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Nonspatial theory on pathogen evolution generally predicts selec-
tion for maximal number of secondary infections, constrained only
by supposed physiological trade-offs between pathogen infec-
tiousness and virulence. Spread of diseases in human populations
can, however, exhibit large scale patterns, underlining the need for
spatially explicit approaches to pathogen evolution. Here, we
show, in a spatial model where all pathogen traits are allowed to
evolve independently, that evolutionary trajectories follow a sin-
gle relationship between transmission and clearance. This trade-
off relation is an emergent system property, as opposed to being
a property of pathogen physiology, and maximizes outbreak
frequency instead of the number of secondary infections. We
conclude that spatial pattern formation in contact networks can act
to link infectiousness and clearance during pathogen evolution in
the absence of any physiological trade-off. Selection for outbreak
frequency offers an explanation for the evolution of pathogens
that cause mild but frequent infections.
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Current theory on pathogen evolution places much emphasis
on physiological (or life-history) trade-offs that relate viru-

lence, infectiousness, mode of transmission, and immune clear-
ance (1–6). These trade-offs, motivated by a supposed functional
link between two (or more) traits, specify that evolutionary
improvements in one trait are necessarily accompanied by a
decline in another (7, 8). One of the most commonly made
trade-off assumptions is that increased production of transmis-
sion stages causes increased host mortality and thereby shortens
the infection period (9). Where traits can evolve independently,
nonspatial theory typically predicts selection for maximal trans-
missibility and infection period, thus maximizing the number of
secondary infections (i.e., the number of new infections an
infected host causes). It is commonly held, however, that the
benefits of increased transmission and the associated penalties of
virulence and shorter infection are balanced so that the number
of secondary infections is maximized at intermediate transmis-
sibility and virulence (2). In simple nonspatial models, this
evolutionary maximization corresponds to selection for maximal
basic reproductive ratio R0 (10), i.e., the expected number of
secondary infections in an unexposed population [but note that
this result depends on absence of multiple infections (5) and
vertical transmission (11, 12)]. The current popularity of trade-
offs in studies of pathogen evolution stems from the fact that they
provide a possible explanation for selection for intermediate
virulence and transmissibility (8), and that they can be used to
predict pathogen evolution in response to human interventions
such as the use of imperfect vaccines (4) or improved hygiene
(13). However, the exact shape (and even existence) of trade-offs
is unknown for many diseases (14).

A growing body of work reports on the role of spatial pattern
formation on evolutionary processes (3, 6, 15–21). Recent
studies have shown large-scale spatiotemporal patterns in mea-
sles (22) and dengue fever (23). Existing theoretical work on
pathogen evolution and spatial pattern formation has focused on
a model in which local colonization of ‘‘empty spaces’’ by
susceptible hosts plays a central role (3, 6, 19–21). Pathogen

lethality in this model leads to host patchiness, and too aggressive
pathogens will die out because they cause local extinction of
hosts (19). In this manner, spatial processes can lead to limita-
tions in the evolution of transmissibility, but the evolutionary
attractor is close to host extinction. Furthermore, local clustering
of infections (so-called self-shading) reduces the effective infec-
tion rate (20). This effect of spatial patterns makes trade-off
optimization in spatial populations less straightforward than in
their nonspatial counterparts. Although theoretically appealing,
the patchiness that dominates this model depends heavily on
local birth of hosts into empty spaces, which does not seem
representative for, e.g., human populations. Moreover, for the
persistence mechanism proposed by this model to work, the
infection process and host reproduction must operate on similar
timescales. This implicit assumption does not hold for a large
number of pathogen–host systems. Our aim is to examine how
spatial selection processes determine pathogen evolution in the
absence of the dominant role of virulence, host demographics,
and physiological trade-offs.

Methods
We developed a spatial susceptible-infected-resistant (SIRS)
model for disease dynamics (24), using a grid-structured contact
network (25, 26). In the model (see Fig. 1), hosts can be
susceptible (S), infected (I), or resistant (R). Infected hosts can
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Fig. 1. Representation of processes in the contact network model. (A)
Infection. Infected hosts (I) can infect susceptible (S) neighbors with infection
rate �. The total probability of infection is 1 � ei��t, where i is the number of
infected neighbors. (B) Acquisition of resistance. Hosts are infectious for a
fixed period �I, after which they become resistant (R). (C) Loss of resistance.
After a fixed period �R, resistant hosts once again become susceptible.
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infect adjacent susceptible hosts at infection rate �. The infection
neighborhood consists of eight direct neighbors in a square
lattice. Infection lasts for a fixed infection period �I, after which
the host becomes resistant. Resistant hosts return to suscepti-
bility after a fixed duration �R (scaled to unity).

