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ABSTRACT An x-ray crystallographic refinement
method, referred to as the normal mode refinement, is pro-
posed. The Debye-Waller factor is expanded in terms of the
effective normal modes whose amplitudes and eigenvectors are
experimentally determined by the crystallographic refinement.
In contrast to the conventional method, the atomic motions are
treated generally as anisotropic and concerted. This method is
assessed by using the simulated x-ray data given by a Monte
Carlo simulation of human lysozyme. In this article, we refine
the dynamic structure by fixing the average static structure to
exact coordinates. It is found that the normal mode refinement,
using a smaller number of variables, gives a betterR factor and
more information on the dynamics (anisotropy and collectivity
in the motion).

X-ray crystallography is recognized as one of the most
powerful techniques for elucidating not only the static but
also the dynamic structure ofproteins (1, 2). X-ray diffraction
data from a protein crystal provide information about the
protein dynamics in the form of the isotropic temperature
factor By for a nonhydrogen atom j, which is related to the
mean-square fluctuation (Arj2) from the average coordinates
by

By= (8ir2/3)(Arj2). [1]

The temperature factor is determined by the least-squares
refinement (3) of the x-ray structure, which minimizes a
weighted sum of the residual

Ew(h)[IFobs(h)I - Fca(h)]2f [2]
h

where h = (h, k, I) refers to reciprocal-lattice points of the
crystal and IFobsI and IFcalI denote the observed and calculated
structure factor amplitudes, respectively. By assuming no
correlations in the atomic motions belonging to different unit
cells of the crystal, Fcal has the expression

Fcal(h) = Xf/h)exp(2nrth.(rj))(exp(27rtihArj)), [3]

where fj is the atomic structure factor usually given by four
Gaussian functions and (rj) is the average coordinate. The
dynamic part of the structure factor (exp(2mh-Arj) is referred
to as the Debye-Waller factor and is usually approximated by
the isotropic temperature factor in the form of

(exp(2'1TihArj) - exp[ - B1{IhI/2)2]. [4]

The approximation ofEq. 4 is based on the assumption that
the atomic motion is (a) harmonic and (b) isotropic. In the
refinement procedure, isotropic temperature factors Bj are

treated as independent variables.A This means that the atomic
motions are (c) independent of each other. When describing
the dynamic structure of real proteins, however, these ap-
proximations, especially that of isotropic motion, could be a
serious limitation in improving the refinement (4). The num-
ber of observable experimental data IFobsI is not large enough
for adopting the anisotropic temperature factor, which re-
quires six times more parameters in Fcg than the number
required in the isotropic case.

In the conventional refinement methods for determining
the average static structure, a model of the atomic structure
such as stereochemical knowledge (3) or conformational
energy (5) has supplemented the limited diffraction data. In
the same way, a model of dynamics should be used as
supplemental information in the refinement of the dynamic
structure. In this article, we describe the successful use of
information that can be obtained about the dynamics of
proteins from the normal mode analysis.
The basic idea ofthe normal mode analysis is to express the

dynamics of a protein as a superposition of collective motions
called normal modes (6-8); i.e., an arbitrary instantaneous
displacement ofatomj is written in terms of the normal mode
variable am by

Arjk(t) = E.Ukm.rm(t) (k = 1, 2, or 3).
m

[5]

The coefficients ujkm express a pattern of a collective
motion ofatoms in the mth normal mode. They are calculated
theoretically from a Hessian matrix of the conformational
energy at a minimum energy structure by using the formu-
lation of the eigenvalue equation described below. They are
orthonormalized as follows:

X>mjUjkmUjkn = 1 ifm=n

= 0 if m # n. [6]

Here mj is the mass of the jth atom. If the conformational
energy surface can be approximated by a multidimensional
parabola within the range of thermal fluctuation (the assump-
tion of harmonicity), the motions of normal mode variables
should be uncorrelated. Their variance is related to the
corresponding angular frequency 2irvm, which is given as the
eigenvalue [(2lrvm)2], and their covariance should therefore
vanish.

