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Abstract

Background—Why schizophrenia has accompanied us throughout our history despite its 

negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a 

by-product of the complex evolution of the human brain and a compromise for our language, 

creative thinking and cognitive abilities.

Method—We analyze recent large genome-wide association studies of schizophrenia and a range 

of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, 

immune-mediated diseases) using a statistical framework that draws on polygenic architecture and 

ancillary information on genetic variants. We used information from the evolutionary proxy 

measure called Neanderthal selective sweep (NSS) score.

Results—We show that gene loci associated with schizophrenia are significantly (p = 7.30×10−9) 

more prevalent in genomic regions that are likely to have undergone recent positive selection in 

humans, i.e. with low NSS score. Variants in brain-related genes with low NSS score confer 

significantly higher susceptibility than variants in other brain-related genes. The enrichment is 

strongest for schizophrenia, but we cannot rule out enrichment for other phenotypes. The false 

discovery rate conditional on the evolutionary proxy, points to 27 candidate schizophrenia 

susceptibility loci, twelve of which are associated with schizophrenia and other psychiatric 

disorders, or linked to brain development.

Conclusion—The results suggest that there is a polygenic overlap between schizophrenia and 

NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence 

of schizophrenia is related to the evolutionary process of becoming human.
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Introduction

Schizophrenia affects approximately 1% of the world’s population and has accompanied us 

through much of our recorded history (1–6). This seemingly human-specific disorder is 

characterized by hallucinations and delusions (often involving language), thought disorders 

and higher order cognitive dysfunctions. The mechanisms of schizophrenia are not well 

understood, but its heritability is high, between 60% and 80% (7), and the fecundity of 

affected people is reduced (8). Nevertheless, the prevalence of the disease seems to remain 

stable across generations giving rise to the yet unresolved “evolutionary enigma” of 

schizophrenia (3, 4, 9, 10). Large variations in incidence across populations argue for 

environmental causes. However, by using standard, precisely drawn diagnostic criteria the 

variation in incidence can be reduced (11). Classical explanations include a single, partially 

dominant gene with low penetrance giving slight physiological advantages (12), balanced 

selection, where the gene variants conferring risk of the disease provide an advantage in 

particular environments, and hitchhiking, where disease variants are passed along with 

advantageous neighboring gene variants. Newer studies have focused on the polygenic 

nature of schizophrenia and have attributed the disease’s prevalence to the sporadic nature of 

complex disorders (13).
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Archaeological and paleontological evidence points to the appearance of various hominin 

forms like Homo habilis, Homo erectus, Homo neanderthalensis (Neanderthals) and modern 

Homo sapiens (Humans) over 2.5 million years from the Lower Paleolithic to the Neolithic. 

It is debated whether the emergence of the ‘modern human’ was a morphological or a 

behavioral process, a one-time event or a continuous process of adaptation and assimilation 

of different forms. Even as morphological changes stopped, behavioral changes continued, 

rapidly leading to the ultimate success of humans (14).

Over the Pleistocene period, we see the appearance of specialized tools, the introduction of 

decorative arts, burial practices (15) and possibly the development of language (16). 

Research suggests that language acquisition played an important role in shaping the brain, 

helping us to think abstractly and be more creative, but also made us vulnerable to 

psychiatric disorders like schizophrenia (17). Changes that contributed to our ability to think 

more creatively and to improve executive function (18) could have also harbored 

susceptibility to this pathology (19). However, while archeological evidence provides clues 

about other aspects of human evolution, it cannot offer insights into the origin of psychiatric 

disorders.

Recent developments in human genetics have provided unprecedented opportunities to 

investigate evolutionary aspects of schizophrenia. Genome-wide association studies (GWAS) 

have identified over 100 schizophrenia risk loci and highlighted the polygenic architecture of 

the disease (20). The genome sequence of Neanderthals (21, 22), close relatives of early 

modern humans, can help pinpoint the genomic regions affected by positive selection since 

the two species diverged. The genomic differences between the two homo species may help 

explain specific human features, and thus the relation between human evolution and 

schizophrenia.

Several lines of evidence indicate that schizophrenia is a polygenic disorder (23, 24) with a 

large number of risk loci, each with a small effect (20). We have recently developed 

statistical tools, building on an Empirical Bayesian framework (25), that are specifically 

designed for polygenic architectures. These tools have successfully been applied to 

investigate several complex human phenotypes (26–32) but have not yet been used to study 

the evolutionary features thereof. We hypothesize that schizophrenia is the result of human 

polygenic adaptation (24) and investigate if regions of the human genome, which may have 

undergone recent positive selection, are enriched of association with schizophrenia.

