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Odor recognition encompasses both clustering and fine discrimi-
nation. Clustering joins together sets of odors, and fine discrimi-
nation distinguishes between odors belonging to the same cluster.
We hypothesize that these two aspects of odor recognition are
encoded in parallel by two brain areas of the insect olfactory
system. Population activity of neurons in the lateral horn encodes
the odor cluster, and population activity of neurons in the mush-
room body encodes the fine identity of the odor. Our mechanism
is based on the hypothesis that the underlying network of the
insect olfactory system consists of a repetitive, hard-wired sub-
structure whose anatomy we describe. We show that these sug-
gested mechanisms and circuitry explain not only the observed
numbers and connections of neurons in the system, but also the
observed activity of these neurons, and why oscillations are critical
for fine discrimination but not for clustering of odors.

antennal lobe � lateral horn � mushroom body � olfaction � oscillation

The antennal lobe (AL), the first relay of the insect olfactory
system, is a network of excitatory projection neurons (PNs)

and inhibitory local neurons (1), which generates odor-evoked
oscillatory firing. The oscillations have been found in various
species and are believed to be a general phenomenon (see, for
example, refs. 2 and 3). Stopfer et al. (3) showed that honey bees
can distinguish between two chemically dissimilar odors even
when these oscillations are blocked by applying picrotoxin onto
the AL. In this case however, the honey bees could not distin-
guish between two chemically similar odors (for details, see ref.
3). This finding supports the idea that the insect brain is capable
of both clustering and fine discrimination of odors, and that these
two aspects of odor recognition are achieved by different
underlying mechanisms.

Another indication of the existence of two separate mecha-
nisms comes from the anatomy of the insect olfactory system.
The PNs of the first relay extend their axons into two distinct
regions in the insect brain, the lateral horn (LH) and the
mushroom body (MB) (4, 5), suggesting the existence of two
pathways. In Drosophila, the connectivity between the MB and
LH to higher brain regions was further mapped (6), and it was
found that they are connected to different regions and thus form
distinct parallel pathways. Moreover, it was shown that, in
Drosophila, when the MB is completely abolished, some odor
recognition abilities are maintained (7–9), suggesting that the
LH and MB are involved in different aspects of odor recognition.

A mechanism that was suggested for coding fine identity of
odors in the locust (10–14) is based on the slow patterning seen
in the firing activity of PNs when odor is presented (1). Accord-
ingly, each odor generates a unique spatiotemporal firing activity
in the PNs. Moreover, these firing activities have a tendency to
decorrelate in time, so that even two similar odors that initially
generate a similar response in the PNs drift apart over time,
generating a less similar response (15), and thus enhancing the
differences between them. This slow patterning activity of the
PNs is read by the Kenyon cells (KCs), a group of neurons in
the MB that act as coincidence detectors. Each KC in the locust
is connected to �10 PNs (2, 5) and, at each cycle of the
underlying oscillations, detects the coactivity of these PNs (5).

Consequently, the cycle-by-cycle activity of the KCs encodes the
fine identity of the odor. In line with this suggested mechanism,
we also assume that the fine identity of an odor is encoded by the
KC activity.

This suggested mechanism for fine discrimination, however,
poses a problem for a clustering mechanism. The decorrelation
of similar odors helps to distinguish between them, but it makes
their clustering harder (10). A few clustering mechanisms have
been suggested to overcome this problem (see Discussion). Here,
we completely bypass this problem by introducing a clustering
mechanism that is parallel to the activity of the KCs and
therefore does not have to deal with regrouping the encodings
of the odors in the cluster. We suggest that a different group of
inhibitory neurons in the LH (denoted LHIs) encodes the cluster
of the odor and creates a different pathway that conveys this
information to higher brain areas. As we show, this parallel
mechanism also fits the known data regarding the circuitry of the
insect olfactory system.

Methods
Network Simulation. The simulated network used to generate
Table 1 includes 14 PNs, 1 LHI, and 1001 KCs as presented in
Fig. 1. Both KCs and LHIs are modeled as ‘‘integrate-and-fire’’
neurons. They generate an action potential at time T when N
(denoted ‘‘threshold’’) excitatory inputs arrive between times
T � �t and T, where �t � min(summation window, T � last
generated action potential time). Summation window was set to be
30 ms in both KCs and LHI. The threshold N was set to be 10
in both KCs and LHI [in line with work showing that the number
of simultaneous PN inputs that are required to activate a KC is
around 8 (16)].