(Om.an) = kBT/(2ITVm)2

=0

if m = n

if m # n, [7]

tThe actual refinement procedure imposes the restraint that two B
values for consecutive atoms connected by a covalent bond cannot
be extremely different from each other. A part of cooperativity in
the motion is thus recovered by this restraint.
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where kB is the Boltzmann constant and T is the temperature
at which the x-ray data were collected. It has been shown that
a relatively small number of normal modes have a dominant
contribution to the atomic fluctuation. This means that the
summation in Eq. 5 can be limited to a relatively small
number of terms.
The real energy surface is now known to deviate signifi-

cantly from a multidimensional parabola (anharmonicity)
(9-13). Even in such a situation, Eq. 5 would remain valid in
the sense that a significant part of atomic fluctuation can still
be described in terms of a relatively small number of normal
mode variables. However, because of the anharmonicity, the
normal mode variables are no longer independent. In partic-
ular, the covariance of Eq. 7 may not vanish.
Here we introduce the concept of "effective normal

modes," which are described in terms of the effective normal
mode variables TTm and their coefficients Vjkjn. TTm and vj,,
satisfy the same equation as Eq. 5, but 7m and ujk,,, have been
replaced with TTm and Vjkm, respectively. They are defined by
requiring that covariance of the effective normal mode var-
iables vanish even for the anharmonicity mentioned above.
The coefficients are orthonormalized similarly to Eq. 6.
Below we describe a formulation by which coefficients vjkm
and the variance are determined experimentally in the pro-
cess of x-ray crystallographic refinement.

In terms of the effective normal mode variables, the
Debye-Waller factor is given (instead of by Eq. 4, which is
used in the conventional method) by

(exp(21rih - Arj)) - exp[- 222ZhkhlZVjkmvjlm(Tn)]
(k, 1= 1, 2, or 3), [8]

where hk and h, are the kth and lth components of h,
respectively. To derive this expression, we made the assump-
tion of harmonicity of the atomic motion as is assumed in Eq.
4. However, unlike in Eq. 4, atomic motions are treated here
generally as anisotropic and concerted. We call this expres-
sion the "normal mode Debye-Waller factor" and the re-
finement based on this expression the "normal mode refine-
ment."
Both the effective coefficients vjkm and the theoretical

coefficients ujkm satisfy the same orthonormalization condi-
tion of Eq. 6, so that they should be related by an orthogonal
transformation:

Vjkm = .UjknPnm,
n

[9]

where Pnm is an element of the orthogonal transformation
matrix. Because vjkm should be similar to ujkm, we can use the
latter as an initial guess of the former. By substituting Eq. 9
into Eq. 8, we have the following equation:

(exp(2inh * Ar,) - exp[- 21r2EhkhIj>>UikmUJln(OYmO'j)

(k, I = 1, 2, or 3), [10]

where

(crm(Jn) = EPmppnp(Tp) [11]

p

In the process of the normal mode refinement, the vari-
ances and covariances of the normal mode variables (Tmon)
in Eq. 10 are treated as parameters to be optimized in the
residual of Eq. 2. It is noted from Eq. 11 that p,,,p and (Tp) are
the eigenvectors and eigenvalues of the matrix whose ele-

ments are (oCm0fn). Since the variances of the effective normal
modes (Tr) are greater than or equal to zero, the matrix of
(o-moTn) should be positive semidefinite.

It is noted that the effective normal modes depend on the
temperature at which the experiment is done because they
are determined by the experiment. In this context, the
method of the effective normal modes can be called one of
quasi-harmonic models (14, 15).
As the first stages of developing the dynamic structure

refinement technique, we assess the normal mode refinement
method with simulated x-ray data. The simulation is free from
errors due to lattice disorder and diffusion so that one can
focus on the errors in the refinement due solely to the internal
atomic fluctuation. A Monte Carlo simulation of conforma-
tional dynamics of a protein, human lysozyme taken as the
example, is carried out to generate simulated x-ray diffraction
data. Then the normal mode refinement method is applied to
the simulated data. In this article, in order to focus on the
dynamic structure, we have kept the average coordinates at
the exact values obtained from the Monte Carlo simulation
during the refinement.

METHODS
Monte Carlo Simulation and Generation of the X-Ray Dif-

fraction Data. Human lysozyme [1LZ1 (16) in the Brookhaven
Protein Data Bank] consisting of 130 amino acid residues is
chosen as the example. Monte Carlo simulation of lysozyme
is carried out at 300 K in the dihedral angle space of ECEPP
(17) with the scaled collective variables corresponding to the
normal modes (18). No solvent molecules are included. This
simulation is started from a low conformational energy struc-
ture obtained by the following two steps: (a) reguralization of
the coordinates so that the bond lengths and bond angles take
the standard values and then (b) minimization of the confor-
mational energy with the Newton-Raphson method using both
gradient and Hessian values ofthe conformational energy (19).
Here the distance information from the x-ray structure is used
as a restraint to avoid a large deformation by the energy
minimization in vacuo. The root-mean-square displacement of
the nonhydrogen atoms in the starting structure from the x-ray
structure is 1.25 A.
Two thousand structures are sampled at every 100 steps

from the records ofthe 10,000th step to the 210,000th step and
are used to generate the diffraction data. Corresponding to
Eq. 3, IFobsI is given by

