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. The mechanisms of immunoactivation by salt are now becoming clearer. However, those of

. immunosuppression remain unknown. Since clinical evidence indicates that salt protects proximal

. tubules from injury, we investigated mechanisms responsible for salt causing immunosuppression

© in proximal tubules. We focused on cytokine-related gene expression profiles in kidneys of mice fed
a high salt diet using microarray analysis and found that both an interferon gamma (IFN~) inducible

: chemokine, chemokine (C-X-C motif) ligand 9 (CXCL9), and receptor, CXCR3, were suppressed. We

. furtherrevealed that a high salt concentration suppressed IFN~ inducible chemokines in HK2 proximal

* tubular cells. Finally, we demonstrated that a high salt concentration decreased IFNGR1 expression

. inthe basolateral membrane of HK2 cells, leading to decreased phosphorylation of activation sites of

. Janus kinase 1 (JAK1) and Signal Transducers and Activator of Transcription 1 (STAT1), activators of

. chemokines. JAK inhibitor canceled the effect of a high salt concentration on STAT1 and chemokines,
indicating that the JAK1-STAT1 signaling pathway is essential for this mechanism. In conclusion, a high
salt concentration suppresses IFN~-JAK1-STAT1 signaling pathways and chemokine expressions in
proximal tubules. This finding may explain how salt ameliorates proximal tubular injury and offer a new
insight into the linkage between salt and immunity.

The direct linkage of salt with immunity has received attention®. It has been demonstrated that high salt intake
. increased internal salt storage, leading to the exposure of various kinds of cells to a high salt concentration and
© the cellular immune modulation®™. Therefore, the direct linkage of salt with the immune system has attracted
. much attention as a new immune-modifying factor, although the detailed mechanisms of immune activation in
response to a high salt concentration have only begun to become clearer.

Chronic salt intake has been generally recognized to be a risk factor for progression of kidney disease’. High
salt intake causes systemic hypertension and aggravates proteinuria and glomerulosclerosis, inducing renal fibro-
sis through overproduced cytokines®’. On the other hand, many clinical studies have indicated that salt loading
ameliorates proximal tubular injury, such as contrast-induced nephropathy and cisplatin-induced nephrotoxic-
ity®?. In actual fact, saline hydration therapy is the clinical cornerstone for the prevention of contrast-induced

- nephropathy and cisplatin-induced nephrotoxicity'®!. These past studies differ in the type of fluid used for
. hydration, thereby revealing that hydration using a higher salt concentration, regardless of fluid osmolality, has
. a greater protective effect. Furthermore, an oral administration of salt without fluid administration had also
: been proven to be beneficial'>. These proven evidences of salt suppressing tubular injury cannot be explained by
. the immune activation by salt, indicating the presence of immunosuppression. However, the mechanism of this
. immunosuppression by salt remains unknown.

In the present study, we found that interferon gamma (IFN~) inducible chemokines were suppressed by high
salt conditions using microarray analysis, and demonstrated that Janus kinase 1 (JAK1)-Signal Transducers
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Figure 1. Suppression of IFN~ inducible chemokines and receptor in mouse kidney with excessive salt
intake. (A) Microarray analyses of the expression of genes related to cytokine and chemokine in the kidneys of
the WNK4P*'A™ mice fed a high salt diet was compared with those of WNK4*/* littermates fed a normal diet
(n=3). These results demonstrated that both an IFN~ inducible chemokine (Cxcl9, 16.6-fold) and receptor
(Cxcr3, 3.0-fold) were dramatically suppressed in the kidneys of WNK4P%6!14/+ mice fed a high salt diet.

Values are expressed as fold changes. (B to C) qRT-PCR analyses of IFN~ inducible chemokines and receptor
expression in mouse kidney. (B) The comparison between WNK4P>¢14/+ mice fed a high salt diet and WNK4/*
littermates fed a normal diet (n =3). Not only Cxcl9 and Cxcr3, but also Cxcl10 were suppressed in the kidney
of WNK4P5!A/+ mice fed a high salt diet. (C) The comparison between C57BL/6 mice fed a high salt diet with
those fed a normal diet (n =5). The expressions of these Cxcls and Cxcr3 were also suppressed in the kidney of
C57BL/6 mice fed a high salt diet. Values are expressed as mean = standard error of the mean (SEM). *p < 0.05;
“p < 0.01.

and Activator of Transcription 1 (STAT1) signaling pathways play a key role in salt-induced suppression of the
chemokines.

