thioredoxin. This conclu-
sion still holds when the native baseline is downshifted, which results
in artificially broader transitions.

The free energy functional and the probability distribution as a
function of H calculated at T0 with the parameters of the best fit are
shown in Fig. 4a. The free energy functional has one sharp
minimum at low-enthalpy values (i.e., native state) and a much
broader minimum at high-enthalpy values (i.e., unfolded state)
separated by a large free energy barrier. The probability distribu-
tion shows a very sharp peak for the native state and a broad
distribution centered at 410 kJ�mol for the unfolded state. A
straightforward calculation yields 362 K for the temperature at
which both macrostates are equally populated, Tm, and 430 kJ�mol
for the unfolding enthalpy at the Tm(�Hm), in excellent agreement
with the parameters derived from the chemical two-state analysis.

Application of the Model to the Thermal Unfolding of BBL. The
equilibrium unfolding transition of the small protein BBL has been
investigated in great detail as a function of temperature (14) and
urea (19). The analysis of these experiments with a simple statistical
mechanical model indicated that BBL folds without crossing free
energy barriers (14). The absence of a free energy barrier results in
a conformational ensemble in which the degree of order decreases
gradually with protein stability (13, 14). BBL seems like an ideal
candidate to test the performance of our model and investigate the
characteristics of its folding ensemble.

BBL has a DSC thermogram that shows a broad transition (Fig.
2b). In this condition BBL is well above its cold denaturation
temperature (19), so the broadening is not a consequence of

overlapping heat- and cold-induced unfolding transitions. If ana-
lyzed individually, this DSC thermogram can be fitted to a chemical
two-state model, producing a �Hm of 92 kJ�mol�1, a Tm of 320 K,
and a van’t Hoff ratio close to unity (data not shown). However,
there are several indications that this fitting is unphysical: the
temperature dependence obtained for the native state heat capacity
is �2 times higher than that expected for proteins of this size (20);
the absolute heat capacity recorded at the lowest temperatures is
higher than that expected for the fully native protein [i.e., 1.5
J�K�1�g�1 recorded vs. 1.3 J�K�1�g�1 expected (20, 21)], and the
obtained �CP changes from positive to negative in the middle of the
transition because the two baselines cross. These observations
indicate that the transition is clearly not two-state. In fact, the three
outlined features have also been observed in leucine zippers and
interpreted as indicative of a non-two-state transition (22). The
importance of the heat capacity tails has also been discussed in the
context of comparing experimental data and polymer models (18).

Therefore, for BBL, and possibly for most of the very small
proteins, the native baseline cannot be directly extrapolated from
the DSC thermogram, as we have done for thioredoxin. As an
alternative to direct extrapolation, we use the empirical equation
proposed by Freire (23), in which the heat capacity as a function of
temperature is directly calculated from the molecular mass of the
protein,

CP,N � �1.323 � 6.7�10�3��T � 273.15���Mr J�K�1�mol�1,

[15]

where T is the temperature in K and Mr is the molecular mass of
the protein in g�mol. For DSC experiments reporting absolute heat
capacities, this equation should provide a reasonable approxima-
tion of the native baseline (see Appendix 1 and Fig. 5, which are
published as supporting information on the PNAS web site). The

Fig. 2. Experimental and theoretical DSC profiles for E. coli thioredoxin (a) and
BBL (b). The experimental DSC data (open circles) were taken from refs. 17
(thioredoxin) and 14 (BBL). The curves traced with continuous lines are the best
fits to the variable-barrier model. The � value is shown along the lines of the fit.
Curves traced with dashed lines show a fit with a � value of opposite sign to that
of the best fit. The different native baselines (1–4) are shown as continuous lines.

Fig. 3. Plots of standard deviation vs. � value for the fits of the variable-barrier
model to the experimental data shown in Fig. 2 for thioredoxin (a) and BBL (b).
Numbers 1–4 labeling the profiles refer to the baselines used in the calculation of
the excess heat capacity profiles (see Fig. 2). All calculations used an asymmetry
factor of 0.1.
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native baseline calculated for BBL with this equation is baseline 1
in Fig. 2b, which is in good accordance with the DSC thermogram
(i.e., close to the data at low temperatures and not crossing the
thermogram at higher temperatures). We have carried out calcu-
lations with other possible native baselines in an effort to test the
influence of the native baseline in the performance of the variable-
barrier model. Particularly, we have used baselines with a higher
temperature slope (baseline 2) and lower temperature slope (base-
line 3) and baselines that are parallel but downshifted (baseline 4).
This range of baselines constitutes a generous estimate of the
uncertainty involved in estimating the heat capacities for native
proteins from Eq. 15 (see Appendix 1).