IFobs(h)I = |(>fh)exp(27Tih * rj) , [12]

where ( ) denotes the average over the 2000 sampled struc-
tures that are superposed to the x-ray structure and the sum
is taken over all nonhydrogen atoms of four molecules in a
unit cell generated by a symmetric operation of the space
group P212121. This averaging is done in the reciprocal space.
The total number of 18,794 reciprocal lattice points h = (h, k,
1) of the P212121 symmetry between 1.5-A and 10-A resolution
are considered.
Normal Mode Analysis. A normal mode analysis is carried

out around the average structure of the Monte Carlo simu-
lation by the following four steps. (a) The 2000 sampled
structures of the Monte Carlo simulation are averaged. (b)
The average structure is regularized as also done in the
preparation of the initial structure for the simulation. This is
necessary because the averaged structure does not neces-
sarily keep the standard bond lengths and bond angles. (c)
The conformational energy of the regularized structure is
minimized to obtain a minimum energy structure whose
Hessian matrix of conformational energy is positive definite.
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FIG. 1. R factor of Eq. 15 vs. the values ofM (the number ofparameters used in the model ofdynamic structure).O, Result ofthe conventional
isotropic B factor model. Whereas values of Bj were determined by optimizing the target functions of Eq. 2 in the real refinement procedure,
we used here the exact values of (ri) obtained from the record of the simulation to calculate the B values in Eq. 4. The use of such B values
ensures that the value of the R factor obtained is the best one in the conventional refinement method. A, Result of the anisotropic B factor model.
As in the isotropic B factor model, the exact values of (rjkrjl) (k, I = 1, 2, or 3) obtained from the record of the simulation were used to calculate
the anisotropic B values. o, Initial value of the R factor, when the theoretically calculated coefficients ujkm and variances were used in the normal
mode Debye-Waller factor of Eq. 8. When the values of variances were allowed to change (but the coefficients ujkm were not allowed to change
temporally in this article) so as to optimize the target function of Eq. 2, the R factors were improved (e).

The root-mean-square displacement of nonhydrogen atoms
in the minimum energy structure from the average structure
is 0.65 A. (d) The normal mode analysis in the form of the
generalized eigenvalue equation in the dihedral angle space
(771 dihedral angles in lysozyme) (6) is done at the minimum
energy structure obtained in step c.

F11 = HflA with WHfk = I, [13]

where F (= {d2E/aOpOOq}) is the Hessian matrix of the
conformational energy E in terms of dihedral angles Op and Oq,
H (={hpq}; hpq = Xj mj~rj/Oap).(arj/aoq)) is the coefficient
matrix of the kinetic energy Lagrangian in the dihedral angle
space, mj is the mass of atom j, A (= {(2IrVm)2}) and k (=
{wpm}) are the eigenvalue and eigenvector matrices, respec-
tively, and I is the identity matrix. Then the eigenvectors
{wpm} in the dihedral angle space are converted to those in the
Cartesian coordinate space by

Ujkm = E(arjk/lap)(I)pm. [14]
p

1.5

c 1.
0

C'n

E

An analytical expression of the coefficient of this conversion
has been given elsewhere (20). These values of 2TVm and Ujkm
are used as the initial guess in the refinement.

Refinement ofDynamic Structure. Eq. 2 is minimized by the
quasi-Newton method (DMING1 of FACOM Scientific Sub-
routine Library SSL II), which uses only the gradients of Eq.
2. In this refinement, the average coordinates are fixed to the
exact values obtained from the Monte Carlo simulation, and
the weighting factors w(h) in Eq. 2 are all set to unity. The
extent of summation in Eq. 5 is taken over the normal modes
with the M lowest frequencies, where the values of M
examined are 771, 300, 100, and 10. In each case, there are
M diagonal and M(M - 1)/2 off-diagonal independent ele-
ments of the variance and covariance matrix that are to be
treated as parameters of optimization of the target function.
Whereas the original idea of the normal mode refinement was
to use a relatively small value ofM and both the diagonal and
off-diagonal elements of the variance and covariance matrix
in the optimization, in this article we will restrict ourselves to
the use of only the diagonal elements. This means that, as to
the coefficients, we will rely on the theoretically calculated
ones (i.e., vjkm = Ujkm) and that we will determine only the

Residue number

FIG. 2. Root-mean-square (rms) fluctuation (rJ) averaged over all the nonhydrogen atoms within a residue. The thin curve was determined
from the Monte Carlo simulation, and the thick one was calculated from the optimized values of the variance with M = 100.
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FIG. 3. Anisotropy of the distribution of the atomic motion represented by the axial ratio defined by 2A1/(A2 + A3) averaged within a residue.
The thin curve was calculated from the Monte Carlo simulation, and the thick one was calculated from the optimized value of the variance with
M= 100.

corresponding angular frequencies experimentally by the
refinement. We will demonstrate that the normal mode
refinement method is a powerful one, even in this restricted
use. To clarify the characteristics of this method, the depen-
dence of the results on different choices of the value of M,
including a rather large one, is examined.

