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Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative
capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is
presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this
aging-related dysfunction, we cultured mesenchymal stem cells (MSCs) from human fetal heart tissues. Senescence was induced
by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of
senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated
beta-galactosidase (SA-3-Gal). By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated
in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome
c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of
senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B) also upregulated COXI expression and
induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve

as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

1. Introduction

The adult mammalian heart has traditionally been viewed as a
nonregenerative organ as it retains very minimal regenerative
potential. Following cardiac injury, as in the case of myocar-
dial infarction, the heart fails to replace the vast majority
of lost or damaged cardiomyocytes. Instead, the heart heals
with scar tissue, leading to a contractile defect of the organ
and ultimately heart failure [1]. However, the hearts of one-
day-old mouse retain full regenerative potential and are able
to restore normal anatomy and function after cardiac injury
[2]. This regenerative capacity of the neonatal mouse heart,
however, becomes lost within the first week of postnatal life.
Decreases in cardiac stem or progenitor cells could be one of

the determining factors for the loss of regenerative capacity
in this aging process [3].

Mesenchymal stem cells (MSCs) have attracted great
interest as a promising regenerative therapeutic for many
human diseases, primarily because of their capacity for self-
renewal, multilineage differentiation, and immune mod-
ulation [9-13]. MSCs derived from fetal heart (c-MSCs,
HMSCs) have the potential to differentiate into cardiomy-
ocytes, endothelial cells, and smooth muscle cells [3, 14-16].
Engraftment of fetal cardiac MSCs improves cardiac function
and can repair myocardium in a rat model of myocardial
infarction [15]. However, to serve as a useful regenerative
therapy, MSCs isolated from patients need to be expanded
ex vivo [17]. MSCs have a limited lifespan in cell culture,
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and after a few passages of expansion, the cells enter the
senescent state, leading to the reduction in self-renewal
ability and differentiation potential [18, 19]. Moreover, the
self-renewal potential of MSCs is significantly reduced with
aging. Like many primary cells in culture, MSCs show
decreased proliferation and increased apoptosis as the age
of the donor animal or human [20-24]. As MSCs approach
senescence, their proliferation slows significantly, leading to
a decrease in differentiation potential [25]. Therefore, it is
critical to understand the mechanisms that control replicative
senescence in MSCs.

Replicative senescence, a process that places cells in per-
manent proliferative arrest in response to various stressors, is
a potentially important contributor to aging and age-related
disease. It is clear that cellular senescence is associated with an
array of epigenetic modifications that may be responsible for
changes in gene expression that ultimately lead to catabolic
and degenerative processes. Mitochondrial DNA (mtDNA)
damage has long been implicated in the aging process [26].
A number of mitochondrial signaling pathways can induce
cellular senescence [27]. However, the role of mitochondrial
epigenetics has largely been unexplored. In fact, the impor-
tance and relevance of mitochondrial epigenetics in aging has
been controversial [28], primarily because of the difficulty
of studying the relatively small mitochondrial genome in the
context of the far larger nuclear genome.

Methylation of mtDNA in a variety of tissues varies with
aging, disease states, environmental exposure, and certain
drugs. In addition to 5-methylcytosine, a so-called “sixth
base,” 5-hydroxymethylcytosine has also been identified in
mtDNA, where its abundance changes during aging indepen-
dently of 5-methylcytosine levels [29]. It has been suggested
that mtDNA methylation might become a next-generation
biomarker for aging [30]. Currently, we know very little about
the role of mtDNA methylation in the aging-related dys-
function of cardiac stem or progenitor cells. To gain insight
regarding the role of mitochondrial epigenetics in senescence,
we induced senescence in MSCs cultured from human fetal
heart tissues and examined epigenetic mechanisms that may
be associated with cellular aging in MSCs.

