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Understanding how different cerebral areas interact to
produce an integrated behaviour and disentangling the
mechanisms that contribute to cardiovascular control are
two of the major challenges of brain and cardiovascular
neuroscience. The increasing availability of simultaneous
continuous recordings of several variables, resulting
from the diffusion of computer-based signal acquisition
devices even outside of research laboratories (e.g. in
critical care units), as well as the development of fully
multivariate signal processing techniques, multiplied in
the past decades the efforts aimed at responding to
these important issues. Traditionally, fully multivariate
approaches are grounded on identification techniques
of linear models. For example, approaches based on
multivariate autoregressive models are widely used
owing to the reliability of model parameter estimation
procedures, their rapid convergence towards the optimal
solution and the consistency of the estimate under
well-defined assumptions. While multivariate model-
based linear approaches traditionally aimed at describing
the relationships among variables in terms of transfer
functions, the focus has recently moved towards the
assessment of the strength of the relations and their
directionality. Basically, the evaluation of the strength of
a linear association between two variables is traditionally
performed through the computation of normalized cross-
correlation in the time domain and/or the squared
coherence in the frequency domain: these functions
produce a normalized measure ranging from 0 to 1,
where 0 and 1 indicate, respectively, that the two signals
are fully uncorrelated and perfectly associated at a given
time shift and/or frequency. When the squared coherence
is assessed according to a fully multivariate model-
based approach describing the interactions among M
signals, it has the advantage of accounting for all possible
links between two signals. Because these connections
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might be both direct and/or mediated by the remaining M − 2 signals, the squared coherence is
extremely helpful to test the general hypothesis of uncoupling between two signals. However,
this approach has an important disadvantage: it is extremely weak when the task is to link
the significant strength of association between variables to a specific mechanism. Indeed, the
squared coherence (and any other tool for the assessment of the strength of the association
between two signals in multivariate recordings) does not account for either the temporal
direction of the interactions (i.e. causality) or the temporal sequence of the activation of the
mechanisms contributing to the observed association. This lack makes indices based on the
assessment of the strength of the association practically useless in clinical settings because of
their insufficient specificity.

The primary aim of this Theme Issue is to emphasize approaches to assessing the strength
of interactions in multivariate recordings accounting for causality, thus substituting the non-
specific concept of association between variables with the notion of correlation in a given
temporal direction. These approaches make possible the evaluation of the contribution of specific
mechanisms to the overall complexity of brain and cardiovascular dynamics, thus supplementing
the traditional univariate assessment of complexity based on the observation of a unique
signal [1]. For example, in the field of cardiovascular control analysis, finding a low squared
coherence value between heart period and systolic arterial pressure might suggest an inoperative
baroreflex (i.e. arterial pressure changes do not provoke any heart period adjustment) and/or
an insufficient cardiac mechanics (i.e. modifications of the ventricular filling due to variations
of heart period do not lead to arterial pressure changes). Conversely, accounting for causality
while assessing the magnitude of the interactions might lead to two distinct tests: the first
one for the condition of inoperative baroreflex, and the second one for an insufficient cardiac
mechanics, thus being closer to the specific mechanism. Similarly, in the brain, introducing the
concept of causality in the study of functional connectivity may be decisive for moving from a
purely phenomenological description of the neurophysiological measurements to a mechanistic
understanding of the underlying brain processes. For instance, in the visual cortex, including
several anatomically connected and hierarchically organized areas, brain connectivity analysis
based on the squared coherence or other non-causal measures may only inform about the
functional association among these areas. Conversely, a causal approach would be able to separate
bottom-up processing of information in the visual system, which is associated with sensation and
occurs from the areas of sensory receptors towards hierarchically higher areas, from top-down
processing, which is associated with perception and flows in the reverse direction, thus providing
lower areas with information about stored knowledge or expectations.

In this Theme Issue, applications to data recorded from two of the most critical and
complex human physiological systems (i.e. cardiovascular and cerebral systems) have been
intentionally selected to clarify how physiologists and clinicians can take advantage of an
approach embedding directionality when assessing interdependences in multivariate recordings.
In addition, the proposed approach is fully multivariate, thus offering the possibility of
accounting for confounding factors that might fool analysis when carried out according to a
bivariate approach.

Practical approaches focusing on the issue of causality were originally postulated in the time
domain by Wiener [2] and became popular in the operative formulation given by Granger in the
field of multivariate linear stationary stochastic processes [3]. The working definition of Granger
causality states that the signal yj Granger-causes the signal yi in the set Ω of M signals if a future
value of yi can be predicted significantly better using past and present samples taken from Ω