The results of the analysis of BBL’s DSC thermogram with the
variable-barrier model are summarized in Figs. 2b and 3b. In this
case, the plots of � vs. � (Fig. 3b) clearly indicate that good fits (low
values of �) are only obtained for small absolute � values (see also
Fig. 2b). Actually, the best fit with baseline 1 is obtained with a
slightly negative � value (T0 � 308.8 K, �� � 235 kJ�mol, � � �2.5
kJ�mol). Baselines with a lower temperature slope or downshifted
baselines (i.e., baselines 3 and 4) produce best fits with even more
negative � values. The baseline with the highest temperature slope
(i.e., baseline 2) produces best fits with � values very close to zero,
which still correspond to a barrierless scenario. Fig. 2b also shows
a fit with a � value that results in a marginal free energy barrier (i.e.,
2 RT) to illustrate the sensitivity of the method. Therefore, the
analysis with the variable-barrier model detects the absence of a
global free energy barrier for folding in BBL from just the enthalpy
fluctuations measured in equilibrium by DSC. Furthermore, the
result is largely independent of the tracing of the native baseline, as
long as this baseline is constrained within a physically reasonable
range.

Fig. 4b shows the probability distribution as a function of H for
BBL as obtained from the best fit with baseline 1. The free energy

functional at T0 is shown in Fig. 4b Inset. The shape of the free
energy functional is clearly downhill, and it is quite similar to free
energy profiles previously obtained from a global analysis of
experimental data and a statistical mechanical model that uses the
number of native peptide bonds as order parameter (14). The
probability distribution changes as expected for a one-state transi-
tion. The distribution is clearly unimodal at all temperatures, with
the maximum probability shifting from low-enthalpy values at low
temperature to high-enthalpy values at high temperature. At inter-
mediate temperatures the width of the probability distribution is
maximal, in agreement with the observation of a ‘‘peaked’’ DSC
thermogram.

A Critical Assessment of the Phenomenological Variable-Barrier
Model. The phenomenological model presented here is a simple
adaptation of the Landau theory of critical transitions to protein
folding. We have formulated this model to be a new tool for the
analysis of experimental data. The model is extremely simple, with
only three to four adjustable parameters. Yet, as we have shown
above, it is a powerful tool for the study of protein-folding ensem-
bles and should prove very useful in the identification of new cases
of barrierless folding. However, formulating such a simple model
implies that some approximations had to be made. Here we discuss
the most important ones and their implications.

Procedures for deriving the shape of the free energy surface for
a particular process typically require the definition of an order
parameter. In this case, the order parameter should provide a
structural scale directly connected to the degree of protein unfold-
ing. We have used the excess enthalpy with respect to the native
state as our order parameter mainly because it is directly related to
the DSC measurements; by using it we also avoid making specific
assumptions about folding mechanisms. However, it is our conten-
tion that the excess enthalpy is also a reasonable approximation of
a real structural scale for protein folding.

As originally noted by Cooper (24), the enthalpy fluctuations
calculated from the heat capacity of native proteins with the
equation �H � �RT�CP are of the same order of the unfolding
enthalpy. For example, for thioredoxin (CP of 22 kJ�K�1�mol�1;
Fig. 2a) the enthalpy fluctuations of the native state amount to
150 kJ�mol at 333 K. Most of these fluctuations in the structurally
well defined native state are probably associated with soft vibra-
tional modes and the hydration of polar and apolar groups. There-
fore, to obtain an enthalpy scale that is a reasonable order param-
eter for folding, it is important to reduce the contribution of
enthalpy fluctuations with a nonstructural origin.

To correct for this problem, we analyzed the excess heat capacity
obtained after subtracting the native baseline, which is equivalent
to assuming that all of the enthalpy fluctuations on the native state
are of nonstructural origin. In principle, native baseline subtraction
should produce an infinitely narrow probability distribution for the
native state. Although it is not feasible to obtain an infinitely narrow
peak from the analysis of real experimental data, our variable-
barrier model with an asymmetry factor of 0.1 does yield a very
narrow peak for native thioredoxin (Fig. 4a). This procedure should
also eliminate the largest fraction of nonstructural enthalpy fluc-
tuations in all of the significantly populated nonnative species.
Given that unfolded proteins are ensembles of conformations of
varying structure (ref. 25 and references therein), it is reasonable to
assume that the enthalpy fluctuations remaining in the unfolded
state after native baseline subtraction arise from the coupled
structural reorganizations of the nonnative polypeptide chain and
surrounding solvent. Because these fluctuations are relevant to
protein-folding reactions, an enthalpy scale so defined should be as
close to a true structural scale as a phenomenological approach
permits.