2. Materials and Methods

2.1. Isolation of MSCs. Isolation of MSCs from fetal heart
tissues was performed following the method as described
previously [3, 16] with some modifications. Briefly, fetal heart
tissues from days 45-67 of embryos were obtained from
Human Tissue Network (Central Laboratory for Human
Embryology Tissue, University of Washington, WA) in
phosphate-buffered saline (PBS). Upon arrival, the tissues
were minced with a razor into small pieces. To avoid
destroying the cardiac stem cell niche, we did not digest
the tissue with collagenase. Instead, the minced heart tissues
were directly seeded on a 10 cm plate with a small amount of
DMEM (2-3 ml) containing 10% fetal calf serum (FCS) and
antibiotics and were cultured at 37°C in a 5% CO, humidified
atmosphere. After the heart tissue became attached to the
plate, a small amount of fresh medium was added to the plate
without disturbing the tissues on a daily basis. After 5-7 days,
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MSCs began to migrate out from the heart explants and the
MSCs were collected for further expansion. MSCs at passages
3-5 were used for analysis. MSCs from fetal skin tissues
were isolated using the same approach and were used in
parallel with HMSC:s in the study. The experimental protocol
was approved by the Institutional Review Board/Stem Cell
Research Oversight Panel at Stanford University.

2.2. Characterization of MSCs. The MSCs cultured from fetal
heart (HMSCs) were characterized by flow cytometry using
stem cell markers as previously described [31]. Cells were
collected at a concentration of 1 x 10° cells/ml in phosphate-
buffered saline (PBS) containing 0.1% BSA. Cells were incu-
bated at 4°C with antibodies against MSC-markers (CD90,
CD73, and CDI05), hematopoietic cell markers (CD45,
CD34, CD14, and CD19), and receptors for extracellular
matrix (CD29, CD44) and major histocompatibility (HLA-
DR) (all from BD Biosciences, CA). Thirty minutes after anti-
body incubation, cells were washed and suspended in 300 uL
PBS. Flow cytometry was performed using FACSCAria III
Cell Sorter (BD Biosciences, CA) [32-35].

2.3. Differentiation of MSCs. The differential potential of the
isolated MSCs into adipogenic and osteogenic lineages was
performed as described previously [32-35]. After induction,
cells were stained with the Oil Red O and Alizarin Red
(Sigma, USA) to detect the presence of neutral lipid vacuoles
in differentiated adipocytes and calcium deposition in osteo-
cytes, respectively.

2.4. Induced Senescence in MSCs. To mimic the replicative
senescence seen in MSCs [36, 37], we adopted a new approach
by chronically exposing cells to low oxidative stress and a
low serum environment. Specifically, HMSCs at passages 3-5
at approximately 50% confluence were continuously exposed
to low concentration of hydrogen peroxide (50 uM H,0,)
in DMEM supplemented with 5% FBS. Using this approach,
MSCs exhibited a typical senescence-like morphology after 2-
3 passages. Cells were collected for RNA-Seq analysis (Beijing
Honor Tech Co., Ltd., Beijing, China).

2.5. Staining of Senescence-Associated [3-Galactosidase. Cel-
lular senescence was quantitated by measuring the activity
of SA-B-Gal as previously described [38, 39]. MSCs were
collected and fixed using 3% formaldehyde for 3-5min at
room temperature. After washing with PBS, cells were incu-
bated at 37°C with freshly prepared senescence-associated
SA-f-Gal staining solution: 1mg/ml 5-bromo-4-chloro-3-
indolyl P3-D-galactoside (X-Gal), 40 mM citric acid/sodium
phosphate, pH 6.0, 5mM potassium ferrocyanide, 5mM
potassium ferricyanide, 150 mM NaCl, and 2mM MgCI2.
After overnight incubation, cells with the SA-f-Gal staining
were assessed using a microscope-mounted camera.

2.6. Detection of Telomere Length in Aging Cells. The relative
length of telomeres was estimated by quantitative PCR as
previously reported [40, 41]. Briefly, genomic DNA was
extracted with Qiagen DNeasy Blood & Tissue Kit (Qiagen,
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CA, USA). After dilution, 35 ng/ul DNA was heated at 95°C
for 5 min and chilled on ice for 5 min. The DNA samples were
placed in a 20 pl real-time qPCR reaction system containing
10 ul 2 x SYBR premixed buffer (Roche, Shanghai, China),
2 ul forward and reverse primers. The sequence of primers
includes (1) telomere forward: 5'-GGTTTTTGAGGGTGA-
GGGTGAGGGTGAGGGTGAGGGT-3' (100nM) and
reverse: 5 -TCCCGACTATCCCTATCCCTTCCCTAT-
CCCTATCCCTA-3" (300 nM); and (2) B-globin forward:
5'- GCTTCTGACACAACTGTGTTCACTAGC-3' (150 nM)
and reverse: 5-CACCAACTTCATCCACGTTCACC-3'
(150 nM). The PCR amplification process was one cycle at
95°C 10 min and 40 cycles at 95°C for 15, 56°C for 30's, and
72°C 30s (ABI SepOnePlus, Beijing, China). The telomere
length was estimated by the relative ratio between the copies
of telomere and the copies of -globin (T/S). T/S value is
calculated by 27A8Ct 140, 41].