The action potentials of the PNs that were used as the
excitatory input to both the KCs and LHI were generated in the
following way. First, the number of action potentials that each
PN fires was determined. If a PN was activated by an odor, a
random number between 16 and 20 was selected (in line with ref.
5); this number was set to 0 if the PN was inhibited. If the PN
remained at its resting level, the number was taken from a
normal distribution of mean � 3.87 and SD � 2.23 (5). Next, the
action potentials were distributed along the 1,000-ms trial du-
ration by using the following procedure: the 1,000-ms trial
duration was binned to 50-ms bins. The bins in which an action
potential was generated were then randomly chosen (except the
first bin of an activated PN, in which case an action potential was
always generated). At most one action potential per bin was
permitted. In the underlying oscillation trials, the exact time the
action potential occurred within a bin was normally distributed
around the middle of the bin (SD � 10 ms), thus simulating the
observed 20-Hz oscillations in the AL of the locust (2). In the

Abbreviations: MB, mushroom body; KC, Kenyon cells; LH, lateral horn; LHI, LH inhibitory
neuron; AL, antennal lobe; PN, projection neuron; FS, functional subset; LFP, local field
potential.

See Commentary on page 17569.
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nonoscillating trials, the action potential time was randomly
distributed within a bin.

The LHI inhibition of the KCs was introduced in the following
way. If the LHI generated an action potential at time T, PN
inputs onto the KCs were ignored between times T � delay and
T � delay � inhibition duration. We set delay to be 4 ms and
inhibition duration to be 25 ms.

Model Local Field Potential (LFP). The model LFP seen in Fig. 3 is
derived from the action potentials generated by the PNs during
the simulation. Each PN action potential is assumed to travel
along an axon and, at the terminal, change the fraction of open

synaptic channels; the model LFP is the sum of all synaptic
conductances activated by the action potentials of all PNs:

LFP� t� � �
p��PN	

gmax�
O�p . [1]

Here gmax, the maximal conductance, is 1 �S, and the fraction of
open channels, [O], is described by (17)

d
O�

dt
� ��1 � 
O��T�t� � �
O�, [2]

where � is 10 ms�1 and � is 0.16 ms�1. T(t) is described by

T�t� � 0.5���t0 � delay� � tmax � t��� t � � t0 � delay�� ,

[3]

where �(t) is the Heaviside (step-) function, tmax � 0.3 ms, t0 is
the time of the action potential pick, and the axonal conduc-
tance, delay, is 6 ms.

PN-LFP Phase. The phase of the PN action potentials relative to the
LFP (denoted PN-LFP phase) seen in Fig. 3B is calculated as
follows. For each PN, P, the phase of its Nth action potential,
�PNspike, is given by (17)

�PNspike � � tPNspike � tlastFPpeak

tnextFPpeak � tlastFPpeak
�2	, [4]

where tPNspike is the time the Nth action potential occurred,
tnextFPpeak is the time of the LFP closest peak right after the action
potential time, and tlastFPpeak is the time of the LFP closest peak
just before the spike time.

Fig. 2. Two similar odors, A and B, are presented to a simplified olfactory system. The system consists of three identical functional subsets (FS-1, FS-2, and FS-3)
where each FS contains six PNs in the AL and each combination of three PNs is connected to a different KC (giving rise to 20 KCs in the MB). In addition, all of
the PNs of an FS are connected to a unique LHI in the LH. The neurons activated by the odors are filled (we assume that the threshold of the KCs and LHIs is three).
In this example, both odors activate PNs in FS-1 and FS-2 and thus activate the LHIs in these FSs. Consequently, these two odors have the same clustering code.
The odors differ, however, in the subset of PNs that they activate in FS-2 and therefore activate somewhat different KCs there, giving rise to a different fine
identity code. (Note that the single PN activated by odor A in FS-3 is ignored.)

