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Using genome-wide information to understand holistically how
cells function is a major challenge of the postgenomic era. Recent
efforts to understand molecular pathway operation from a global
perspective have lacked experimental data on phenotypic context,
so insights concerning biologically relevant network characteristics
of key genes or proteins have remained largely speculative. Here,
we present a global network investigation of the genotype�
phenotype data set we developed for the recovery of the yeast
Saccharomyces cerevisiae from exposure to DNA-damaging
agents, enabling explicit study of how protein–protein interaction
network characteristics may be associated with phenotypic func-
tional effects. We show that toxicity-modulating proteins have
similar topological properties as essential proteins, suggesting that
cells initiate highly coordinated responses to damage similar to
those needed for vital cellular functions. We also identify toxico-
logically important protein complexes, pathways, and modules.
These results have potential implications for understanding
toxicity-modulating processes relevant to a number of human
diseases, including cancer and aging.

DNA damage � graph theory � DNA repair � signaling � systems and
computational biology

Cells represent complex systems with thousands of proteins,
carbohydrates, lipids, nucleic acids, and small molecules inter-

acting to maintain growth and homeostasis. Such maintenance
requires that cells appropriately respond to both endogenous and
exogenous environmental cues. The recent completion of several
genome projects provided us with parts lists of genes and proteins
that contribute to maintaining growth and homeostasis. Our cur-
rent challenge is to use this information, along with other extensive
data sets, to understand how cells operate in an integrated manner
to carry out phenotypic functions. Toward this goal, thousands of
protein–protein interactions and genetic interactions have been
mapped into complex networks for several organisms (1–10).
Although some global network analysis has been performed on
these interacting networks, such analyses have rarely been con-
nected with systematic global genotype�phenotype information.
Here we connect protein–protein interaction maps for the budding
yeast Saccharomyces cerevisiae with a genomic-scale data set de-
scribing the phenotypic role of all nonessential yeast proteins in
modulating toxicity after exposure to a number of DNA-damaging
agents typical of those encountered in our endogenous and exog-
enous environment.

Graph theoretic approaches are now being used to study global
properties of biological networks (11–23). However, network anal-
yses are mostly carried out in the absence of functional information,
and when functional information is present it is usually based on
cataloged information assembled from an array of unrelated ex-
periments. Tools permitting systematic network perturbations are
crucial for establishing biologically meaningful network character-
istics, and the S. cerevisiae single-gene deletion strain library pro-
vides a tool for such analyses. In principle, each gene deletion strain
represents an engineered cell model in which one node (protein)

and its corresponding edges (protein–protein interactions) have
been removed from the yeast gene and protein network. High-
throughput phenotypic studies that use gene deletion strains to
identify associated phenotypic effects under specific experimental
conditions [a procedure we have termed genomic phenotyping (24,
25)] provide biologically relevant data sets for network studies.

Methods
Genomic Phenotyping. Genomic phenotyping used 4,733 haploid S.
cerevisiae single-gene deletion strains to identify deletions that
affect growth (relative to wild type) upon exposure to the methy-
lating agent methyl methanesulfonate (MMS), the bulky alkylating
agent 4-nitroquinoline-N-oxide (4NQO), the oxidizing agent tert-
butyl hydroperoxide (t-BuOOH), or 254-nm UV radiation. Only
the 4,733 nonessential yeast genes could be examined because
deletion of the essential genes in haploid strains is lethal, a priori.
A sensitive, reproducible, multireplicate, and multidose screen was
developed to monitor individual strain growth after exposure to the
four DNA-damaging agents; results of this screen have been
described (25). The term ‘‘toxicity-modulating protein’’ in this study
corresponds to the product of the gene deleted in a strain displaying
significantly more growth inhibition than wild type after exposure
to one of the four DNA-damaging agents.