Methods and Materials

Samples

We obtained summary statistics for ~1.0–2.5 million single nucleotide polymorphisms 

(SNPs) from GWASs of schizophrenia (conducted by the Psychiatric Genomics Consortium 

(PGC)) and other phenotypes, including anthropometric measures (body mass index (BMI), 

height, waist-hip ratio (WHR)), cardiovascular disease risk factors (systolic blood pressure 

(SBP), total cholesterol (TC), triglycerides (TG)), immune-mediated diseases (celiac disease 

(CeD), Crohn’s disease (CD), rheumatoid arthritis (RA), ulcerative colitis (UC)) as well as 

other psychiatric and central nervous system disorders (attention deficit, hyperactivity 
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disorder (ADHD), Alzheimer’s disease (AD), bipolar disorder (BD), and multiple sclerosis 

(MS)) (Table S1). In total, these studies included approximately 1.3 million phenotypical 

observations although overlap between samples makes the number of unique subjects lower.

Neanderthal selective sweep score

The Neanderthal selective sweep (NSS) score is obtained through alignment of human, 

Neanderthal and primate consensus sequences (21, 33) and is downloadable from the UCSC 

genome browser (http://genome.ucsc.edu, ntSssZScorePMVar track (S-scores)). This track 

consists of two entries per SNP, (z-score + sd) and (z-score − sd). The NSS score provides a 

likelihood index of positive selection in humans sometime after the divergence of humans 

and Neanderthals (21, 33) by measuring the relative abundance of ancestral/non-ancestral 

(i.e. aligned/non-aligned with primate consensus) alleles in these two lineages. A negative 

NSS score indicates scarcity of non-ancestral alleles in Neanderthal compared to modern 

humans and therefore possible positive selection in the latter. The (z-score + sd) entries in 

the genome track represent an upper bound on the statistic and are therefore conservative 

measures of positive selection likelihood. These were extracted for all SNPs in the GWASs 

of interest (Table S1 in Supplement 1) and follow the distribution illustrated in Fig. S1 in 

Supplement 1. The (z-score + sd) entries, termed NSS scores, were used as ancillary 

information or covariates in the enrichment analyses. Using the NSS scores, the authors of 

the two articles on Neanderthal genome identified regions of the human genome that are 

significantly likely to have undergone recent positive selection. The same analyses 

performed directly using the NSS scores were also performed using linkage disequilibrium 

(LD) weighted scores (see Analytical approach below) measuring affiliation to these regions.

Brain genes

In order to control the enrichment analyses for affiliation to brain genes, we identified genes 

with a known function in the brain using information from the NCBI (http://

www.ncbi.nlm.nih.gov/gene). The query “human brain” in Homo sapiens revealed 2494 

genes (March 2015). For comparison, we also used the list of brain genes from Kang et al.
(34), which includes 1415 genes selected based on expression in various neural cells. The 

LD weighted procedure (see Analytical approach) applied to the NSS regions mentioned 

above was applied to these genes, yielding brain genes LD weighted affiliation scores.

Analytical approach

We employed a genetic enrichment method recently developed to dissect the genetic 

architecture of complex traits (26, 28, 29) (32, 35). Specifically, we investigated the 

enrichment of associations concurrent with the NSS score selection index in a covariate-

modulated statistical approach (32). We investigated whether SNPs with low NSS score and 

therefore in regions possibly subjected to positive selection in humans, are more likely 

associated with schizophrenia or other phenotypes. All statistical analyses were carried out 

with a covariate-modulated enrichment analysis package developed on R (www.r-

project.org) and MATLAB (www.mathworks.se/products/matlab/) programming platforms.

Quantile-Quantile (Q-Q) and Fold enrichment (36) plots—Q-Q plots are designed 

to compare two distributions; here we compared the nominal p-value distribution to the 
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empirical distribution. In the presence of null relationships only, the nominal p-values form a 

straight line on a Q-Q plot when plotted against the empirical distribution. We plotted −log10 

nominal p-values against −log10 empirical p-values for the two SNP strata determined by the 

NSS score (conditional Q-Q plots) as well as for all SNPs. Leftward deflections of the 

observed distribution from the null line reflect increased tail probabilities in the distribution 

of test statistics (z-scores) and consequently an over-abundance of low p-values compared to 

that expected under the null hypothesis.