Results

Suppression of IFN~ inducible chemokines and receptor in mouse kidney with high salt
intake. We use genetically engineered mice with a gain-of-function mutation of with-no-lysine kinase 4
(WNK4), WNK4P56!14+ mice, as a mouse model of high salt conditions. WNK4P**'A"+ mice are impaired urine
excretion of salt, caused by an increase in NaCl reabsorption through activation of the thiazide-sensitive Na-Cl
cotransporter by WNK4. Using microarray analyses, cytokine-related gene expression profiles in the kidneys of
the WNK4P14+ mice fed a high salt diet were compared with those of WNK4*/* littermates with a normal diet.
The results demonstrated that both an IFN~ inducible chemokine (chemokine (C-X-C motif) ligand 9 (CXCL9),
16.6-fold) and a specific receptor (CXCR3, 3.0-fold) were suppressed in the kidney of WNK4P56!14/+ mice fed a
high salt diet (Fig. 1A). Quantitative real time reverse transcription polymerase chain reaction (QRT-PCR) con-
firmed these findings and further demonstrated that an additional IFN~ inducible chemokine (CXCL10) was
also suppressed (Fig. 1B). These CXCLs and CXCR3 were also suppressed in the kidney of C57BL/6 mice fed a
high salt diet (Fig. 1C), indicating that the suppressions of CXCLs and CXCR3 were caused by salt loading. These
results suggested that salt loading may suppress the expressions of IFN~ inducible chemokines in the kidney and
decrease the amount of immune cells possessing an IFN~ related receptor CXCR3.

Suppression of IFN~ inducible chemokines in proximal tubules caused by salt loading. To
investigate in which nephron segment the suppression of these CXCLs occurred in kidneys of mice fed a high salt
diet, we performed immunofluorescence analysis. The induction of CXCL9 by IFN~ was observed in proximal
tubules (Fig. 2A). Immunohistochemistry and immunoblot confirmed the suppression of protein levels of CXCL9
in kidneys of mice fed a high salt diet, indicating that salt loading suppresses IFN~ inducible chemokines in
proximal tubules (Fig. 2A,B). These results may coincide with the facts that these CXCLs released from proximal
tubules have been proven to exacerbate certain kinds of kidney diseases in vivo.

Suppression of IFN~ inducible chemokines in HK2 cells exposed to a high salt concentra-
tion. Renal tubules are often exposed to a high salt concentration by high salt intake based on the countercur-
rent multiplier system in the kidney. In fact, urinary sodium concentration and excretion of our mice fed a high
salt diet were higher than those of mice fed a normal diet, suggesting that renal tubular cells were exposed to high
salt condition (Supplementary Tables S1 and 2). Therefore, we investigated whether a high salt concentration
suppressed the expression of CXCLs in proximal tubules using HK2 cells. Because naive HK2 cells expressed
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Figure 2. Suppression of IFN~ inducible chemokines in proximal tubules caused by salt loading. To
evaluate protein abundances of CXCLs, intraperitoneal injection of recombinant mouse IFN~ (0.3 g/kg)
was performed 3 h before organ collection. (A) Immunofluorescence staining of CXCL9 induced by IFN~y
in kidneys of mice fed a high salt diet compared to those of mice fed a normal diet. The induction of CXCL9
by IFN~ was observed in proximal tubules and was suppressed in kidneys of mice fed a high salt diet. Red;
CXCL9, Green; lotus tetragonolobus lectin (LTL; proximal tubule marker). Scale bar: 50 pm. (B) Upper,
Representative immunoblotting performed to evaluate the protein abundance of CXCL9 induced by IFN~
in kidneys of mice fed a high salt diet compared to those of mice fed a normal diet; Lower, Densitometry
analysis of the immunoblotting of the CXCL9 (n=4). Full-length western blot images are presented in
Supplementary Figure S1. These results indicated that salt loading suppressed IFN~ inducible chemokines in
proximal tubules.

CXCLs on a low level under measurement sensitivity, we performed the experiments detailed below to investigate
the effects of a high salt concentration on the expression of CXCLs under the stimulation of recombinant human
IFNA.

In qRT-PCR analyses, a high salt concentration significantly suppressed messenger RNA (mRNA) levels of
CXCL9, CXCL10, and CXCL11 induced by IFN~, compared to the medium whose osmotic pressure was adjusted
to the same level by sorbitol (Fig. 3A). Moreover, enzyme-linked immunosorbent assay (ELISA) analyses of these
CXCLs demonstrated that a high salt concentration also suppressed the protein concentrations of CXCL9 and
CXCL10 released to culture supernatant from HK2 cells (Fig. 3B). Considering that these CXCLs secreted by
epithelial cells have generally been proven to be able to attract immune cells possessing CXCR3, these results
suggested that a high salt concentration could block CXCR3-mediated migration of immune cells in proximal
tubules, leading to the reduction of CXCR3-mediated proximal tubular injury.