Phenotypic Annotation of the Yeast Interactome. We used 14,493
protein–protein interactions for 4,686 S. cerevisiae proteins found in
the Database of Interacting Proteins (26) as of November 2002 to
build the yeast protein interactome. A smaller network based on
high-confidence interactions was also used (see Supporting Methods,
which is published as supporting information on the PNAS web
site). Essential, toxicity-modulating, and no-phenotype classifica-
tions were based on results obtained by the S. cerevisiae gene
deletion consortium (Essential) and the high-throughput genomic
phenotyping study (25). MMS-, t-BuOOH-, 4NQO-, and UV-
modulating proteins correlate to gene deletion strains that exhibit
impaired growth compared with wild type after agent treatment.
The toxicity-modulating phenotype represents gene-deletion strain
sensitivity to one of these DNA-damaging agents relative to wild
type. The no-phenotype classification indicates that gene deletion
strains had no relative growth defects after agent treatment. The
resulting network structure represents a phenotypically annotated
interactome of essential, toxicity-modulating, and no-phenotype
proteins (Fig. 1A and Tables 3 and 4, which are published as
supporting information on the PNAS web site). Networks specific
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for essential, toxicity-modulating, and no-phenotype proteins were
also built in silico by identifying the proteins (nodes) in a given
category and their associated protein–protein interactions (edges).

Randomizations, P Values, and Network Measures. Eight sets of
randomizations based on the eight phenotypic categories were
generated. In each set, 1,000 randomized networks were obtained
based on 1,000 independent experiments consisting of randomly
selected nodes from the full yeast network. To factor out bias
introduced by essential genes, randomizations corresponding to the
nonessential categories were generated by randomly selecting nodes
from the nonessential yeast network. Based on these randomiza-
tions, P values were computed by using a two-sided hypothesis test
with a Normal distribution assumption (27). Applying the random-
izations to the overall underlying yeast protein network by random
node selection contrasts with other randomization network studies
(12, 28) in which networks are constructed through random con-
nections between nodes. Biased randomizations were also per-
formed. Details are described in Supporting Methods. Several
network measures were computed and are discussed in detail in
Results (Fig. 1; see Fig. 4A) and Supporting Methods.

Supporting Information. For further information, see Tables 3–13
and Figs. 6–9, which are published as supporting information on
the PNAS web site.

Results
Global Properties of Selected Proteins Within the Full Yeast Interac-
tome. We exploited two fundamental network metrics to extract
phenotype-dependent global network characteristics for essential,
toxicity-modulating, and no-phenotype proteins in the context of
the full yeast network (Fig. 1A). We determined the degree of each
node, which details the number of interacting partners for each
node in the network (Fig. 1B), and the shortest-path distance
between pairs of nodes, which details the shortest-edge distance
between similarly categorized pairs of proteins, allowing for tran-
sitions through proteins in other categories (Fig. 1C). From the

shortest-path distance we computed two additional measures: the
characteristic path length (Fig. 1D) defined as the shortest-path
distance averaged over all pairs of proteins and a global centrality
measure (Fig. 1E), which, for a given protein, computes the average
shortest-path distance to every other similarly categorized protein
in the network. Each of these measures reveals insight into the
architecture of toxicity-modulating pathways.
Degree distribution. The degree distributions and average degree for
the nodes in the full yeast interactome and for the nodes in each
phenotypic category are shown in Fig. 2. These distributions are
characterized by a number of highly connected proteins, or hubs, as
previously observed for a smaller yeast protein–protein interaction
network (15, 17). When the full network is divided into essential and
nonessential proteins, it is clear that essential proteins have a
significantly higher average degree (P � 10�36). The results illus-
trated in Fig. 2 show that not only is the essential proteins
distribution skewed toward higher degree, in agreement with
previous results (15), but a similar trend is also true for toxicity-
modulating proteins. Among the entire set of nonessential proteins,
i.e., the set for which we have phenotypic data, toxicity-modulating
proteins have a higher average degree than the entire set of
nonessential proteins and the no-phenotype proteins. On average
each category of toxicity-modulating proteins, including the col-
lective toxicity-modulating category, contains significantly more
direct interactions than randomly selected proteins, (P values range
from �0.03 to �10�7) as well as nonessential and no-phenotype
proteins. Moreover, the no-phenotype distribution shows the op-
posite characteristic, with significantly fewer direct interactions
than the randomly selected proteins (P � 10�6), fewer direct
interactions than the nonessential category, and fewer direct inter-
actions than for the full network. A protein with high degree (�15
direct interactions) is two times more likely to be essential than a
random protein in the yeast network. Furthermore, a nonessential
protein with a high degree is one and a half times more likely to be
important for toxicity modulation than a random nonessential yeast
protein. In contrast, a high-degree protein is more than a third less
likely to be involved in metabolism than a random protein in the
yeast network (see Topological Organization of Other Functional
Yeast Networks).