To graphically assess genetic enrichment, we used conditional fold enrichment plots. Here, a 

direct measure of the enrichment is given by the degree of deflection from the expected null. 

The fold enrichment is derived as follows: first the empirical cumulative distribution of 

−log10(p)-values for SNP association is computed for a given phenotype for all SNPs, and 

for the two dichotomous SNPs strata determined by the NSS score. Each stratum’s fold 

enrichment is then calculated as the ratio CDFstratum/CDFall between the −log10(p) 

cumulative distribution for that stratum and the cumulative distribution for all SNPs. The 

nominal −log10(p) values are plotted on the x-axis, the fold enrichment in the y-axis. To 

assess polygenic effects below the standard GWAS significance threshold, we focused the 

fold enrichment plots on SNPs with nominal −log10(p) < 7.3 (corresponding to p > 5×10−8).

Binomial proportion test (BPT) (37)—Upon randomly subdividing a set of SNPs into 

two disjoint subsets, one would expect these to present similar p-values distributions. In 

particular, the proportion of SNPs with a p-value below a certain threshold should be the 

same in the two subsets. BPT measures deviations from this null hypothesis below a 

threshold of interest. We compared the proportions of SNPs in the top −log10(p) percentile 

within the two NSS strata. The BPT assumes independence of the data. Because of LD 

between SNPs, this independence requirement does not hold. We therefore subdivided the 

whole SNP set into blocks defined by 1Mb windows and an LD r2 threshold of 0.2 and 

randomly selected ten sets of SNP representatives from all blocks. Ten sets of BPTs were 

carried out on the approximately independent randomly chosen SNPs and the final p-value 

was calculated from the median of the BPT statistics.

LD weighted SNP annotation score—The use of GWAS SNPs in DNA regions of 

interest may underestimate the extent to which those regions are represented in the analysis. 

We used an LD weighted scoring algorithm developed in(26) order to identify SNPs that tag 

specific DNA regions even if they are not situated within them.

For each GWAS SNP a pairwise correlation coefficient approximation to LD (r2) was 

calculated for all 1KGP SNPs within a 1,000,000 base pairs (1Mb). All r2 values < 0.2 were 

set to 0 and each SNP was assigned an r2 value of 1.0 with itself. LD weighted region 

annotation scores for all DNA regions of interest were computed as the sum of LD r2 

between the tag SNP and all 1KGP SNPs in those regions. Given SNPi, its LD weighted 

region annotation score was computed as LD scorei = Σj δj rij
2, where rij

2 is the LD r-

squared between SNPi and SNPj and δj takes values of 1 or 0 depending on whether the 

1KGP SNPj is within the region of interest or not.
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Intergenic SNPs—Intergenic SNPs are defined as having LD weighted annotation scores 

for each of the genomic categories analyzed by Schork et al. (26) equal to zero and being in 

LD with no SNPs in the 1KGP reference panel located within 100,000 base pairs of a 

protein coding gene, within a non-coding RNA, within a transcription factor binding site or 

within a miRNA binding site. Those singled out in this way are expected to form a collection 

of non-genic SNPs not belonging to any (annotated) functional elements within the genome 

(including through LD) and therefore represent a collection of SNPs more likely to be null.

Intergenic correction—Intergenic SNPs were used to estimate the inflation of GWAS 

summary statistics due to cryptic relatedness. We used intergenic SNPs because their relative 

depletion of associations (26) suggests they provide a set of SNPs whose statistics are less 

inflated by polygenic associations. The inflation factor, λGC, was estimated as the median 

squared z-score of independent (LD r2 < 0.2) sets of intergenic SNPs across one hundred 

LD-pruning iterations, divided by the expected median of a chi-square distribution with one 

degree of freedom.

Squared z-score regression—The hypothesis here is that there is some proportionality 

between a continuous covariate of interest and the incidence of SNP association with a 

phenotype. A viable proxy for the latter is the extent of the association z-scores. We 

therefore regressed the squared z-scores against the NSS scores. Other covariates were 

included in the regression as well to account for possible confounding factors. These were 

exonic, intronic, 5′UTR, 3′UTR annotation scores (26, 38), brain gene affiliation scores, 

genotypic variance and total LD. As done for the BPT, regression analyses were performed 

on the ten sets of SNP representatives and the regression coefficient p-values were calculated 

from the median of the ten regression coefficient estimates.