It is also important to restate that our variable-barrier model has
been formulated for the analysis of first-order and continuous
protein-folding transitions. The analysis of suitable experimental

Fig. 4. Plots of free energy [G0(H)] vs. enthalpy and probability distributions
[P(H�T)] for thioredoxin (a) and BBL (b) calculated with the parameters from the
best fits described in the text. For the sake of clarity, only the P(H�T) vs. H profile
corresponding to the characteristic temperature is shown for thioredoxin. Prob-
ability profiles for other temperatures differ from the one shown, mainly in the
heights of the two ‘‘peaks.’’
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data with this model should indicate whether the protein has a
two-state-like transition (i.e., a large barrier separating two min-
ima) or is better described as a one-state transition with varying
degrees of heterogeneity in the ensemble. The latter includes
transitions with very small barriers and purely downhill transitions.
However, the model is not intended to analyze DSC thermograms
showing several distinct transitions, because in its current formu-
lation the free energy functional only accommodates one or two
macrostates (see Eq. 10). Cold denaturation and unfolding pro-
cesses involving the accumulation of structurally defined interme-
diates are beyond the current capabilities of the model. In the
context of a chemical two-state model, cold denaturation is equiv-
alent to heat denaturation and arises simply from the parabolic
shape of the �G for unfolding. At high temperatures the unfolded
state has high enthalpy and entropy, and at very low temperatures
it has low enthalpy and entropy. Our model uses enthalpy as order
parameter, so the cold denatured state should actually be a distinct
state at lower enthalpy values from the native state. Therefore, the
model requires a more complex free energy functional with two
possible barriers and three possible minima to describe cold dena-
turation. The potential advantage of an explicit treatment of cold
denaturation is that it will allow the analysis of transitions in which
heat and cold denatured states are symmetric (i.e., as predicted by
the chemical two-state model) and nonsymmetric (i.e., heat and
cold denatured states with different properties). These two scenar-
ios are illustrated by recent work on ubiquitin (26, 27). In the
presence of guanidine, the heat denatured and cold denatured
states of ubiquitin populate in a similar temperature range, and the
symmetric scenario holds (26). Without denaturants, heat and cold
denaturation are separated by �100 K, and the two processes
appear fundamentally different (27). Our phenomenological model
can certainly accommodate both situations by using a more com-
plex expression for the free energy functional. The general ap-
proach could also be extended to chemical denaturation by defining
the sensitivity to chemical denaturant (m value) as a continuous
variable and defining a suitable G0(m) free energy functional.

Finally, we would like to emphasize that we do not attribute a
kinetic meaning to the free energy barriers found in the analysis
with the variable-barrier model (at least, at this stage). Within the
context of our model, the role of a barrier of height � is simply to
reduce the population of intermediate microstates, as required by
the properties of the protein-folding ensemble under study. It is not
yet clear that folding�unfolding rate constants can be calculated
from the � value: this would imply that protein-folding reactions can
be described with a single reaction coordinate and that our enthalpy
scale is a reasonable approximation of such reaction coordinate.

Concluding Remarks
Theoretical work carried out in the last 20 years emphasizes that
protein folding is best envisioned as motion of the polypeptide chain

in search of its native structure in a hyperdimensional free energy
surface (4, 5, 28–34). Thus, each protein molecule is expected to
follow a distinct folding trajectory, whereas bulk experiments
provide information about the ensemble-averaged behavior. To
connect theory and computer simulations (performed in single
molecules) with experiment, the energy landscape approach asserts
that is possible to describe protein folding as diffusion on a
projection of the free energy hypersurface onto a few order
parameters (4). In recent years efforts have been made in this
direction by analyzing the folding of a �-hairpin (35) and, later, of
the small protein BBL (14) with simplified statistical mechanical
models. Inevitably, the use of these models involves making as-
sumptions about molecular mechanisms (36).

To date, there have not been phenomenological alternatives that
could allow for a detailed analysis of protein-folding ensembles
without assuming particular folding mechanisms. It is perhaps for
this reason that most of the experimental results are still interpreted
in terms of chemical models. The variable-barrier model that we
introduce here is intended to fill this gap. The model is rooted in
Landau’s phenomenological theory of critical transitions and is
operationally as simple as the chemical models. We show that the
analysis of equilibrium protein-(un)folding experiments can be
performed by using the enthalpy as order parameter and a phe-
nomenological free energy functional with adjustable shape. The
shape of the free energy is directly obtained from the experimental
data and provides the general thermodynamic properties of the
protein-folding ensemble. The extended application of this ap-
proach to the analysis of equilibrium protein unfolding data should
result in a wealth of new information on folding ensembles and in
a more precise evaluation of the thermodynamic barriers to folding.

Note Added in Proof. While this paper was in press, Fersht and
coworkers published a report (37) that questions our previous work on
downhill folding of BBL. They contend that doubly labeled BBL behaves
anomalously and aggregates. However, it is important to note that most
of our previously published data (14, 19), as well as the DSC data
analyzed in this work, have been obtained on a BBL variant with a single
fluorescent label, not on the doubly labeled protein. The singly labeled
protein does not aggregate even at millimolar concentrations and
exhibits reversible thermal unfolding transitions by DSC (see the sup-
porting materials of ref. 14). We used the doubly labeled BBL only for
fluorescence measurements and at protein concentrations that do not
result in aggregation (14).
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