Fig. 1. Yeast protein categories and global network measures. (A) Proteins
(4,684) from yeast connected by 14,993 protein–protein interactions. Proteins
that modulate toxicity are shown in green, essential proteins are shown in black,
and proteins associated with the no-phenotype category are shown in red. (B)
Degreeofanodeinagraph.Asanexample, thedegreeofproteina is10,whereas
the degree of protein b is 3. (C) Shortest path length. The shortest path between
proteins c and d is 1; whereas, between nodes c and e, it is 2; and, for nodes c and
f, it is 3. (D) Characteristic path length. (E) Global centrality. In the figure, protein
h is most central relative to proteins i and g.

Fig. 2. Degree distributions of selected proteins. The proportion of proteins
normalized to 1, P(z), with a given number of interacting proteins, z, in the
underlying full yeast network is plotted for the essential (black squares),
toxicity-modulating (green diamonds), and no-phenotype (red triangles) pro-
teins. The solid vertical lines represent the average degree. (Right) Average
protein degree (zavg) for different categories of proteins along with P values.
Blue font indicates an average greater than the corresponding randomized
average, and red italic font indicates an average smaller than the correspond-
ing randomized average.
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Shortest-path distribution, characteristic path length, and global centrality
distribution. The existence of a few highly connected nodes (hubs)
holding together a large number of lesser-connected nodes adds
shortcuts into a network and creates a smaller average shortest-path
length between any two nodes. We computed the shortest-path
length distribution, the characteristic path length, and the global
centrality distribution for the full yeast protein network and for each
phenotypic category; in calculating the distance between two
proteins in one particular category, the shortest path can pass
through proteins belonging to other categories (see Fig. 1C).
Results for three shortest-path-length and global-centrality distri-
butions are shown in Fig. 3 A and B, respectively (the rest are in Fig.
6 and Table 6). Characteristic path length for all categories is given
in the Fig. 3A Inset. These results follow similar significant trends as
observed for the degree distributions and average degree. This
shortest-path analysis may provide an idea of network navigability
and of efficiency with which a perturbation can spread throughout
the network. However, in analyses of this type, it is assumed that the
connections between each node (i.e., the edges) are equivalent,
which seems unlikely to be true in a biological system. Ultimately,

metrics to describe the attributes of each edge in the protein–
protein interaction network will be needed to be quantitative with
respect to network navigability.
Network properties of proteins with varying sensitivities to damage. The
suggestion that the ‘‘importance’’ of a protein may be reflected
by its connectivity degree was further investigated by quantita-
tively categorizing the toxicity-modulating proteins in high,
medium, and low sensitivity categories and calculating the
average degree and characteristic path length of each category
(see Supporting Methods). Results are given in Table 7 and
indicate that highly sensitive mutants are distinct in topological
properties from their low-sensitivity counterparts. In most of the
cases, high sensitivity corresponds to higher connectivity degree
and shorter characteristic path length, further supporting the
hypothesis that a protein with higher degree and greater cen-
trality is on average more important for toxicity-modulation than
a lowly connected and less central one.