Every time-step �t, cells change state according to the fol-
lowing rules, which are illustrated in the corresponding panels of
Fig. 1:

A. A susceptible cell can be infected by infected cells from its
eight-cell neighborhood. The probability pinf of infection is
calculated from the infection rate � as pinf � 1 � ei��t, where
i is the number of infected neighbors.

B. Infected cells remain infected for a fixed time period �I and
then become resistant.

C. Resistant cells remain so for a fixed time period �R. After
that, the cells become susceptible again.

The general nature of these transition rules allows network
nodes to represent individual hosts, but also, e.g., communities
or schools. For simplicity, we will refer to the nodes as individual
hosts.

Infection rate (�), infection period (�I), and resistant period
(�R) are all expressed relative to the unit in which time is
measured. We scale the length of the resistant period to unity
and study the system in terms of infection rate and infection
period. The length of a cellular automata update time-step �t
was reduced until the system behavior converges, effectively
simulating a continuous time process (we use �t � 0.01 in results
presented; results are insensitive to asynchronous updating).

We assign a ‘‘genotype’’ to every infected cell, specifying the
infection rate and infection period of the infecting pathogen.
Newly infected cells inherit the genotype of the pathogen that

infected them. Infected cells can change genotype in small fixed
steps (���, ���I) at mutation rate � � 0.01. Alternative
mutation rules, such as a mutation only upon infection, or
proportional instead of fixed mutation steps, do not qualitatively
change our results. For simplicity, we assumed that the length of
the resistant period cannot evolve. The duration of resistance,
however, may be partially under evolutionary control of the
pathogen in some cases (e.g., through antigenic change). Pre-
liminary results indicate that, if the resistant period can evolve,
it tends to decrease to minimal values. Grid size used in the
evolutionary simulations is 120 � 120 cells. Larger grid sizes do
not change the evolutionary dynamics.

Results
Spatial Patterns. The model reveals a variety of self-organized
patterns for different combinations of infection rate and infec-
tion period (Fig. 2 and Movies 1–4, which are published as
supporting information on the PNAS web site). When the
number of secondary infections is low, the spatial dynamics are
characterized by small localized clusters of infection that prop-
agate through a matrix of susceptible hosts (Fig. 2 A). As these
infection clusters grow, the availability of susceptible hosts per
infected host is reduced, decreasing the number of new infec-
tions (20, 27). For high infection rate and�or long infection

Fig. 2. Spatial patterns in the contact network for various combinations of
infection rate � and infection period �I. Colors represent the following: gray,
susceptible; red, infected; blue, resistant. (A) Localized disease outbreaks are
self-limiting in size for �I � 1.0 and � � 0.3. (B) Turbulent waves for �I � 0.5
and � � 1. Here, infection waves are narrow, and occasionally waves break and
new wave centers are formed. (C) The transition between turbulent and
regular waves, �I � 0.3 and � � 2.75 (R0 � 6.6), to which evolutionary
trajectories are drawn. (D) Stable spiral waves for �I � 0.7 and � � 4.2. These
waves are broad and do not easily break, resulting in periodically reoccurring
infection waves. Grid size for all panels is 75 � 75. In all results presented, �R

was set to unity.

Fig. 3. Evolutionary trajectories follow paths of increasing outbreak fre-
quency. (A) Evolutionary trajectories of evolution of infection rate and infec-
tion period. Circles represent the initial pathogen traits for nine simulations.
The trajectories represent the change in the mean infectiousness and infection
period. Mutation rate is set at � � 0.01, mutation stepsize is �� � �0.01, and
��I � �0.01. Maximum infection rate was set at � � 4. Regardless of initial
conditions, evolution proceeds to and along an emergent trade-off relation-
ship between infection rate and infection period. This trade-off can be de-
scribed by R0 � 8 ��I � 6.6 (gray curve). (B) Outbreak frequency was measured
by the average frequency at which hosts are infected. Outbreak frequency
increases from blue to green, yellow, orange, and red. The emergent trade-off
(gray curve represents R0 � 6.6) corresponds to a ridge of high outbreak
frequency. In the white area, for R0 of approximately �1.6, simulations lead to
pathogen extinction. This raised existence threshold (in the nonspatial model,
the threshold is R0 � 1) is caused by local self-shading of infected hosts (31).
Results shown are for a 120 � 120 grid.

van Ballegooijen and Boerlijst PNAS � December 28, 2004 � vol. 101 � no. 52 � 18247

PO
PU

LA
TI

O
N

BI
O

LO
G

Y



period, the spatial dynamics show regularly reoccurring infection
waves, consisting of spiral waves or circular waves (Fig. 2D). In
between localized clusters and regular waves, a region of tur-
bulent waves exists (Fig. 2 B and C) (28). Here, infection waves
commonly break into fragments. The break points function as
new sources from which waves originate.