Fig. 1. The connectivity between the PNs of an average FS with its related LH
inhibitory neuron and the KCs in the MB. Fourteen PNs excite a single LHI in
the LH, and each combination of 10 PNs excites a different KC in the MB. The
LHI inhibits the KCs.
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Network simulation was done in Microsoft VISUAL J#; the
LFP and PN-LFP phase were done in MATLAB 6.5.1. All code
sources are available upon request from E.S.

Results
‘‘Functional Subsets’’: A Conceptual Framework. The connectivity of
the locust olfactory system presents an intriguing puzzle. There
are �830 PNs in the AL, providing input to �50,000 KCs in the
ipsilateral MB (18). Each KC receives input from �10 PNs (2,
5), and it was suggested that each KC acts as a coincidence
detector for activity of these inputs (10–14). However, the
number of KCs (i.e., ‘‘detectors’’) is negligible compared with
the number of combinations of 10 PNs, which is ( 10

830) � 1022 (the
number of different combinations of 10 PNs one can pick from
a group of 830 PNs). What is special about the few combinations
of PNs that enable the KCs to encode the fine identity of the odor
represented by the spatiotemporal activity of the PNs? No
answer has yet been given for this question. We address it by
introducing the notion of a functional subset (FS), which con-
strains the possible combinations of PNs. Fig. 1 depicts an
example of such an FS. Each FS is associated with a unique LHI
and distinct nonoverlapping subsets of PNs and KCs, as follows.
(i) All of the PNs project to the associated LHI (e.g., all 14 PNs
in Fig. 1). (ii) Each KC is connected to a different subset of such
PNs (e.g., a different combination of 10 PNs in Fig. 1). (iii) The
LHI project to all of the KCs and inhibit them (as we show below,
this inhibition may be required in some species and not in
others). These substructures (i.e., FSs) constrain the combina-
tions of PNs that are being detected because a KC has input only
from PNs that are part of the same FS. Also note that the FSs
may differ in size. The FS connectivity is in line with known data
(4–6). Moreover, the finding that PNs in Drosophila can be
grouped into classes according to their morphological structure
and their distinct innervations in both the LH (4) and the MB (6)
suggests that these morphological classes are related to our
functional subsets so that all PNs of a specific FS are part of the
same morphological structure.

Such circuitry provides a substrate for both clustering and fine
discrimination of odors. Because the LHI is connected to all of
the PNs, it is insensitive to the exact subset of PNs activated by
the odor. Each KC, on the other hand, is connected to a specific
subset of those PNs and will thus be activated only if that subset
is activated. Thus, we hypothesize that two odors are ‘‘clustered’’
when they activate the same subset of FSs†; and they can be
‘‘finely discriminated’’ when they activate different subset of PNs
in at least one of those FSs. (Here, a PN is an ‘‘activated PN’’ if
the odor presentation increases the PN firing rate; and an FS is
an ‘‘activated FS’’ if the number of activated PNs in the FS
exceeds a certain ‘‘activation threshold’’ such that the LHI and
some of the KCs in the FS increase their firing rate too, i.e., are
activated.) Accordingly, odors belonging to the same cluster will
activate the same subset of FSs (and hence LHIs) and therefore
will have the same cluster-identity code; because they activate
different PNs within some FSs, they will activate somewhat
different KCs and will thus differ in their fine identity code (see,
for example, Fig. 2). Note that this definition of odor clustering
does not attach any conceptual or chemical meaning to a cluster.

Size and Connectivity of Average FS Matches Locust Data. The central
insight of this model is that it helps explain why oscillations might
be critical in fine discrimination coding, but not in clustering coding
[as seen in the honey bee experiment (3)]. We explain this idea in
the context of a simulation, considering a single FS (out of all of the
activated FSs). For the simulation, we will work with an ‘‘average’’

FS; but there is nothing in the theory that requires all of the
functional subsets to be of the same size or the same connectivity.
Estimates on the numbers of cells and inputs to them in the locust
enable us to derive a rough average size of an FS for that insect.
With �60 LHIs in the LH (5) and 830 PNs in the AL, on average,
each one of the 60 FSs would have �14 (�830�60) PNs. Based on
estimates that each KC gets inputs from �10 PNs (2, 5) and that
each combination of 10 PNs is connected to a different KC, there
would be (10

14) � 1,001 KCs in an average FS (see Fig. 1). Note that
this result implies that the total number of KCs is �60,060, a
number very close to current estimates (18). Within an FS, each PN
is (on the average) a part of ( 9

13) � 715 groups of 10 PNs, and hence
is connected in this hypothesized circuitry to approximately that
number of KCs. This result is also very close to the estimated

†One can relax this definition by defining two odors to be clustered if the subset of FSs
activated by one odor is contained in the subset of FSs activated by the other.