Synthesis of Phenotypic Subnetworks. To gain further insight into the
organization and local environment of proteins in each category,
subnetworks were compiled composed solely of protein–protein
interactions between proteins within a given phenotypic category;
the newly defined subnetworks have nodes corresponding to pro-
teins exhibiting a given phenotype and edges representing experi-
mentally characterized protein–protein interactions. We thus gen-
erated seven new subnetwork structures. Fig. 4A illustrates the full
network (as in Fig. 1A), the essential subnetwork, the no-phenotype
subnetwork, and the collective toxicity-modulating subnetwork that
includes MMS-, 4NQO-, UV-, and t-BuOOH-modulating proteins.
The individual MMS, 4NQO, UV, and t-BuOOH subnetworks are
shown in Fig. 7.
Network connectivity. The landscape of connected components in
each newly defined network was explored to probe the connectivity
of each structure. In each of the seven networks (except the
t-BuOOH-modulating network) one large connected component
emerged (Table 1 and Figs. 4A and 7). The size of these compo-
nents was significantly larger for the essential and each of the
toxicity-modulating subnetworks (except for t-BuOOH) than the
size expected if the nodes were selected at random from the full or
nonessential yeast network (P values from �0.009 to �10�8). These
observations indicate that essential and toxicity-modulating pro-
teins are relatively highly connected, suggesting that cohesive
signaling pathways, protein complexes, and biochemical pathways
are at least partially represented in these subnetworks.
Local protein environments in the phenotypic subnetworks. We further
investigated organization of the newly defined subnetworks by using
clustering coefficient analysis, which measures whether direct,
first-degree partners of a particular node interact with each other.
Tendency to form protein clusters is significantly overemphasized
in the essential and toxicity-modulating networks (Fig. 4B). Essen-
tial, MMS-modulating, and 4NQO-modulating networks are
around five times more clustered than what would be expected from
a random sampling of nodes from the full yeast network. Moreover,
clustering in the UV-modulating network is more than one order
of magnitude higher than expected by a random selection of nodes,
whereas the t-BuOOH-modulating network is more than two
orders of magnitude more clustered than the corresponding ran-
domized network. P values for the enrichment of protein clusters in
these phenotypically derived subnetworks range from �10�10 to
�10�109. In contrast, the no-phenotype network is less clustered
than the corresponding randomized network (P � 0.023).

The average clustering coefficient (Cavg) results suggest that
phenotypic effects of the proteins in these subnetworks are gov-
erned by denser-than-normal, interconnected biochemical path-
ways, signaling pathways, and protein complexes. This notion is
supported by a closer look at the distribution of the clustering
coefficients (Fig. 4 B and C). The percentage of nodes having a
non-zero clustering coefficient indicates that a certain degree of

Fig. 3. Shortest-path length, characteristic path length, and global centrality
of selected proteins. (A) The proportion of pairs of proteins normalized to one
with a given shortest-path length in the overall full yeast network, P(l), is
plotted for the essential (black squares), toxicity-modulating (green dia-
monds), and no-phenotype (red triangles) proteins. The solid vertical lines give
the characteristic path length. (Inset) The number of proteins (n) and the
characteristic path length, along with P values. Blue font indicates an average
greater than the corresponding randomized average, and red italic font
indicates an average smaller than the corresponding randomized average. (B)
The proportion of proteins with a given average shortest-path length (global
centrality) is plotted for the essential (black squares), toxicity-modulating
(green diamonds), and no-phenotype (red triangles) proteins.
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local clustering has transpired. This percentage is significantly
higher for the essential and toxicity-modulating subnetworks and
significantly smaller for the no-phenotype subnetwork, compared
with randomized counterparts (P values range from �10�3 to
�10�104). In corollary, the number of isolated nodes in the essential
and toxicity-modulating subnetworks are significantly smaller than
that expected from a random selection (P values range from
�0.0024 to 10�11), whereas the no-phenotype subnetwork has a
larger proportion of isolated nodes (P � 0.05).

We further investigated the extent to which the high degree of
clustering could be a simple consequence of the high average node
degree observed in the essential and toxicity-modulating networks
by carrying out a new set of biased randomizations that preserve the
proportion of high degree nodes in each network (see Supporting

Methods). Results are shown in Table 9 and indicate that even when
the randomized networks are constrained to have the same average
degree as the tested network, the average clustering coefficient as
well as the proportion of nodes with a non-zero clustering coeffi-
cient are significantly higher for the toxicity-modulating and essen-
tial networks than for the randomized networks. Thus, the degree
of local clustering is not a consequence of the presence of higher
degree nodes but a reflection of another underlying phenomenon
related to protein complexes and dense signaling pathways.