RESULTS AND DISCUSSION
The progress of the crystallographic refinement is usually
assessed by the R factor:

EIIFobs(h)I- IFca(h)ll
L:

=
bShh [15]

Fig. 1 shows the values of the R factor for several refinement
runs against M (the number of normal modes used in the
refinement-i.e., the number of variables in the model of the
dynamic structure). The conventional refinement method

20

R,Jo
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gives R = 13.59%. In the conventional method, the isotropic
B factors of Eq. 4 are used, and therefore the number of
variables for the dynamic structure is the same as the number
of nonhydrogen atoms in lysozyme (i.e., M = 1029). If a 6
times larger number of adjustable parameters is used for the
anisotropic B factors (i.e., M = 6174), R can be reduced to
6.45%, which gives the lowest limit of the R factor in the
harmonic approximation. The initial values of the R factor,
when the normal mode Debye-Waller factor of Eq. 8 with
theoretically calculated coefficients and variances is used,
are already quite reasonable. ForM = 100, it is already close
to 20% without using any adjustable parameters. When the
values of variances are optimized, the R factors are signifi-
cantly improved. They are 11.96% forM = 771, 12.78% for
M = 300, 13.58% forM = 100, and 18.49% forM = 10. These
values for M _ 100 are smaller than the best value that can
be attained in the conventional refinement method.
Atomic fluctuations calculated from the values of opti-

mized variances reproduce those determined from the Monte
Carlo simulation. Fig. 2 compares the root-mean-square

20 60 100 20 60 100

Residue number

FIG. 4. Covariance in the atomic motion (Ar1.Arj) between two a-carbon atoms (Eq. 16). (A) Covariances calculated from the Monte Carlo
simulation. (B) Covariances calculated by the optimized value of variance with M = 100. x, Positive covariance >0.1 A2 (1 A = 0.1 nm); 0,
negative covariance <-0.1 A2.
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fluctuation given by the simulation with those of the refine-
ment.
These improvements over the conventional refinement are

due primarily to the inclusion of anisotropy in the Debye-
Waller factor. The normal modes express the anisotropic
motion correctly, even with a small number of parameters.
Anisotropy of the ellipsoidal distribution of atomic motion
shown in Fig. 3 indicates the importance of the anisotropic
motion 'in the protein dynamics. Anisotropy in atom j is
represented in the form of the axial ratio defined by 2 A1/(A2
+ A3), where Al, A2, and A3 are the lengths of the first, the
second, and the third principal axes, respectively, of the
thermal ellipsoid calculated from the Monte Carlo simulation
data and also by the effective mode variances. The real
distribution is far from the isotropic value of 1.0. When
averaged over all nonhydrogen atoms, the ratio from the
record of simulation is 1.96 and that from the optimized
variance is 1.77, a good agreement.
The collectivity in the atomic motion in a protein is

reflected in the following covariance:

Cij- (Ari Ar) [16]

Fig. 4 shows the covariances between two a-carbon atoms,
one from the Monte Carlo simulation and the other from the
optimized value of variance. The correlation coefficient
between the two figures is 0.72. The important and function-
related motion in lysozyme, the hinge-bending motion, which
has the negative correlation in the motion between the
residues around Ala-47 and those around Val-110, is also
clearly given by the refinement model.

In conclusion, the normal mode refinement, using a smaller
number of variables, is shown to give better a R factor and
more information on the dynamics (anisotropy and collec-
tivity in the motion).

Finally we refer to an application of the normal mode
refinement to real diffraction data.This method is intended to
replace the final stage of the refinement procedure, which
uses independent temperature factors. The process of the
normal mode refinement will be in three steps. (a) Minimi-
zation of the conformational energy of an average static
structure (rj), which is given as a result of the preceding step
using a uniform value for all temperature factors. (b) Normal
mode analysis at the minimum energy conformation obtained
after step a to give the theoretical normal mode frequencies

vm and eigenvectors Ujkm . The low frequency normal modes
of the minimum energy structure, which are to be used in the
refinement, can be regarded as being similar to those of the
average static structure (rj) with a good approximation be-
cause the conformational space spanned by the low fre-
quency normal modes is determined mainly by the large scale
structure like packing topology and is insensitive-1wlocal
structural differences. (c) Optimization of the residual of Eq.
2 in terms of the variables (rj) and (olmyon), whose initial guess
is given by Eq. 7.
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