Fig. 3. Local field potentials display oscillations correlated with PN spiking.
(A Top) The LFP generated from 350 action potentials of 14 PNs at the first
1,600 ms of one simulation trial (see Methods for details). (Middle) The same
LFP filtered to frequencies between 5 Hz and 60 Hz. (Bottom) LFP spectrum
(unfiltered but truncated at �95 Hz). Notice that the experimentally observed
20-Hz oscillations are reproduced. (B) The PN-LFP phase. The action potentials
in the trial used to generate the LFP in A were also used here. The distribution
of the action potentials along the underlying LFP cycle is similar to that of a
‘‘vigorously’’ activated PN in figure 1C in ref. 13.
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number of 600 connections from a single PN to different KCs (18).
Note that the number 600 was only a rough estimation reached by
multiplying the number of synaptic varicosities per PN axon (�30)
by the number of synaptic contacts with different KC per varicosity,
(�20) (18). A 10% increase in those numbers gives the same
number of connections (22  32.5 � 715). Thus, by using numbers
of LHIs, PNs, and inputs to KCs from the literature, the hypothesis
that there are FSs gives an explanation for the number of detectors
(KCs) seen in the MB, i.e., what combinations of PNs are used to
encode the fine identity of the odor.

Effects of Oscillations on Coding: A Simulation. The central goals of
the simulation were to illustrate the following. (i) When the
population activity of the PNs is oscillatory and the FS is
activated, KC activity can distinguish among different combina-
tions of activated PNs. (ii) When the PN population activity is
not oscillatory, the LHI of the activated FS fires; however, the
KCs that are supposed to fire are silent, or are joined by other
KCs so specificity is lost. Thus, the FS in question continues to
play an appropriate role in cluster coding, but not in fine
discrimination.
Assumptions and methods. In the simulation, we assume that the
number of activated PNs in our chosen FS is 12 of its 14 PNs. (In
the smaller example of Fig. 2, we activated 4 PNs of the 6 PNs in
FS-1.) We also set the KCs (and LHI) threshold to be 10, assuming
that a KC is to be activated only if all of the 10 PNs connected to
it are activated (in line with ref. 16). These assumptions allow a
single average FS to code up to (12

14) � 91 activation combinations
(i.e., 91 different fine odors), where each combination consists of
the activation of (10

12) � 66 KCs. Because there are 60 independent
FSs, the total number of odors that can be discriminated is 9160.

In each trial, we simulated a 1,000-ms-long presentation of the
odor by setting the activity of 12 PNs (denoted ‘‘activated PNs’’)
to the observed firing rate of PNs activated by odors, i.e., 16–20
Hz (5), and reducing the activity of the remaining 2 PNs
(denoted ‘‘inhibited neurons’’) to 0. This simulation was done in
two paradigms: for the ‘‘oscillatory’’ paradigm, the inputs to the
KCs from the PNs were distributed to arrive around a specific
time of a 20-Hz cycle (SD � 10 ms; see Methods for details). This
distribution, which is similar to that observed experimentally in
a ‘‘vigorously’’ activated PN (13), also gives rise to 20-Hz
oscillations in the LFP (see Fig. 3). For the nonoscillatory
regime, the inputs from the PNs to the KCs were spread
uniformly in time and thus showed no underlying oscillations.
Fine discrimination is accomplished only in the presence of oscillations.
The results of 1,000 trials are presented in Table 1. Note that,
when the PN inputs are oscillatory, only a negligible number of
KCs (�2%) connected to �10 activated PNs are themselves