Identification of Toxicologically Important Protein Complexes and
Signaling Pathways. Our clustering coefficient analysis identifies
local neighbor interactions that we in turn have used to build higher
order complexes in silico with the program CYTOSCAPE (29). Fig. 5
A–D contains every protein in each of the toxicity-modulating
subnetworks that has a non-zero clustering coefficient; these pro-
teins are displayed with their corresponding protein–protein inter-
actions (edges) derived from each subnetwork; the edge is shown
in bold where the protein–protein interaction has previously been
characterized in a biological context [i.e., not just as part of a high
throughput screen (www.yeastgenome.org)]. All of the proteins in
Fig. 5 A–D are shown with gene names in Fig. 8 and Table 10. The
bold edges in Fig. 5 indicate that previously recognized complexes,
pathways, and signaling modules are represented, even though
many of them were not previously recognized as being important
for modulating toxicity after exposure to a DNA-damaging agent.
[All of the protein nodes shown in Fig. 5 play a role in modulating
toxicity, but they are colored to represent their cellular function
(www.yeastgenome.org).] As expected, groups of proteins that
participate in coordinated DNA damage responses (i.e., nucleotide
excision repair, mismatch repair, or DNA damage checkpoints)
were identified among the clustered proteins in the toxicity-
modulating subnetworks (Fig. 5E). Groups of proteins involved in
transcription regulation and chromatin remodeling are also well
represented, and these include components of the Spt-Ada-Gcn5
acetyltransferase (SAGA) regulatory complex (MMSS, 4NQOS,
and t-BuOOHS), RNA polymerase II complex (MMSS, 4NQOS,
and UVS) and SWI�SNF complex (4NQOS). Signal transduction is
represented for MMS and UV toxicity-modulation with the cyclin-
dependent kinase that phosphorylates the C terminus of RNA
polymerase II and contains CTK1, CTK2, and CTK3 as subunits
(www.yeastgenome.org). Surprisingly, protein complexes and path-

Fig. 4. Newly defined networks and clustering
coefficient analysis. (A) Derivations of new net-
works. Networks comprised of only essential pro-
teins and connecting edges are shown in black,
proteins that prevent agent-induced cell death
and connecting edges are shown in green, and
no-phenotype proteins and connecting edges
are shown in red. The clustering coefficient, C,
can be determined for each protein to identify
the degree of connectivity between a given pro-
tein’s neighbors. (B) Clustering coefficient anal-
ysis. The clustering coefficient average, Cavg, is
computed for each network and compared with
the average obtained from 1,000 randomized
networks (randomized). The percent of nodes
with a non-zero clustering coefficient (C � 0) as
well as the percent of isolated nodes are also
computed. (C) The number of proteins (n) in each
specified network along with the P values.

Table 1. The large connected component (LC) size in newly
defined subnetworks

Subnetworks
No. of

proteins
No. of proteins

in LC

Full 4,684 4,597
Essential 1,180 914

(P � 1.4 � 10�9)
Nonessential 3,504 2,967

(P � 1.8 � 10�2)
No-phenotype 1,855 981

(P � 7.4 � 10�2)
Toxicity-modulating 1,415 851

(P � 8.9 � 10�3)
MMS 1,100 639

(P � 1.4 � 10�4)
4NQO 672 343

(P � 1.4 � 10�5)
UV 230 31

(P � 3.8 � 10�5)
t-BuOOH 160 8

(P � 0.3)

The large connected component size in all subnetworks was larger than the
average obtained from the corresponding randomized networks, except for
the nonessential and no-phenotype subnetworks, which had smaller large
connected component size than the average obtained from the randomized
networks. P values are shown in parentheses below the values for the large
connected component size.
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ways involving the nuclear pore complex (NUP proteins), RNA
metabolism (MUD, STO1, PUB, and TIF proteins), vacuolar
function and targeting (VMA proteins) are also represented upon
visualizing the proteins with non-zero clustering coefficients (i.e.,
C � 0) from the MMS-, 4NQO-, UV- and t-BuOOH-modulating
subnetworks (Fig. 5E). Moreover, Fig. 5 suggests that other known
and putative complexes await further investigation into their role in
modulating toxicity after exposure to the DNA-damaging agents,
roles that may involve protein complexes, biochemical pathways, or
signaling modules.

Topological Organization of Other Functional Yeast Networks. One
might ask whether all biomolecular networks involved in cell
functions should share these topological features described previ-
ously for essential proteins and now here for toxicity-modulating
proteins. Therefore, we also applied our approach to the metabolic
network reconstructed by Forster et al. (30), which is based on
currently available genomic, biochemical, and physiological infor-
mation. The network contains 708 structural ORFs, of which 508
are present in the yeast protein–protein interactome used in this
study. Of the 508 proteins, 395 are nonessential proteins. Table 2
shows all network measures used in this study, computed for both
the full metabolic network and for the metabolic network com-

posed of only nonessential proteins; the phenotypic networks
presented earlier are also shown for comparison. The results
indicate that the metabolic network exhibits properties more similar
to the randomized (and no-phenotype) networks than to the
essential and toxicity-modulating networks. Thus, not all protein
networks involved in important cell functions share the topological
features of essential protein networks.