Suppression of the JAK-STAT signaling pathway in HK2 cells exposed to a high salt concentra-
tion. To understand the molecular mechanisms involved in the suppression of these CXCLs in proximal tubu-
lar cells by a high salt concentration, we focused on the JAK-STAT signaling pathway, major up-stream activators
of CXCLs, and direct down-stream mediators of the IFN~ signaling pathway. In immunoblottings, a high salt
concentration inhibited phosphorylation of an activation site of STAT1 at tyrosine 701 in the nucleus, and thus
decreased the transcriptional activity of STAT1 (Fig. 4A). Furthermore, phosphorylation of an activation site of
JAK1 at tyrosine 1022/1023 was also inhibited, whereas phosphorylation of an activation site of JAK2 at tyrosine
1007/1008 was not inhibited (Fig. 4B). These results indicated that a high salt concentration suppresses CXCLs
through the JAK1-STAT1 phosphorylation cascade in proximal tubular cells.
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Figure 3. The effect of a high salt concentration on the induction of IFN~ inducible chemokines in HK2
cells. (A) gRT-PCR analyses evaluating mRNA expressions of each CXCLs in HK2 cells (n =4). The cells were
treated by IFN~ (10 ng/mL) for 36 h after a 2h exposure of culture medium supplemented with either NaCl
(80mM) or Sorbitol (160 mM, as an osmotic control). A high salt concentration suppressed mRNA levels of

all CXCLs induced by IFN~, compared to the control. (B) ELISA analyses evaluating protein concentrations of
each CXCLs released to culture supernatant from HK2 cells (n=6). The cells were treated by IFN~ (10 ng/mL)
for 72 h after a 2h exposure of culture medium supplemented with either NaCl (80 mM) or sorbitol (160 mM, as
an osmotic control). A high salt concentration also suppressed protein concentrations of CXCL9 and CXCL10
induced by IFN~, compared to the control. Values are expressed as mean = standard error of the mean (SEM).
*p < 0.05; *p < 0.01.

A trafficking defect of IFNGR1 to the basolateral membrane in HK2 cells exposed to a high
salt concentration. To explore mechanisms responsible for this signal reduction of the JAK1-STAT1 phos-
phorylation cascade, we focused on IFNGR1 involved in tyrosine phosphorylation of JAK1. Although IFNGR1
expression in whole cell lysate was not altered by a high salt concentration, the biotinylation assay demonstrated
that a high salt concentration significantly decreased IFNGR1 expression in the basolateral membrane of HK2
cells (Fig. 5). These results indicated that the suppression of CXCLs by a high salt concentration results from a
trafficking defect of IFNGRI.

Suppression of JAK1 phosphorylation in mouse kidney with high salt intake. We confirmed the
suppression of the JAK-STAT signaling pathway in mouse kidney with high salt intake. In immunoblottings,
the phosphorylation of JAKI at tyrosine 1022/1023 was inhibited in the kidneys of C57BL/6 mice fed a high salt
diet compared to those of mice fed a normal diet. In contrast, phosphorylation of JAK2 at tyrosine 1007/1008
was not inhibited (Fig. 6). These results demonstrated that salt loading certainly suppresses CXCLs through the
JAK1-STAT1 phosphorylation cascade in vivo.

The essential involvement of the JAK1-STAT1 signaling pathway in the inductions of IFN~
inducible chemokines. To confirm the essential involvement of the IFN~ inducible JAK1-STAT1 signaling
pathway in the regulation of CXCLs by a high salt concentration, we investigated the effect of ruxolitinib, a JAK1
and JAK2 specific inhibitor.

Ruxolitinib inhibited phosphorylation of STAT1 at tyrosine 701 in the nucleus, eliminating the effect of a high
salt concentration on STAT1 (Fig. 7A). In addition, the expressions of CXCLs were suppressed and no difference
in expression between the high salt concentration and the control condition was evident (Fig. 7B). These results
indicated that the JAK1-STAT1 signaling pathway mainly mediates the suppressive effect of a high salt concen-
tration on the expression of CXCLs.

Discussion

In the present study, we found that IFN~ inducible chemokines were suppressed in the kidney with high salt
intake. We further revealed that a high salt concentration suppressed the expressions of these chemokines in
proximal tubules using HK2 cells, indicating the direct effect of salt on the suppression of chemokines. Finally, we
demonstrated that a high salt concentration decreased IFNGRI1 expression in the basolateral membrane of prox-
imal tubular cells, leading to a decreased phosphorylation of activation sites of JAK1 and STAT1, the up-stream
activators of the chemokines. These data indicated that IFN~-JAK1-STAT1 signaling pathways play a key role in
salt-induced suppression of the chemokines (Fig. 8). Our findings could be valuable for further understanding of
the effects of salt on the immune system.