activated (Table 1, ‘‘PN inputs oscillate’’). This simulation result
satisfies our first goal, because it ensures that different odors
activate different subsets of KCs and, hence, fine discrimination
is achieved. When oscillations are removed this specificity is lost.
KCs with input from 10 activated PNs now fire at lower
probability (58%) and KCs with inputs from �10 activated PNs
now fire with higher probability (� 20% of the 440 KCs
connected to only nine activated PNs and �5% of 495 KCs
connected to only eight KCs also fire; see Table 1, ‘‘No under-
lying oscillations’’). That outcome can explain the result of the
honey bee experiment where the removal of oscillations caused
the bee to lose its ability to distinguish between two similar odors
(3). The crucial role of the oscillation for the activation of the
KCs is that it synchronizes the PN inputs onto the KCs and thus
ensures that all of them arrive in a short enough time frame so
that just the correct subset of KCs is pushed over the threshold.

The LHIs are believed to play a critical role in the ability of
the KCs to separate between spatially and temporally integrated
inputs (5, 10). The LHI inhibits the KCs at the end of each
oscillation cycle, resetting their membrane potential (5). It is
believed that this membrane reset enables the KCs to separate
PN inputs, arriving at different oscillation cycles (5). Indeed, it
can be seen in Table 1 (‘‘PN inputs oscillate’’ and ‘‘No underlying
oscillations’’) that KCs connected to only nine activated PNs fire
at higher probability when oscillations are removed as the
inhibition from the LHI is not correctly timed. Also, as can be
seen in Table 1 (‘‘Without LHI inhibition’’), when we remove the
LHI inhibition, KCs with only nine activated inputs also have a
relatively high firing probability (�10%). Our proposed con-
nectivity ensures the precise timing of the input of the LHI and
PNs onto the KCs, as the input to the LHI and the KCs come
from the same set of PNs (see Fig. 1).

However, this LHI role of resetting the KC membrane po-
tential becomes redundant when we considerably tighten the PN
action potential distribution (SD � 2 ms; see Methods for
details). Consequently, we were also able to reduce the KC and
LHI summation window (from 30 ms to 8 ms) as their input
arrived in a more synchronized fashion. In this case, we achieved
fine discrimination (i.e., only KCs connected to 10 activated PNs
fired) even without any LHI inhibition onto the KCs (data not
shown). This result suggests the hypothesis that, in the locust, as
the action potentials of the PNs are not finely tuned to the
underlying oscillations, a longer summation window of the KCs
is required (to sum the widely distributed action potentials along
the cycle). Consequently, one needs the LHI inhibition to
achieve cycle-by-cycle summation. Therefore, if in other species
the inputs from PNs are more synchronized, the LHI inhibition

Table 1. Firing probabilities and mean firing of the LHI and KCs

Cell type
No. of
cells

PN inputs
oscillate

No underlying
oscillations

Without LHI
inhibition

Inhibited PNs fire
at 1 Hz

Firing
prob.

Mean
firing

Firing
prob.

Mean
firing

Firing
prob.

Mean
firing

Mean
firing

Firing
prob.

LHI 1 1.0 11.99 1.0 6.194 1.0 12.12 1.0 12.15
10 match KC 66 0.665 1.514 0.58 1.398 0.971 2.936 0.595 1.436
9 match KC 440 0.02 1.014 0.197 1.08 0.094 1.043 0.092 1.018
8 match KC 495 0.001 1.0 0.048 1.019 0.004 1.02 0.074 1.0

A 1,000-ms odor presentation was simulated by activating 12 PNs and inhibiting the remaining 2 PNs. The 1,001 KCs were grouped
according to the number of activated PNs connected to them. The 10 match KCs are those connected to 10 activated PNs, 9 match KCs
are those connected to 9 activated PNs and one inhibited PN, and 8 match KCs are those connected to 8 activated PNs and 2 inhibited
PNs. The firing probability and mean firing of the LHI and KCs occur as follows. (i) The PN input displays 20-Hz oscillations. The fact that
not all 66 10 match KCs fire is not critical. Even the firing of a single KC narrows the possible combinations from 91 to 6, and the firing
of 12 KCs is enough to uniquely identify the odor. (ii) The PN input is random. (iii) The KCs are not inhibited by the LHI. (iv) The PN input
displays 20-Hz oscillations, and the inhibited PNs fire at 1 Hz.
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might not be necessary. [This might be the case in Drosophila,
where the track between LH and MB seems to be missing (6).]