Robustness of the Network Results. All network measures so far
relied on protein–protein interactions obtained from the Database
of Interacting Proteins (26), which includes high-throughput, ge-
nome-wide data, such as yeast two-hybrid (2, 5, 7) and mass
spectrometric analyses of protein complexes (1, 31) as well as
interactions collected from small-scale screens in hundreds of
individual research papers. We performed computations on an
exhaustive yeast interactome that includes all reported protein–
protein interactions to evaluate the network characteristics of all
our identified toxicity-modulating proteins. However, false-positive
protein–protein interactions might affect our observed trends, so it
is important to assess the robustness of the results reported here.
We have recomputed all network measures by using an additional
smaller yeast protein–protein interaction network: the core yeast
interactome obtained from the Database of Interacting Proteins as
of October 2004 (2,628 proteins and 6,337 interactions) (26, 32) (see
Supporting Methods). Results are shown in Table 12 and are in
agreement with those obtained by using the complete yeast inter-
actome, indicating that the results are robust to false-positive
protein–protein interactions.

We have also identified the party and date hubs [as recently
defined by Han et al. (23)] in the toxicity-modulating networks
(Table 13). Although the majority of these hubs are essential, most
of the remaining nonessential party and date hubs are involved in
modulating toxicity. These results further emphasize the topolog-
ical similarities between essential and toxicity-modulating proteins.

Discussion
We have presented a systematic investigation of global protein
networks in a phenotypic context. Recovery from exposure to
DNA-damaging agents was chosen because of the wide range of
cellular activities required to prevent cell death and because of the
association of many toxicity-modulating pathways with human
diseases, such as cancer, aging, and other degenerative diseases.
Our findings suggest that toxicity-modulating proteins have at-
tributes somewhat similar to essential proteins. All of the measures
reported here lead us to the same conclusion. Specifically, toxicity-
modulating proteins have greater direct interactions, smaller short-
est paths, are more connected, and are significantly more clustered
than the average yeast protein, suggesting that there exists a
higher-order organization for these toxicity-modulating networks.
These results reflect two underlying phenomena: the toxicity-
modulating proteins have more hubs, which allow them to be more
connected and to exhibit shorter path lengths, and the network
composed of these proteins is more clustered, which indicates the
existence of many protein complexes and dense signaling pathways.
We were also able to identify, by using global measures, targeted
pathways and complexes essential for modulating toxicity.

Because of their phenotypic role in cell survival, toxicity-
modulating proteins might represent a middle ground between
essential and no-phenotype proteins. Essential proteins dictate cell
viability under all conditions of life and their place in the network
makes them the most centralized. The centrality of essential pro-
teins may serve to provide facile communication between the
processes vital for maintaining proper cellular function and ho-
meostasis. Toxicity-modulating proteins are less centralized com-
pared with essential proteins, perhaps because they are only re-
quired for cell viability some of the time (i.e., during stress). It may
be that toxicity-modulating proteins are more centralized in the
network than no-phenotype proteins, because, under stressful

Fig. 5. MMS, 4NQO, UV, and t-BuOOH protein networks with C � 0. Subnet-
works composed of MMS-modulating (A), 4NQO-modulating (B), UV-modulat-
ing (C), and t-BuOOH-modulating (D) proteins with a non-zero clustering coef-
ficient. Thick blue lines represent previously reported protein complexes. Circles
are color-coded to represent basic cellular processes carried out by each protein
(for all protein names, see Fig. 8). (E) Selected complexes identified by using
clustering coefficient analysis. (Upper) From left to right, RNA polymerase II
holoenzyme,SWI�SNFcomplex,nucleotideexcisionrepairpathway,andputative
vacuolar sorting subnetwork. (Lower) From left to right, mediator complex and
vacuolar H-ATP assembly complex, nuclear pore complex, C-terminal domain
kinase I complex, and Spt-Ada-Gcn5 acetyltransferase transcriptional regulatory
complex.
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conditions, toxicity-modulating proteins need to rapidly coordinate
a wide variety of cellular processes that ultimately dictate cellular
viability (25). For MMS, it has been postulated that extensive
damage occurs to DNA, RNA, lipids, and proteins (24, 25, 33, 34);
it thus seems likely that a highly coordinated response to carry out
repair, removal, and replacement of a multitude of damaged
molecules is required for survival. Short path lengths by means of
access to a number of highly connected nodes might serve to
provide toxicity-modulating proteins with a means of optimizing
cellular responses that together prevent damage-induced cell death.