Replication—The procedure used to compute the conditional rate of replication (for details 

see supplement 1) follows the one of Schork et al. (26). The 52 sub-studies were subdivided 

into two groups of 26 in 50 different ways, the first group, Dk, k = 1…50, serving as 

discovery group, the second, Rk, k = 1…50, as replication group. Cumulative replication 

rates were calculated over each of 1,000 equally-spaced bins spanning the range of negative 

log10(p-values) observed in the discovery group and for each of the 50 subdivisions. Every 

cumulative replication rate was calculated as the fraction of SNPs with a discovery negative 

log10(p-value) greater than the lower bound of the bin, that had a replication p-value smaller 

than 0.05. Average cumulative replication rates were subsequently computed across the 50 

subdivisions.

Results

We first assessed the influence exerted on schizophrenia association propensity by the 

Neanderthal “character” of the SNP’s DNA region, as measured by the NSS score selection 

index (21) (Fig. S1). Using data from the recently published schizophrenia GWAS (20), we 

conditioned schizophrenia association p-values on the NSS score. The conditional Q-Q (Fig. 

1A) and fold enrichment (Fig. 1B) plots show that SNPs with negative NSS scores are 

enriched for associations with schizophrenia compared to SNPs with positive NSS score. 

These results are nominally confirmed by the binomial proportion test (BPT), (p = 
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2.40×10−2) and more robustly by the squared z-score regression against the NSS score (β = 

−0.067, p = 7.30×10−9) (Table 1).

To control for the known effect of immune-related genes, all analyses were repeated after 

exclusion of SNPs in the MHC regions. These do not appear to affect the fold-enrichment to 

any measurable extent (Table S2, Fig. S2 in Supplement 1). Thus, it appears that the SNPs in 

human DNA regions that diverge from their Neanderthal counterparts have a higher 

propensity to be associated with schizophrenia. Similar analyses were repeated using 

affiliation to NSS regions that were deemed significantly likely (top 5%) to have undergone 

positive selection upon alignment with the Neanderthal genome. In this case, we investigated 

the original (21) as well as the more recently sequenced Neanderthal genome (22) and 

confirmed the initial results (Table S3, Fig. S3 in Supplement 1).

We carried out the same analyses on other phenotypes in order to assess the specificity of the 

evolutionary enrichment. As shown in Q-Q plots and fold enrichment plots (Fig. 2), other 

phenotypes show mostly modest or scarce enrichment as a function of NSS compared to 

schizophrenia. The only other significant excesses of low p-values were detected by the 

BPTs and the regression analyses for height and to some extent for BMI. (Table 1). Height 

in particular has effect size comparable to that of schizophrenia, and possibly larger still, but 

its standard error is somewhat larger. Targeted analyses of other psychiatric (ADHD, BD, 

MDD) and neurological (AD, Migraine, MS) disorders, revealed no measurable enrichment 

effect (Fig. S4–S5 in Supplement 1). Schizophrenia has by far the largest NSS effect size 

among the psychiatric and neurological GWASs, all of which have similar standard errors 

(Fig. S8). To test the extent to which the effect on schizophrenia depends on the power of the 

GWAS from 2014 (20), we performed the same analyses on the smaller schizophrenia 

GWAS from 2013(39), which is comparable in size to several of the other GWASs. The 

enrichment was somewhat diminished (Fig. S6 in Supplement 1) but remained nominally 

significant according to the regression analysis (β = −0.038, p = 7.93×10−3). We also tested 

the censored (methods in Supplement1) schizophrenia GWAS summary statistics and still 

found a significant (regression coefficient p=2.87×10−6) residual enrichment.

The effect of brain genes affiliation on enrichment was further investigated by testing 

whether brain genes with negative NSS scores are more enriched of associations with 

schizophrenia than any brain genes. The enrichment plots (Fig. 3) for brain genes with 

negative NSS show a wider deflection from baseline and the BPT shows a significant 

difference in the proportion of association p-values in the lowest percentile (p = 5.5×10−3).

We used the conditional FDR (condFDR) analysis (see methods in Supplement 1) to identify 

possible genomic loci associated with schizophrenia subject to the condition of having a 

negative NSS score. A total of 27 genomic loci were identified (condFDR<0.01). They are 

listed in Table S4 (Supplement 1) together with the annotated genes. A closer inspection of 

Table S4 (Supplement 1) reveals no preferential direction of effect (Fig. S7 in Supplement 

1), i.e. positive and negative z-scores were equally represented. This lack of directionality is 

confirmed upon regressing the SNPs z-scores against their NSS score (regression data not 

shown), i.e. no significant association between the two could be detected. None of the loci 

are identified by the analyses involving NSS region affiliation scores. This is probably due to 
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the dichotomous origin of this measure which is less well suited to the FDR lookup table 

smoothing procedure.