One surprising result was our inability (despite a very broad
search) to find a set of parameters that allows a firing frequency
of 1 Hz or higher for the inhibited PNs within an activated FS,
and still allow the KC population to reliably distinguish among
different combinations of PNs; whenever the KCs receiving
input from 10 of the activated PNs fired with high probability, the
KCs receiving input from only 9 or 8 activated PNs fired with a
probability of �5% [see, for example, Table 1 (‘‘Inhibited PNs
fire at 1 Hz’’)]. Thus, the model suggests that the inhibited
activity seen in some PNs during odor presentation (e.g., figure
2A of ref. 13) is important to ensure that only the appropriate
subset of KCs within an FS is activated.

The results presented in Table 1 are in line with many
experimental results. The increase in KC firing probability when
LHI inhibition is removed (Table 1, ‘‘Without LHI inhibition’’)
was seen experimentally (5). Moreover, the experimentally
observed increase in the number of spikes when LHI inhibition
is removed (5) was also reproduced (Table 1, ‘‘Without LHI
inhibition’’). It was recently shown that, when the LFP is absent,
KCs that are silent under normal conditions start to fire (14).
This behavior is also consistent with our results (Table 1, ‘‘No
underlying oscillations’’).
Odor clustering does not require oscillations. In contrast to fine
discrimination, clustering (coded by the activity of the LHIs) is
almost unaffected by the removal of the underlying oscillations
(only the mean firing of the LHI is reduced; compare ‘‘PN inputs
oscillate’’ and ‘‘No underlying oscillations’’ in Table 1). This
finding is consistent with the results of the honey bee experi-
ments regarding the two very different odors that the bee was
able to distinguish even when oscillations were removed (3). In
our model, oscillations are not important for activation of the
LHI because the LHI gets inputs from more PNs than do the
KCs; thus, it passes the threshold even without oscillations to
synchronize its inputs. Indeed, when we set the number of
activated PNs to be 10 or 11 (instead of 12), which effectively
lowered the number of inputs to the LHI, the LHI firing
probability was reduced.

If the clustering is to be done by a population code of LHIs, it is
important that they fire only when there are an adequate number
of inputs from PNs. Thus, we simulated a nonactivated FS by
leaving all 14 PNs at resting firing rate [3.87 � 2.23 (5)]. In this case,
the LHI (or the KCs) did not fire with or without underlying
oscillations. Even when we activated up to 4 PNs (leaving the
remaining 10 at resting firing rate) we got only a negligible response
(�5% firing probability of the LHI and none of the KCs fired). This
result may indicate that some partial activation of the PNs in a
nonactivated FS may occur, but that activity is filtered out and does
not affect activity in the LH or MB.

Discussion
In this article, we introduced the idea that the insect olfactory
system is constructed of repetitive, hard wired substructures that
we denoted functional subsets (FS, see Fig. 1). We showed that
these FSs provide a substrate for mechanisms of both clustering
and fine discrimination of odors. Accordingly, the LHIs that are
connected to all of the PNs in their related FS are not sensitive
to the exact subset of PNs activated by the odor and, therefore,
code a coarse representation of the odor. Each KC, on the other
hand, is connected to exactly one combination of activated PNs,
and, therefore, the KC population represents the fine identity of
that odor. We also showed that the known connectivity between
the AL, MB, and LH of insects matches well the connectivity
predicted by our model. In particular, the fact that only combi-
nations of PNs belonging to the same FS are detected by some
KC provides an explanation to the puzzle of why only a very small
percentage of combinations are detected. Finally, we were able

to explain why oscillations are critical for fine discrimination but
are not so critical for clustering [as seen in the honey bee
experiment (3)].