2.7. Gene Expression of the Senescence and the Cardiac Devel-
opment Pathways. Comparison of the senescence and cardiac
development pathway genes was performed by RNA-Seq
[42]. Total RNA was isolated using Qiazol (Qiagen, CA) and
used for indexed library preparation using Illumina’s TruSeq
RNA Sample Prep Kit v2. Libraries were sequenced using a
HiSeq4000 (Illumina) and yielded approximately 34 million
reads with a length of 150 bp per sample. Gene counts were
normalized to the values of Reads Per Kilobase of transcript
per Million mapped reads (RPKM). KEGG pathways were
selected as significantly regulated if the corrected P values
were smaller than 0.05 (Beijing Honor Tech Co.,Ltd., Beijing,
China).

2.8. Measurement of mtDNA Methylation by COBRA. Mito-
chondrial and total cellular DNAs were extracted by DNeasy
Blood & Tissue Kit (Qiagen, CA) and treated by sodium
bisulfite using EZ DNA Methylation™ Kit (Zymo, CA), fol-
lowing the protocol provided by the manufacturer. Initially,
we obtained mtDNA from isolated mitochondria and treated
the DNA with sodium bisulfite for cloning sequencing. Later,
we found that the protocol could be greatly simplified by
simply using total genomic DNA with PCR primers that are
specific for mitochondrial DNA.

Bisulfite-treated DNA was amplified by polymerase chain
reaction (PCR) under liquid wax in a 6 ul reaction containing
2 pl of 3 x Klen-Taq I Mix, 2 ul template DNA, and 1 ul of each
2.5 uM primer. After incubation at 95°C for 5 min, DNA was
amplified by 38 cycles of 95°C for 20's, 62°C for 20 s of anneal-
ing, and 72°C for 20 s of extension and finally with extension
at 72°C for 2 min. Methylation PCR primers sequences are
listed in Table S1 (see Table S1 in the Supplementary Material
available online at https://doi.org/10.1155/2017/1764549).

The status of mtDNA methylation was determined by
restriction enzyme digestion. PCR DNAs were digested by
Taq I at 65°C for 2h or HpyCH4IV at 37°C for 2h and
separated on 3% agarose gel. Taq I recognizes the TCGA
site and HpyCH4IV digests the ACGT site. After treatment
with sodium bisulfate, unmethylated cytosines were con-
verted to uracils [43, 44]. As a result, methylated mtDNA
will be digested by the restriction enzymes. In contrast,

unmethylated mtDNAs will be converted to TTGA and
ATGT, which are not digested by Taq I and HpyCHA4IV,
respectively. The methylated and unmethylated bands were
scanned for quantitation.

2.9. Knockdown of DNMTs by RNA Interference Lentiviruses.
Two different RNA interference oligonucleotides targeting
each DNMT gene were driven by HI and U6 promoters,
respectively, and were jointly subcloned into pGreen-
puro lentiviral vector by PCR. The oligonucleotide
sequences targeting DNMT1, DNMT3a, and DNMT3b
are as follows: DNMTI (A): 5'-GCCCAATGAGACTGA-
CATCAA-3'; DNMT1 (B): 5'-GGAACCAAGCAAGAA-
GTGA-3'; DNMT3a (A): 5-AGCGGGCAAAGAACA-
GAAG-3'; DNMT3a (B): 5'-CCAGATGTTCTTCGCTAA-
TAA-3'; DNMT3b (A): 5'-CCTGTCATTGTTTGATGG-
CAT-3'; DNMT3b (B): 5'-CCATGCAACGATCTCTCA-
AAT-3'. The scramble control sequence is 5'-GCTTCAATT-
CGCGCACCTA-3'.

For viral packaging, 293 T cells were transfected with 2 pg
of each lentiviral expression construct. Transfections were
done in six-well plates using Lipofectamine 2000 (Invitrogen,
USA). Viral supernatants were collected at 24 and 48 h after
transfection. After addition of polybrene (8 ugml™), the
supernatants were placed on the cultured HMSCs cells. Cells
were transfected twice to increase transfection efficiency.