Our metabolic network results indicate that other cellular net-
works do not necessarily share similar quantitative features. As can
be seen in Table 2, the metabolic network has lower average degree
than the corresponding randomized network, similar to the no-
phenotype network. We can speculate why the individual network
metrics are so different for the metabolic network and how the
toxicity-modulating network metrics provide a biological advantage
for achieving an effective toxicity-modulating response. One pos-
sibility is that small diffusible metabolites important in metabolism
may be crucial components for keeping the network connected,
thereby contrasting with direct protein–protein interactions that we
presume are more important in signaling pathways. This contrast
would be consistent with a view that signaling and other regulatory
networks may be more complex in organizational structure than

those devoted to core functions such as metabolism and energy
generation (35).

Finally, toxicity-modulating pathways may be highly conserved
across evolution (certainly this is true for DNA repair pathways)
and as a result, it is expected that the pathway characteristics
unraveled for S. cerevisiae will parallel those in higher organisms.
Protein–DNA interactions represent an additional form of connec-
tivity for this regulatory network, as for many others. We have
restricted our attention to protein–protein interactions in this
present study to focus on a relatively well-defined time frame for
network operation; this restriction also permitted us to make an
important, clear distinction by comparison to the metabolic path-
way protein–protein interaction network. Nonetheless, expanding
our scope to the protein–DNA interactions in the toxicity-
modulating network will be useful and we are underway with a
corresponding effort.
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Table 2. Network measures for the metabolic network compared with the other networks

Networks
No. of

proteins
Average
degree

Characteristic
path length

No. of proteins
in LC Cavg C � 0, %

Isolated
nodes, %

Full 4,684 6.1883 4.2383 4,597 0.0846 36.3 0
Essential 1,180 9.5093

(P � 9.4 � 10�37)
3.9546

(P � 6.0 � 10�22)
914

(P � 1.4 � 10�9)
0.1879

(P � 2.0 � 10�110)
44.2

(P � 1.3 � 10�105)
19.9

(P � 1.5 � 10�12)
Noness. 3,504 5.0699

(P � 1.5 � 10�35)
4.3305

(P � 9.4 � 10�22)
2,967

(P � 1.8 � 10�2)
0.0529

(P � 2.5 � 10�13)
20.7

(P � 2.0 � 10�22)
11.0

(P � 1.5 � 10�2)
Metabolic 508 4.6024

(P � 4 � 10�4)
4.2888

(P � 0.3)
93

(P � 0.98)
0.0276

(P � 0.15)
3.5

(P � 0.8)
64.8

(P � 0.68)
No-phenotype 1,855 4.3919

(P � 1.1 � 10�6)
4.4128

(P � 3.7 � 10�6)
981

(P � 7.4 � 10�2)
0.0227

(P � 2.3 � 10�2)
5.9

(P � 3.6 � 10�4)
36.4

(P � 5.0 � 10�2)
Toxicity-modulating 1,415 6.0283

(P � 1.3 � 10�7)
4.2228

(P � 6.8 � 10�6)
851

(P � 8.9 � 10�3)
0.0584

(P � 1.9 � 10�11)
16.3

(P � 1.1 � 10�18)
34.5

(P � 2.4 � 10�2)
Metabolic-noness. 395 4.6127

(P � 0.3)
4.3158

(P � 0.8)
21

(P � 0.85)
0.0240

(P � 6 � 10�4)
3.3

(P � 1.2 � 10�3)
70.4

(P � 0.4)

Values in bold indicate that the measured value is smaller than the one obtained by using the randomized networks; values in italics indicate that the measured
value is greater than the one obtained by using the radomized networks. Noness., Nonessential.
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