Our model is also consistent with the amount of spiking
activity observed in the various regions of the locust olfactory
system when an odor is presented. It was shown that an odor
presentation can activate as many as 70% of the 830 PNs. In this
case, an even higher percentage of the 60 LHIs is activated,
whereas only a very small percentage (�10%) of the 50,000 KCs
seemed to respond (5). To show that our model is consistent with
these data, let us first calculate the number of FSs that are
activated when 70% of the PNs are activated. In the following,
we neglect the activated PNs in nonactivated FSs; including them
requires a more complicated calculation that gives a lower
estimate to the number of activated FSs and does not change the
qualitative picture. Because we assumed that 12 PNs are acti-
vated in each activated FS, the number of activated FSs is
�47[�0.7(830�12)]. This result would also be the approximate
number of LHIs (out of 60) that will fire when the odor is
presented (because there is one LHI in each FS), hence pre-
dicting that almost 80% of the LHIs will be activated in this case.
[Notice that, even with such a high number of activated LHIs, the
number of different odor clusters that can be coded is huge,
(47

60) � 1011.] The number of activated KCs according to our
model is also in line with the known data. It predicts that the
percentage of activated KCs as a result of the odor presentation
would be only �6% [�66(47�50,000)], because only 66 KCs are
activated in each FS. We want to emphasize, however, that our
model does not imply that each odor activates 70% of the PNs
nor does it imply that all odors activate the same percentage of
the PNs. On the contrary, the number of FSs activated by an odor
may vary, and some odors may activate only one or two FSs
whereas others may activate many more.

Although the assumption that 12 PNs are activated in each FS
fits experimental data (see previous paragraph), it is not critical
for the mechanisms to work; if 13 are activated by each odor, the
total number of activation combinations would be 1460 (rather
than 9160), which also provides more than enough odor codes.
However, assuming that the number of activated PNs is 10 or 11
leads to a small number (�12) of activated KCs for each pattern
and also lowers the probability of activating the LHI in the
absence of oscillations (see simulation results). The assumption
that the KC threshold is 10 is also not critical; however, it ensures
a relatively small overlap between the activated KCs of two
different odors. A combinatorial calculation (not given here)
shows that, for any two odors, at most 11 KCs of their 66
activated KCs are the same. If, for example, we assume that the
KC threshold is 9, the number of activated KCs would be 506 and
two odors may have as many as 341 overlapping activated KCs
in each FS.

More generally, we believe that our findings do not depend on
any specific numbers used above; the fact that the experimental
data suggest that, on average, the FS will be the one depicted in
Fig. 1 does not rule out the possibility that different FSs will have
different sizes. Indeed, one would expect that FSs participating
in odors that are critical to the animal will differ from FSs of
other odors. Also, the numbers of PNs, KCs, and LHIs differ
between species, and it is highly improbable that even the
averaged number of PNs within an FS or the number of FSs is
retained. It would be interesting, however, to see whether the
connectivity between the AL, LH, and MB is consistent with the
existence of FSs in other species as well.

We suggest that the population activity of the KCs encodes the
fine identity of an odor, and we claim that the FSs provide the
infrastructure that enables the KCs to do so. As such, our model
is in full compliance with the already suggested mechanism that
is based on the spatiotemporal activity of the PNs (10–14). In
particular, a recent article by Stopfer et al. (13) showed that the
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evolving slow pattern activity of the PNs in the AL (19) contains
enough information to discriminate between various odor in-
tensities. Moreover, they found (using clustering techniques)
that the evolving slow patterning activity generated by different
intensities of the same odor is similar (or at least more similar
than slow patterning activity of two different odors). In line with
this finding, our theory indeed suggests that different (but
similar) intensities of the same odor belong to the same cluster
(i.e., they activate the same subset of FSs). Within each FS, both
the exact PNs and their slow patterning are different for different
intensities. Nevertheless, because different odor intensities will
activate a relatively large number of shared PNs, their overall
activity will be similar.

It is not known what odor features are encoded by the
spatiotemporal activity of the PNs; we believe that it includes not
only its molecular structure and concentration (13), but also
time-related aspects like onset, offset, concentration change,
duration, and direction change. We further speculate that the
slow patterning seen in the PNs activity (19) is a result of these
time-related features that change along the odor presentation,
and not the molecular structure of the odor that is encoded by
the population activity of the PNs. Supporting evidence is the
finding that a single cycle during the odor presentation can
contain enough information to identify both the molecular
structure and the intensity of the odor (figure 6 of ref. 13). Thus,
the slow patterning in the activity of the PNs does not add
information regarding the molecular structure (and concentra-
tion) of the odor. Also, these temporal features probably do not
affect the clustering of an odor; we thus predict that slow
patterning will not affect the activity of the LHIs, which,
according to our model, encode the odor cluster.