To assess the reliability of the genomic loci identified via condFDR, we investigated the 

association replication rates in independent schizophrenia sub-studies, defined as the 

proportion of SNPs declared significant in training samples with p-values below 0.05 in the 

replication sample and with z-scores with the same sign in both discovery and replication 

samples. We found that SNPs with NSS < 0 replicate at a higher rate than other SNPs (Fig. 

4). This confirms that the observed enrichment is due to associations and not to population 

stratification or other potential sources of spurious effects. Replication rates were 

extrapolated for the 27 NSS candidate loci and reported in Table S4 as well.

Discussion

Applying a polygenic statistical approach, we leveraged recent large GWAS data and 

showed that schizophrenia associations have a higher propensity to be found in genomic 

regions that diverge from their Neanderthal counterparts (negative NSS score). Such 

polygenic overlap between schizophrenia and a marker of human evolution is in accordance 

with the hypothesis of Crow et al. (19), suggesting that a number of schizophrenia 

susceptibility factors might have arisen as a “side effect” of human achievements like 

language and creative thinking (17). The current findings support the view that this 

evolutionary process also made us vulnerable to schizophrenia.

Previous studies of evolutionary factors of schizophrenia have focused on small sets of genes 

(40, 41). Bigdeli et al.‘s analysis (42) was more systematic but applied human accelerated 

regions (HAR) as evolutionary proxy. Xu et al. (43), using special HARs, showed that genes 

next to HARs in primates were under greater selection pressure compared to other genes and 

are more likely to be associated with schizophrenia susceptibility loci. Green et al. (21), who 

reported the first Neanderthal draft sequence, introduced the selective sweep score and 

investigated its relationship with the disease association but only for the most significant 

genes singled out by their analysis. Here, we use the information from Green et al.’s original 

publication (21), as well as the more recent report by Prüfer et al. on the complete 

Neanderthal genome sequence (22), to identify evolutionary enrichment patterns with a 

polygenic approach. Another asset for our study was the availability of a large schizophrenia 

GWAS of more than 80,000 participants (20), which makes it feasible to investigate 

evolutionary factors in schizophrenia with adequate power.

The results presented here are in line with the idea of polygenic adaptation which is believed 

to play a role in the development of many complex human diseases, as it likely happened in 

our adaptation to pathogens and in the variation of morphological traits like height (44–46). 

Classic selective sweeps, originating from strong selective pressure, are relatively rare in 

modern humans (47) and natural selection is not the only factor shaping human variation. 

Instead, polygenic selection involving subtle shifts of allele frequencies at many loci 

simultaneously has been suggested to be common for complex traits in humans (47). Thus, 

selection acting simultaneously on many of standing variants could be an efficient 

mechanism for phenotypic adaptation (48, 49). Given these premises, it becomes desirable 
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to employ analytical tools designed to capture polygenicity. The methods applied in our 

analyses have been useful in studying polygenic factors in schizophrenia before (28, 29, 50, 

51). Our results indicate that many schizophrenia susceptibility factors in modern humans 

may have emerged after their divergence from Neanderthals.

Several of the genes found to likely have undergone positive selection in modern humans 

(21) are involved in cognitive functions. The enrichment of SNPs associations observed for 

schizophrenia may therefore be due to an overlap between swept genomic regions and brain 

and other CNS genes and the regulatory regions thereof. This question is addressed by the 

regression analysis in which protein coding annotations are accounted for (Table 1). Even 

the inclusion of brain genes annotation scores in the regression did not reduce the 

enrichment for schizophrenia. Interestingly however, among the brain genes themselves, the 

ones with a negative NSS score were more enriched of associations with schizophrenia 

compared to other brain genes, let alone just any genes (Fig. 3).