Evolutionary Dynamics. Subsequently, the infection period and
infection rate were allowed to evolve independently. Remark-
ably, instead of evolving toward maximal infection period and
infection rate (thus maximizing R0), all evolutionary trajectories
are quickly drawn to a hyperbolic relationship between infection
rate and infection period (at approximately R0 � 6.6), and slowly
track this line toward maximal infection rate (Fig. 3A; see Fig.
4 for evolutionary dynamics). Notably, if such an evolving
pathogen population would be observed, it would seem as if
there existed a trade-off between infection period and infection
rate. Yet, unlike the classical trade-offs, this relationship is not
defined beforehand, but emerges from the evolutionary dynam-
ics of the system. We will refer to this relationship as an
‘‘emergent trade-off’’, as opposed to the classical trade-offs,
which are explicitly specified based on assumed physiological
limitations.

We tested the robustness of our results against low frequencies
of long-distance transmission. We implement ‘‘global mixing’’
rules similar to Boots and Sasaki (3). In this implementation, a
host has a small probability of interacting with a random host in
the population instead of with a neighbor. Results for global
mixing up to 2% of all contacts are very similar to the results
presented. Evolutionary trajectories closely follow an inverse
relationship between infection rate and infection period that is
(depending on the level of global mixing) slightly above R0 � 6.6.

Using 100% global mixing, results in a mean-field approxi-
mation of our model. Under such mean-field conditions, the
system can display oscillations in the number of infected hosts.
These oscillations increase in amplitude and period with increas-
ing infection rate and infection period, similar to the spatial
model. However, these oscillations are very slow compared with
local outbreak waves in the spatial model, because they cannot
benefit from spatial spread of pathogens. In fact, large mean-

field oscillations will lead to (stochastic) extinction of the
pathogen for larger values of infection rate and infection period.

‘‘A Tale of Two Cities.’’ The emergent trade-off corresponds roughly
to the transition region between turbulent waves and regular waves
(Fig. 2C). Apparently, in the regular wave domain, selection is for
decreased infection period, i.e., for decreased R0. This behavior can
be explained by selection for outbreak frequency, as all evolution-
ary trajectories in Fig. 3A closely follow paths of increasing fre-
quency (Fig. 3B). The emergent trade-off corresponds to an
attracting ridge in the frequency landscape. Selection for outbreak
frequency has previously been described in excitable media (29)
and parasitoid-host models (16). To demonstrate the mechanism,
we performed an experiment in which two ‘‘cities’’ emit infection
waves into the surrounding area at different frequency (Fig. 5A).
Both cities harbor the same pathogen genotype so that frequency
is singled out as the only variable. The point where waves collide
shifts in favor of the city with higher outbreak frequency (Fig. 5B),
with a speed determined by the difference between the two
frequencies (Fig. 5C) (29). It is exactly this mechanism of expansion

Fig. 4. Evolutionary dynamics. The evolutionary trajectory (black line) rep-
resents the change in the population’s mean infection rate and infection
period over time (same as Fig. 3). Point clouds represent all pathogen types
present in the 120 � 120 grid at one time. The point clouds are plotted every
5,000 time units to give an indication of the temporal dynamics of the
evolutionary process. During evolution, pathogen diversity is low; typically
only two and three step mutants are present. Relaxation to the R0 � 6.6
emergent trade-off line (gray line) is relatively fast, whereas progression
along the line is much slower. This result occurs because, along the trade-off,
traveling waves are relatively stable, slowing down the spread of new genetic
information through the system.

Fig. 5. An illustration of the mechanism of selection for outbreak frequency.
(A) Two ‘‘cities,’’ numbered 1 and 2, emit infection waves at frequency f1 �
0.625 and f2 � 0.5, respectively. In contrast to our full spatial model, where
outbreak frequency is a result of spatial pattern formation and depends on
infection rate and infection period, these defined ‘‘city areas’’ simply period-
ically infect all hosts directly surrounding them. The cities differ only in
outbreak frequency and have identical pathogen genotypes, with infection
rate � � 3 and infection period �I � 0.3. Colors are gray for susceptible hosts,
red and blue for infected and resistant hosts from city 1, and magenta and
cyan for infected and resistant hosts from city 2 (t � 7). (B) At t � 75, the waves
from city 1, with the higher outbreak frequency, have completely taken over
the area between the two cities. The takeover process can be visualized by
plotting a horizontal cross section through both cities against time (C). The ob-
served displacement speed can be accurately quantified by
v ( f2

�1 � f1
�1)�( f2

�1 � f1
�1) (dashed line), where v is the speed of the infection

waves (29). Grid size is 120 � 400 cells.
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of more frequent waves that causes the selection for decreased
infection period in Fig. 3A.