than from Ω after excluding yj (i.e. Ω − {yj}). This approach has been fully translated into the
information domain by exploiting the concept of transfer entropy [4] measuring the reduction
of the information carried by yi in Ω − {yj} due to the introduction of yj. The relation between
linear causality methods based on predictability improvement in the time domain and the transfer
entropy approach in the information domain appears more clearly when considering the close
link between predictability and entropy in the case of conditional dependences: the flatter the
conditional distribution, the more uncertain the prediction, and the larger the entropy. Owing
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to the equivalence between predictability improvement based on the linear models and transfer
entropy approaches, fully demonstrated in the case of Gaussian variables [5] and also for other
probability densities [6], the selection between these two alternative approaches depends on the
relevance of nonlinear interactions, on the statistical properties of the estimators when assessed
over real data sequences of limited length, and on the robustness of the method against non-
stationarities that remain unveiled after the application of traditional tests checking for weak
stationarity [7]. Currently, the extension of the Granger causality approach to the frequency
domain [8,9] is gaining more and more relevance given the oscillatory nature of physiological
variables and the peculiarity of specific control mechanisms of working in accordance to well-
defined time scales. Among the set of practical approaches dealing with the issue of causality,
it is worth mentioning also methods based on causal coupling [10], nonlinear prediction [11],
symbolization [12], synchronization [13] and recurrence analysis [14].

This Theme Issue, collecting together 12 contributions from experts with a consolidated
experience in devising methods for the assessment of causality over multivariate time series and
in applying them to brain signals and cardiovascular variability series, is designed to provide
examples of the evaluation of causality in the time, frequency and information domains. This
Theme Issue contains also contributions discussing pitfalls and caveats of Granger causality
approaches in relation to the completeness and redundancy of Ω , proposing the monitoring of
causality through time-variant procedures to relax the hypothesis of stationarity, and modelling
interactions via alternative descriptions to multivariate linear model-based techniques.

Among the contributions covering the issue of assessing causality in the time domain,
Eichler [15] reviews the original definition of Granger causality, with special attention to relating
it to different concepts of causality, linking the initial time domain approach to more recent
extensions in the frequency domain and stressing the issue of spurious causalities that might arise
in the presence of latent confounders (i.e. variables omitted in Ω but responsible for a significant
portion of the correlation among signals included in Ω). More practically, Porta et al. [16] exploit
a time domain Granger causality approach to disentangle the mechanisms involved in short-
term cardiovascular control during a pharmacological protocol selectively blocking vagal and/or
sympathetic branches of the autonomic nervous system.

Among the contributions covering the issue of assessing causality in the frequency domain,
Baccalá et al. [17] derive a unified asymptotic theory for all the partial directed coherence
estimators, thus leading to a formal derivation of confidence intervals and threshold for testing
the null hypothesis of absence of a causal link as a function of the frequency. Faes et al. [18] address
in the frequency domain the theoretically challenging issue of the dependence of causality on
the canonical form of the multivariate model necessary to interpret instantaneous links resulting
from the inadequate temporal resolution in relation to the latencies among signals. Wen et al. [19]
propose an efficient method for estimating Granger causality among a subgroup of signals present
in Ω starting from the spectral density matrix describing all the causal interactions in Ω . Finally,
Ramb et al. [20] examine in the frequency domain the effects of the latent confounders on the
renormalized partial directed coherence.

Among the contributions covering the issue of assessing causality in the information domain,
Schulz et al. [21] review nonlinear methods for the estimation of the coupling strength along
a specific time direction with special emphasis on those designed in the information domain
and exploiting symbolization procedures. Marwan et al. [22] propose a novel approach to
the assessment of directionality in cardiorespiratory and cardiovascular interactions based on
conditional probabilities of recurrences.

Because stationarity is a prerequisite for all the approaches, regardless of the domain where
the methods have been devised, a couple of contributions are devoted to possible extensions
of the techniques to tackle non-stationarities. Along this line, Blinowska et al. [23] turn the
original formulation of directed transfer function into a time-variant approach to track the
temporal evolution of interactions among brain areas during working memory task. Leistritz
et al. [24] apply time-variant partial directed coherence to deal with transient interactions in
connectivity analyses.
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Moreover, with the aim of stressing that all causality approaches strictly depend on the model
structure used to describe the interactions among signals, a couple of contributions are included
to suggest a representation of signal interactions alternative to the most traditional one based on
the multivariate linear model class. Iatsenko et al. [25] ground their analysis of cardiorespiratory
interactions on a nonlinear model of coupled oscillators. Ramírez Ávila et al. [26] check several
different schemes of interdependences to find the most helpful one to predict a pregnancy-specific
disorder causing maternal and foetal morbidity and mortality (i.e. pre-eclampsia).

Given the close association between mathematical indices and physiological mechanisms, this
Theme Issue suggests that causality analysis could be very powerful in identifying pathological
subjects characterized by an impairment of a given link or connection among subsystems,
in detecting subjects at risk of developing pathology in relation to a particular regulatory
mechanism, in predicting the onset of threatening events such as cardiac arrhythmias or epileptic
seizures, in typifying the sequence of subsystems that are activated in response to a given stimulus
or task, and in providing a more insightful description of the functioning of the autonomic
and central nervous systems. Because an impairment of specific cardiovascular mechanisms
and an altered connectivity among brain regions may be indicators of pathology, the study of
cardiovascular and brain dynamics through causality analysis might suggest parameters helpful
in clinics to tailor individual treatments, improve diagnosis and therapy, manage patients and
test drugs.
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