2.10. RT-PCR Analysis. RT-PCR was used to quantitate
the expression of genes related to senescence. Total RNA
was extracted by TRIzol reagent (Sigma, MO) and was
converted to cDNA by reverse transcription reaction as
previously described [45, 46]. We designed PCR primers
as follows: B-actin: 5'-CAGGTCATCACCATTGGCAAT-
GAGC-3' (forward) and 5'-CGGATGTCCACGTCACAC-
TTCATGA-3' (reverse); caveolin-1: 5'-TCCCATCCGGGA-
ACAGGGCAACAT-3' (forward) and 5-GTCCCTTCT-
GGTTCTGCAATC-3' (reverse); P16: 5-CGGATAATT-
CAAGAGCTAACAGGT-3 (forward) and 5'-GGCCTC-
CGACCGTAACTATTCGGT-3' (reverse); P2I: 5'-GTG-
GACCTGTCACTGTCTTGTAC-3' (forward) and 5'-GCT-
TCCTCTTGGAGAAGATCAGC-3' (reverse); apolipopro-
tein: 5’ -GGTCTCWGACAATGAGCTCCA-3 (forward) and
5'-TCCCAGAGGGCCATCATGGTC-3' (reverse); COXI:
5'-CAGCATGCCCCAGGATTTGTC-3' (forward) and 5'-
CAKGTCCTGCTCCAGGGCAGC-3' (reverse, K = G/T).
The PCR amplification was composed of 1 cycle at 95°C for
5min and 33 cycles at 95°C 205, 62°C 155, and 72°C 15 s and
ending with an extension cycle at 72°C 5 min.

2.11. Measurement of COX1 Enzyme Activity. COXI activ-
ity was determined by cellular staining for cytochrome C
oxidase. MSCs (1 x 10°) were plated in 6-well plate and
were cultured for 24 hrs. Cells were rinsed 3 times with PBS
and were dried in air. Cells were incubated for 15min at
RT in the preincubation medium (50 mM Tris-HCI, pH 7.6;
0.29 M sucrose; 2.2mM cobalt chloride) and were rinsed
with buffer I (0.1 M sodium phosphate pH 7.6; 10% sucrose).
Cells were incubated for 4 hrs at 37°C in 10 ml incubation
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medium (pH 74, 0.IM sodium phosphate pH 7.6, 10%
sucrose, 10 mg cytochrome C (Sigma, MO), 10 mg DAB (3,3'-
diaminobenzidine) hydrochloride (Sigma, MO), and 2.0 mg
catalase (Sigma, MO)). Cells were rinsed once with buffer
I and 5min with PBS, washed with H,O for 5min, and
observed under microscope.

2.12. Statistical Analysis. Data were analyzed using SPSS
software (version 16.0; SPSS, Inc., IL). Student’s t-test or
one-way ANOVA (Bonferroni test) was used to compare
statistical differences for variables among treatment groups.
The data were expressed as mean + SD. All experiments
were performed in triplicate, and results were considered
statistically significant at P < 0.05.

3. Results

3.1. Multilineage Differentiation of Fetal Heart Mesenchymal
Stem Cells. MSCs isolated from different tissues, despite their
molecular congruence, exhibit strong biases in gene and
protein expression, pathway activity, and lineage differen-
tiation, suggesting the presence of “molecular memory of
tissue origin” [14]. These conserved organ-specific functions
may potentially render them more appropriate as cellular
therapeutic agents for their organ of origin, particularly in “in
situ reprogramming” or “in situ differentiation” models. Of
note, the murine neonatal heart can regenerate and restore
damaged sections resulting in the restoration of normal
anatomy and function without scar formation, but this
capacity is lost after one week of age [2]. We were interested
to learn if epigenetic alterations in mitochondria DNA were
involved in this aging process.