Explicit Trade-Offs. Selection for outbreak frequency alone cannot
explain a limitation in the evolution of infectiousness and the
ensuing shortening of the infection period. This limitation could
be set by physiological constraints or explicit trade-offs between
infectiousness and virulence. We confined evolution to various
curves representing such physiological trade-offs to see how this
confinement affects evolution in our system. It turns out that,
also on an explicit linear trade-off curve, selection is for maximal
outbreak frequency (Fig. 6A). Interestingly, also in case of a
positive linear relation between infection rate and infection
period (Fig. 6B), selection for maximal frequency leads to an
evolutionary attractor with intermediate infection rate and
period. Nonspatial theory would predict runaway selection (i.e.,
maximal infection rate and infection period) in such a ‘‘trade-on’’
situation. Other, nonlinear couplings between infection rate and
infection period can even lead to alternative evolutionary at-
tractors (Fig. 6C), caused by the existence of two local frequency
optima. Which evolutionary attractor is reached depends on
initial conditions, where the frequency minimum separates the
two basins of attraction. The evolutionary attractors are all close

to the emergent trade-off, as the intersection of an explicit
trade-off curve with the ridge in the frequency landscape often
creates a local frequency optimum.

Discussion
We conclude that spatial patterns with or without physiological
trade-offs can induce selection for short lasting infections. Short
infections can, e.g., be accomplished by easy immune clearance.
Selection for outbreak frequency could thus be relevant to the
evolution of parasites that cause relatively mild but frequent
infections. Results presented here are remarkably robust for
changes in network topology, e.g., using a hexagonal grid or a 24
(5 � 5) cell neighborhood still leads to the emergent trade-off
around R0 � 6.6. The value of R0 � 6.6 is, however, not a
universal constant. For example, stochasticity in the infection
period does lead to an emergent trade-off, but at higher values
of R0, corresponding to a change in the frequency landscape (see
Fig. 7). Our current model is homogeneous, but infection waves
also have been demonstrated to exist in nonhomogeneous
real-world situations (22, 23). In fact, large cities (harboring
infections endemically) could act as a source of infection waves.
However, many diseases are seasonal, and therefore an impor-
tant question for further studies is how seasonality can influence
spatial pathogen evolution. Wave-like patterns are also observed
in many ecological systems, such as predator–prey dynamics (30),
and our results, showing how spatial pattern formation can link
survival to reproduction and dispersal, might have importance
for evolutionary dynamics in these systems as well.

Fig. 6. Evolutionary optimization along explicit trade-offs. Red lines repre-
sent trade-offs, i.e., combinations of infection rate and infection period to
which evolution is constrained. Green stars indicate maximal number of
secondary infections (i.e., maximal R0). Black dots indicate the endpoint of
evolutionary simulations. Outbreak frequency is indicated by the gray shaded
area. The emergent trade-off at R0 � 6.6 is shown by a blue dashed line. (A)
Evolution along a linear trade-off between infection rate and infection period
leads to evolutionary optimization close to maximum outbreak frequency. (B)
Selection for outbreak frequency can limit evolution for increased infection
rate and infection period, even when these traits are positively correlated. (C)
Nonlinear trade-off curves that result in multiple local frequency optima give
rise to alternatively stable evolutionary attractors. Results shown are for a
120 � 120 grid.

Fig. 7. Evolutionary trajectories for a stochastic infection period. (A) Evolu-
tionary trajectories, representing the change in mean infection rate and
infection period, resulting from using a lognormally distributed (stochastic)
infection period. Vertical axis represents the lognormal distribution mean;
standard deviation was set at 0.1. Evolution again proceeds to and along a
hyperbolic trade-off relationship between infection rate and infection period,
but this time the emergent trade-off is located at R0 � 7.6 (black curve). The
gray curve indicates R0 � 6.6 for comparison. (B) The shift in the emergent
trade-off corresponds to changes in the frequency landscape. The emergent
trade-off can be shifted even further by increasing the standard deviation of
the lognormal distribution. Parameters and colors are as in Fig. 3; results
shown are for a 120 � 120 grid.
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