Our mechanism for clustering of odors bypasses two problems
that were encountered by other suggested mechanisms. We
denote the first problem ‘‘the sequential problem’’: i.e., the
declustering of similar odors enables downstream regions to
uniquely identify each odor. But such declustering makes odor
grouping difficult. The more different they are, the harder it is
to group them. A few mechanisms have been suggested to
overcome this problem. (i) Clustering is a high level learned
ability that groups arbitrary odors according to the animal
experience and is done somewhere downstream. (ii) As two
similar odors initially generate somewhat similar activity in the
PNs (15), this initial activity is used to define the cluster. (iii)
Although the activity of the PNs decorrelates in time, the
differences between different concentrations of the same odor
are smaller than the difference between different odors (13), and
thus a grouping of all these not so different representations can
be made downstream. Our suggested mechanism solves this
problem by introducing a parallel pathway for the coding of the
odor cluster, a pathway that was found to exist anatomically in
the Drosophila. Furthermore, some evidence shows that this
parallel pathway is capable of doing coarse odor recognition
(6–9). The second problem our mechanism bypasses is that it is
not yet known the principles by which odors are joined in a
cluster. Does it relate to meanings of odors in addition to

molecular structure? We bypassed this problem by providing a
precise definition of a cluster based on the subset of FSs it
activates; i.e., two odors belong to the same cluster if they
activate the same set of FSs.

The basic connectivity suggested here does not take into
account any interaction between the various FSs. Such connec-
tivity probably exists, because the oscillations in the local field
potential recorded in the MB indicate that the activity of the PNs
(and the LHIs) oscillates synchronously (2). This synchrony is
probably achieved by cross-FS connectivity by means of the LNs
in the AL. It was shown that LNs are critical for the generation
of the LFP (19) and that their processes extend across a huge
percentage of the AL (1); thus, they probably inhibit PNs of
different FSs. This cross-FS synchrony is also consistent with our
suggested mechanism, because it synchronizes the activity of
LHIs and KCs of all FSs, and thus facilitates the readout of the
cluster and fine coding by higher brain regions. Cleland and
Linster (20) suggest a related idea for the honey bee olfactory
system: higher concentration of odorants may lead, by means of
network interactions, to higher amplitude oscillations, which
then lead to more synchrony and hence a better readout. Other
cross-FS connectivity may also exist although no connections are
currently known among the KCs in the MB (19).

A completely random network can also account for fine
discrimination. However, in a mechanism built on top of such a
network, the size of the population of KCs that is activated by an
odor depends exponentially on the size of the population of PNs
activated by the odor. For example, if an odor activates 70% of
the PNs and the KC threshold is still 10, in a random network the
probability of a KC to be activated is 0.710 � 0.028 (i.e., on
average, �1,400 KCs will be activated). If the odor, however,
activates ‘‘only’’ 50% of the PNs (rather than 70%), the proba-
bility of activating a KC drops to 0.510 � 0.001 (i.e., on average,
�50 KCs will be activated). This feature of the random model
not only suggests that a high percentage of the PNs should
respond to any odor (at any concentration), it also poses a
challenge to higher brain regions that are to read this encoding
(having to deal with codes of sizes different in orders of
magnitude). In our model, on the other hand, the ratio between
the number of activated PNs and the number of activated KCs
is fixed (i.e., 12�66).

Our hypothesis may be tested by extending to other species the
following two types of experiments: (i) the experiments in the
locust where the number of neurons in each group (PNs, KCs,
and LHIs) together with the number of connections between
them were counted (2, 5, 18) and (ii) the experiments in
Drosophila where the overall axons tracks were mapped (of these
groups of neurons as well as higher brain regions) (4, 6). We
predict that evidence for the repetitive substructure hypothe-
sized here will be found.
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