To define the potential epigenetic mechanisms under-
lying this cardiac aging, we cultured MSCs from human
fetal heart tissues, which are presumed to maintain full
regenerative potential. Adherent MSCs grew ~8-12 days after
the initial tissue seeding and were collected for phenotypic
analysis using flow cytometry. We found that stem cell
markers were universally expressed in isolated MSCs, includ-
ing CD105, CD73, CD90, CD44, and CD29 (Figure 1(a)).
Negative stem cell markers, including CD45, CD34, CD14,
CD19, and HLA-DR, were expressed at very low levels. The
isolated HMSCs could be differentiated into adipogenic and
osteogenic lineages (Figure 1(b)). These data suggest that the
MSCs cultured from fetal heart exhibited the potential of
multilineage differentiation as previously reported [3, 14, 16].

As tissue MSCs exhibit strong “molecular memory of
tissue origin” [14], we used RNA-Seq to examine the pathway
genes that are associated with cardiac development [4-8]. We
found that genes involved in cardiac programing were also
expressed in HMSCs, including AKT pathway, GATA family,
and TBX family genes (Figure 1(c)). These data suggest that
these HMSCs may serve as an appropriate model to study
cardiac aging.

3.2. Induction of Chronic Senescence in Mesenchymal Stem
Cells. Two types of induced senescence have commonly been
used to study aging in vitro, including replicative senescence
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(RS) and stress-induced premature senescence (SIPS) [47-
49]. RS is characterized by progressive telomere shortening,
which occurs at every cell division. Although it is an excellent
mimic of the natural aging process, induction of senescence is
very time-consuming. On the other hand, SIPS is induced by
exposure to subcytotoxic stress, and cells undergo premature
senescence without telomere shortening. SIPS is the most
frequently used model in studying aging. However, cellular
toxicity is encountered in this model, particularly by high
concentrations of hydrogen peroxide. Therefore, SIPS may
not be an appropriate model of in vivo pathophysiological
aging in cardiac stem cells.

In this study, we established a novel model by combining
the advantages of both RS and SIPS. In this model, we
facilitated the occurrence of replicative senescence by a
new “two-hit” approach. Fetal heart-derived MSCs (HMSCs)
were exposed simultaneously to low doses of hydrogen
peroxide (50 uM) and to low serum (5%) in cell culture.
It was presumed that exposure to low dose of hydrogen
peroxide would generate much less toxicity than that usually
encountered in SIPS. Meanwhile, low serum exposure would
accelerate the development of senescence. After combined
exposure for 2-3 passages, we found that HMSCs exhibited
flattened morphology and decreased cell proliferation. The
treated MSCs stained positive for senescence-associated beta-
galactosidase (SA-f-Gal) activity (Figures 2(a) and 2(b)).

We then used PCR to quantitate senescence-related genes
that have been previously reported [38, 39, 50]. We found
that the caveolin-1 gene (CAV1) was upregulated in senescent
MSCs (Figure 2(c)), although we did not detect a significant
change in APO-] and OX1. P21 was also upregulated in
parallel with cell senescence (Figure 2(d)). Future studies
are needed to clarify the time point from the senescence-
inducing stimulus when p53 and p21 start to be upregulated.

To further characterize the senescent cells, we mea-
sured telomere length using quantitative PCR. By comparing
telomere length among the three models, it was clear that
the senescent cells in our model had the telomere shortening
similar to that seen in replicative senescent cells (Figure 2(e)).
As expected, there was no significant change in telomere
length in cells that were treated with high dose of hydrogen
peroxide. In addition, using RNA-Seq we found that the
pathways previously identified in replicative senescent cells
[42, 51] were also activated in our senescent cells (Figures
S1-S2). Together, these data suggest that our model carries a
phenotype that is prone to replicative senescence.

3.3. Cellular Senescence Is Associated with Differential Methy-
lation of mtDNA CpG Islands. To depict the epigenetic
mechanism underlying cellular senescence, we used sodium
bisulfite sequencing to assess DNA methylation in a total
of 11CpG islands throughout the mitochondrial genome
(Figure 3(a)). Using restriction enzymes to distinguish the
methylated and unmethylated CpGs, we found that the
mitochondrial genome was primarily unmethylated. Three
CpG islands exhibited considerable mtDNA hypomethyla-
tion in senescent HMSCs, including CpG islands 4, 1, and 2
(Figure 3(b)). Similar mtDNA methylation pattern was also
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FIGURE 1: Characterization of human fetal heart-derived mesenchymal stem cells (HMSCs). (a) The profile of stem cell markers in cultured
HMSCs. Immunophenotypes of MSCs were determined by flow cytometry using labeled antibodies specific for the indicated human surface
antigens. (b) Differentiation potential of HMSCs. Cells were stained by Alizarin Red for calcium deposits during osteogenic differentiation.
Adipogenic differentiation was detected by Oil Red O staining (200x). (c) The “molecular memory of cardiac origin” of HMSCs. Left panel:
schematic diagram of the published cardiac stem cell pathways [4-8]. Right panel: expression of pathway genes in HMSCs. Total RNAs
were isolated from HMSCs for RNA-Seq using a HiSeq4000 (Illumina). Colors represent from high (red) to low (blue) expression based on

normalized FPKM values for each gene.