The loci identified by the conditional FDR analysis harbor many genes that could plausibly 

play a role in the etiology of schizophrenia. Genes like DPYD, ZNF804A, NRXN1, NRG3 
and VRK2, which were previously known to be associated with the disease, confirm its 

potentially evolutionary nature (52–54). Other interesting patterns emerge from genes like 

AGBL4, CEP170, IFT81, and SDCCAG8, related to ciliogenesis and ciliary disorders (55–

57), and DPP10 and FOXP1, related to autism (58, 59). The functional implications of the 

current associations based on tag SNPs need to be explored in experimental studies. It will 

be of interest at a later stage to investigate whether the current polygenic evolutionary signal 

in schizophrenia is associated with human specific brain structure variance. GWAS for 

relevant brain structures, however, are not yet adequately powered (n~15,000 – 21,000 

participants) (60). Further, the interplay of the polygenic effects and de novo mutations, such 

as schizophrenia risk CNVs, should also be examined, even if the latter appear to explain a 

very small proportion of schizophrenia cases (61).

Notably, the enrichment found here seems to be related to schizophrenia, and some 

anthropomorphic human traits. However, we cannot rule out that there may be enrichment 

also in other disorders or diseases. The sample sizes available to some of the CNS GWAS 

might have limited the power to detect any enrichment. At any rate, the analysis of the 

smaller schizophrenia GWAS from 2013(39) also revealed a nominally significant 

enrichment effect, further supporting the notion of a specific association between 

schizophrenia and positive selection.

In conclusion, the present findings of a prevalence of schizophrenia risk loci overlapping 

with some genetic signatures of human evolution support the argument that both the 

emergence and the persistence of schizophrenia are connected to the human sapientia. This 

may help to explain the “evolutionary enigma” of schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Q-Q and fold enrichment plots of schizophrenia stratified according to Neanderthal 
selective sweep score
Shown are A) quantile-quantile (Q-Q) and B) fold enrichment plots of GWAS summary 

statistics p-values for schizophrenia (SCZ), stratified based on Neanderthal selective sweep 

(NSS) score. The human divergent (HD) stratum comprises single nucleotide 

polymorphisms (SNPs) with negative NSS scores. The regions around these SNPs present 

fewer derived alleles in Neanderthal than expected given the frequency of derived alleles in 

humans, and may therefore have undergone recent positive selection in the latter. The non-

divergent (ND) stratum comprises all SNPs with positive NSS scores. HD SNPs show a 

marked leftward (A) and upward (B) deflection from the lines corresponding to All SNPs. 

This signifies a comparatively higher proportion of low p-values among HD SNPs.
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Fig. 2. Q-Q and fold enrichment plots of three non-schizophrenia phenotypes stratified according 
to Neanderthal selective sweep scores
Phenotypes: Crohn’s disease (CD), Height and total cholesterol (TC). A) The quantile-

quantile (Q-Q) plots show GWAS summary statistics p-values of SNPs tagging human 

divergent regions (HD), non-divergent (ND) regions as well as All SNPs. There is no 

indication of enrichment as seen in SCZ in (Fig. 1). B) The fold enrichment counterparts of 

the Q-Q plots in A) illustrate the lack of enrichment. The regression analysis however shows 

significant enrichment for Height. (Table 1).
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Fig. 3. Q-Q and fold enrichment plots showing schizophrenia association enrichment of brain 
genes with negative Neanderthal selective sweep (NSS) score
Shown are A) the quantile- quantile (Q-Q) and B) the fold enrichment plots for: SNPs 

annotated to generic genes (Any); SNPs annotated to genes associated with the brain, as 

established by an NCBI site search (Brain); SNPs annotated to genes associated with the 

brain, defined by Kang et al. (34) (Neuro); SNPs with negative NSS score and annotated to 

genes associated with the brain, as established by an NCBI site search (NSSBrain); or to 

genes defined by Kang et al. (34) (NSSNeuro); and all SNPs (All SNPs). The NSS Brain 

category is enriched (deflected left) compared to the other categories, i.e. presents a higher 

incidence of associations (lower p-values) with schizophrenia (SCZ). This is confirmed by 

the Binomial Proportion Test (BPT) comparing Brain and NSS Brain groups (p = 5.5×10−3).
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Fig. 4. Replication plot for schizophrenia with and without conditioning on Neanderthal selective 
sweep score < 0
SNPs with negative Neanderthal selective sweep score (NSS) score tend to replicate better 

than baseline SNPs across the 52 schizophrenia (SCZ) meta-analysis sub studies. For 

example, at a −log(p)-value level of 4 the cumulative replication rate improves from 60% to 

about 80% when restricting the choice to SNPs with negative NSS score. A negative NSS 

score seems therefore to be a viable aid to identify non-spurious schizophrenia associations.
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