observed in SMSCs (Figure 3(c)). The remaining CpG islands,
however, showed fewer differences between the control and
senescent MSCs (Figures S3-S5). We also noticed the differ-
ence in mtDNA methylation in three CpG islands (4, 2, and
1) between neonatal and adult skin fibroblasts (Figure 3(d)).

The degree of mitochondrial DNA methylation was quan-
titated by scanning the PCR band density. Clearly, significant
mtDNA hypomethylation was observed in cells following
senescence (Figure 3(e)).

3.4. Differential mtDNA Methylation Affects COX1 Expression.
CpG island 4 is located within the 3'-region of the mitochon-
drial COX1 gene (Figure 4(a)), which encodes cytochrome ¢
oxidase I, a key enzyme in aerobic metabolism. As the degree
of mtDNA methylation at CpG 4 declines following senes-
cence, we suspected that COX1 expression would be affected
by this epigenetic regulation. We used RT-PCR to semiquan-
titate COX1 and found that a significant upregulation of COX1
was associated with senescence (Figure 4(b)). ND2, a second
mitochondrial gene located downstream of CpG island 2, was
slightly decreased in senescent MSCs. Similarly, the activity

of the COXI enzyme was also increased in senescent MSCs
cultured from fetal heart and skin tissues (Figure 4(c)). Thus,
altered mtDNA methylation may be accompanied by subtle
changes in the activity of mitochondrial enzymes.

3.5. Knockdown of DNA Methyltransferases Upregulates Mito-
chondrial COXI. Since mtDNA becomes hypomethylated
during senescence, we examined the role of three DNA
methyltransferases (DNMT1, DNMT3A, and DNMT3B) that
control DNA methylation. We found that all three enzymes
were downregulated in senescent MSCs (Figure 5(a)).

To confirm the role of DNA methyltransferases in senes-
cence, we knocked down the enzymes with shRNAs (Fig-
ure 5(b)). Interestingly, knockdown of these three enzymes
induced senescence and inhibited cell proliferation in MSCs
(Figure 5(c)), in parallel with the upregulation of COX1
(Figure 5(d)).

4. Discussion

The mechanisms underlying the loss of regenerative potential
of the fetal heart during postnatal life remain to be illustrated.
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FIGURE 3: Altered mtDNA methylation in senescent MSCs. (a) Schematic diagram of the mitochondrial genes and the location of CpG islands.
In order to detect mtDNA methylation in senescent cells, we designed 11 pairs of methylation-specific primers located on different genes on
mitochondrion. (b) Comparison of mtDNA methylation between the control and senescent HMSCs. mtDNA methylation was measured by
combined bisulfite restriction analysis (COBRA). PCR products from mtDNA of control and senescent HMSCs were digested by Taql or
HpyCHA41IV (HPY) to separate the unmethylated and methylated DNAs. Taq I and HpyCHA4IV recognize and digest the methylated ACGT
and TCGA sites, respectively. After treatment with sodium bisulfate, unmethylated cytosines were converted to uracils, and the TTGA and
ATGT sites are not digested by these two enzymes. After digestion, unmethylated and methylated DNA were separated on 3% agarose gels.
Only the data for CpG islands 4, 2, and 1 are presented here. (c) Differential mtDNA methylation between the control and senescent SMSCs.
(d) Altered mtDNA methylation in human neonatal and adult fibroblasts. (e) Quantitation of mtDNA CpG methylation. The methylated
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the untreated MSCs as 100. *P < 0.05 as compared with that in untreated MSC control cells. Note the decrease in mtDNA methylation in

senescent MSCs.
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FIGURE 4: Alteration of mitochondrial genes during cellular senescence. (a) Location of CpG islands in the mitochondrial genome. (b) Altered
gene expression of mitochondrial COX1 and ND2 genes in senescent MSCs. (c) The enzyme activity of COXI in control and senescent MSCs.

In this study, we cultured multipotent MSCs from human
fetal heart tissues and used a chronic oxidative stress/low
serum approach to induce typical senescence. By scanning
the status of CpG methylation in the whole mitochondrial
genome, we demonstrated considerable mtDNA hypomethy-
lation following senescence in MSCs. COXI, encoding the
main subunit of the cytochrome ¢ oxidase complex, was
significantly upregulated in senescent MSCs. Knockdown
of three DNA methyltransferases (DNMT1, DNMT3a, and
DNMT3B) also upregulated COX1 and induced senescence
in MSCs. Together, our data suggest that mitochondrial CpG
hypomethylation may be a useful biomarker in association
with cellular senescence in MSCs.

Significant progress has been made in deciphering the
regulatory pathways that control cellular senescence. There
are two distinct pathways that lead to the development of
cellular senescence [47, 52, 53]. Replicative senescence (RS)
depends on the dysfunction in biological clock that is caused
by progressive shortening of repetitive DNA sequences
(TTAGGG) in telomeres that cap the ends of each chro-
mosome. This shortening eventually triggers DNA damage
and initiates a program of cell cycle arrest. In contrast,

stress-induced premature senescence (SIPS), although shar-
ing many cellular and molecular features as those undergoing
replicative senescence, is telomere-independent. In SIPS,
ROS induces cellular dysfunctions, playing a critical role
in age-related diseases [54]. In the SIPS senescence model,
oxidative stress is often used as the inducer of SIPS [55].
The cells at early passages were exposed once or several
times to acute, sublethal oxidative stress, such as H,O,
[56, 57]. In order to capture the characteristics of both
replicative senescence and SIPS, we adopted a modified
approach by exposing MSCs to a low concentration of H,O,
and a low serum supply. Using this strategy, we induced
typical cellular senescence in MSCs within a short period
of time, usually ~2-3 passages. Significantly, these senescent
cells exhibit shortened telomeres. RNA-Seq confirms that
the senescence is accompanied by the activation of the
same pathways as seen in replicative senescence. Thus, this
approach may provide an ideal model to study cellular
senescence in MSCs. Future studies will be needed to
comprehensively compare the gene- and protein-expression
profiles of this model with two well-established SIPS and RS
models.
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FIGURE 5: Knockdown of DNMTs induces senescence in MSCs. (a) Downregulation of DNMTs in senescent MSCs. After induction of cellular
senescence, cells were harvested and the expression of DNMTs was determined by semiquantitative PCR. (b) Knockdown of DNMTs by
shRNAs. Lentiviruses containing DNMT shRNAs (sh-DNMT1, sh-SNMT3a, and sh-DNMT3b) or scramble control (sh-CT) were transduced
into HMSCs. After 72 h, transduction efficiency was assessed by the observation of GFP positive cells. Cells were harvested and RNA were
extracted, and the expression of DNMTs was determined by RT-PCR. (c) Induction of cellular senescence by DNMT-shRNA knockdown.
Left panel: HMSCs morphology taken 7 days after DNMT-shRNA transduction. Sh-CT: shRNA scramble control; sh-DNMTs: HMSCs were
transducted by lentiviruses containing DNMT1, DNMT3a, and DNMT3b shRNAs. Middle panel: lentiviral transduction efficiency as shown
by copGFP fluorescence of the shRNA vector. Right panel: senescent-associated f-Gal staining. After DNMT-shRNA knockdown, MSCs
were stained for 5-Gal activity. Note the occurrence of senescence in DNMT-knockdown MSCs in the absence of peroxide treatment.
(d) Expression of COX and ND2 in DNMT-shRNA-treated MSCs. f-Actin was used as the internal control for PCR reaction. Coxl was
upregulated in DNMT-knockdown MSCs in parallel with cellular senescence.

Replicative senescence in culture expansion of MSC
appears to be epigenetically controlled by DNA methylation
and repressive histone marks at the genome DNA level
[58]. However, epigenetic regulation of the mitochondrial
genome in the aging of MSCs is poorly defined [30, 59].
Age-associated accumulation of mtDNA mutations has been
proposed to be responsible for the age-associated mitochon-
drial respiration defects found in elderly human subjects.
Aging phenotypes are reversible and controlled by epigenetic
regulation. Reprogramming of elderly fibroblasts restores
age-associated mitochondrial respiration defects [60]. We
measured the status of mtDNA methylation in senescent
MSCs cultured from human fetal heart tissues. Overall, the
mtDNA is generally hypomethylated in senescent MSCs.
This is in agreement with the extent of mtDNA methylation

reported in human blood samples and lung tissues [61].
However, we noticed considerable changes in mtDNA methy-
lation during cellular senescence. Particularly, mtDNA at
CpGisland 4 became more hypomethylated. This senescence-
related mtDNA demethylation was also observed in fibrob-
lasts cultured from human adult skin as compared with
those from neonatal skin tissues. Clearly, the mitochondrial
genome undergoes epigenetic alterations in cellular senes-
cence.

Accompanying the alteration of mtDNA methylation, the
mitochondrial COX1 gene, which includes CpG island 4,
was upregulated in all aged MSCs, as shown at both mRNA
and protein enzyme levels. COX1 encodes cytochrome ¢
oxidase I, the main subunit of the cytochrome ¢ oxidase
complex, which is a key enzyme in aerobic metabolism
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[62]. The proton pumping heme-copper oxidase represents
the terminal, energy-transfer enzyme of respiratory chains
in both prokaryotes and eukaryotes. Mitochondria generate
adenosine 5'-triphosphate (ATP) but also produce poten-
tially toxic reactive oxygen species (ROS) [59]. Gradual
mitochondrial dysfunction is observed to accompany aging.
Continuous accumulation of mtDNA damage may play a
causal role in the aging process. However, it is unclear if the
upregulated COX1 in our model is functionally involved in
the initiation of senescence or it is just a sequela of the aging
process.

Currently, we know little about the role that mtDNA
methylation plays in the regulation of gene activity in our
senescence model. For example, CpG island 4 is located in
the 3'-region of the mitochondrial COXI gene, rather than
in the D-loop promoter region, where we might expect a
CpG island to exert epigenetic control. However, several
studies have suggested a role for gene body DNA methylation
in gene regulation [63-65]. In addition, we also found
that knockdown of DNA methyltransferases using shRNA
induced the upregulation of COX1 in MSCs (Figure 5(d)),
in parallel with cellular senescence (Figure 5(c)), in support
of a role of mtDNA hypomethylation in the regulation of
COXI1. DNMT], the most abundant DNA methyltransferase
in mammalian cells, is the key methyltransferase required
for the maintenance of DNA methylation in mammals.
It predominantly catalyzes methylation at hemimethylated
CpG di-nucleotides [66]. Homozygous deletion of DNMT1
is lethal for mouse embryos at 10-11 days of gestation [67].
Both DNMT3a and DNMT3b, on the other hand, are de
novo methyltransferases [66]. All three enzymes are required
for the establishment, maintenance, and erasure of epigeno-
types, including genomic imprints, in mammalian devel-
opment [68, 69]. In our induced senescence model, these
three DNMTs were downregulated in senescent MSCs (Fig-
ure 5(a)). Importantly, knockdown of DNMTs by shRNA in
the absence of the oxidative stress also induced cellular senes-
cence in MSCs (Figure 5(c)). Our data thus suggest that all
three DNMTs are involved in senescence of MSCs. It should
be noted that knockdown of DNMTs by shRNA also induces
global DNA demethylation, including genomic DNAs. In
addition, it is not clear whether mtDNA hypomethylation
is a specific biomarker for our model. Particularly, we do
not know if it also might occur in the replicative senescence
and SIPS models. Future studies need to be performed by
comparing the epigenetics of mitochondrial DNA in these
models. We can learn more about epigenetic control using
site-specific de novo DNA methylation or demethylation
that can be induced by the CRISPR Cas9-Sssl epigenetic
regulators [43].

5. Conclusions

In summary, by scanning DNA methylation in mitochon-
drial genome, we demonstrate the association of aberrant
epigenetics with the occurrence of senescence in MSCs. The
alteration of mtDNA methylation is accompanied by the
upregulation of COXI gene in both senescent MSCs and
the DNMT-knocked down MSCs. This study thus implicates

Stem Cells International

the mtDNA epigenotype as a critical biomarker in cellular
senescence of MSCs.
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