We demonstrate that a high salt concentration has a suppressive effect on these IFN~ related immune
responses in proximal tubular cells. In fact, renal tubules are often exposed to a high salt concentration by high
salt intake. The countercurrent multiplier system in the kidney generates a concentration gradient of salt in the
renal medulla'®. High salt intake increases this salt concentration gradient as much as 800 mEq/L at the medulla,
at the location of the proximal tubule S3 segment!*!. Considering that the tubule S3 segment is the common
site of proximal tubular injury, and that tubular injury of the S3 segment is mainly improved by salt loading, a
reasonable hypothesis is that the high salt concentration directly affects the proximal tubule at the S3 segment.

This IFN~ related immune response has been demonstrated to be associated with various kidney diseases.
IFN~ is a critical cytokine for innate and adaptive immunity, and is mainly secreted by Th1-type CD4" T cells and
cytotoxic effector CD8" T cells'®. Cellular responses to IFN~ are activated through its interaction with a heterod-
imeric receptor consisting of IFNGR1 and IFNGR2 subunits!’. Activated IFNGR1 and IFNGR2 phosphorylate
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Figure 4. Suppression of the JAK-STAT signaling pathway in HK2 cells exposed to a high salt
concentration. The cells were treated by IFN~ (10 ng/mL) for 36 h after a 2h exposure of culture medium
supplemented with either NaCl (80 mM) or Sorbitol (160 mM, as an osmotic control). (A) Left, Representative
immunoblotting performed to evaluate the phosphorylation of STAT1 in the nucleus; Right, Densitometry
analysis of the immunoblotting of the phosphorylation of STAT1 in the nucleus (n =5). Full-length western
blot images are presented in Supplementary Figure S2. A high salt concentration inhibited phosphorylation

of STAT1 at tyrosine 701 in the nucleus. (B) Left, Representative immunoblotting performed to evaluate

the phosphorylation of JAK1 and JAK2; Right-upper, Densitometry analysis of the immunoblotting of

the phosphorylation of JAK1 (n =4); Right-lower, Densitometry analysis of the immunoblotting of the
phosphorylation of JAK2 (n =4). Full-length western blot images are presented in Supplementary Figure S3. A
high salt concentration also inhibited phosphorylation of JAK1 at tyrosine 1022/1023, but not phosphorylation
of JAK2 at tyrosine 1007/1008.

JAK1 and JAK2, respectively'®. Both the activation of JAK1 and JAK2 cooperatively leads to STAT1 phosphoryla-
tion, and phosphorylated STAT1 induces various gene transcription processes involved in immune response and
cell proliferation. CXCL9 and CXCL10 are generally regarded as IFN~ inducible chemokines'®?*. These CXCLs
are secreted from various cells, including proximal tubular cells by stimulation of IFN~?"*2 and act as chemotactic
attractants of immune cells possessing a specific receptor CXCR3%. CXCR3 is rapidly induced on naive T cells by
stimulation of these CXCLs, and preferentially remains highly possessed on Th1-type CD4" T cells and effector
CD8" T cells?’. Many previous studies demonstrated a role of CXCR3 in the trafficking of Th1 and cytotoxic effec-
tor T cells to peripheral sites of Th1-type inflammation®*?. These CXCLs and CXCR3 are also highly induced on
inflamed kidneys and are regarded as a therapeutic target”’ 2.

We consider that the pre-conditioning of salt loading becomes a possible protection mechanism against acute
proximal tubular injury through Th1-type inflammation involving these chemokines. In fact, these chemokines
have been recognized to be rapidly induced by acute proximal tubular injury within a few hours, and adversely
affect the pathological condition during the early acute phase®. For example, in a mouse model of acute proximal
tubular injury caused by renal microvascular injury, CXCL10 was shown to be rapidly induced in the proximal
tubules, and that the expression pattern of CXCL10 overlapped with the pattern of T cell influx®'. Treatment
with a neutralizing CXCL10 antibody reduces the number of infiltrating T cells and improves renal microvas-
cular injury. Moreover, tubulointerstitial nephritis caused by acute rejection of renal allograft induces CXCL9
and CXCL10, and the expressions of these chemokines reflect the severity of proximal tubular injury®>*. The
neutralization of these chemokines using antibody therefore prolongs allograft survival®%. Furthermore, renal

SCIENTIFICREPORTS | 7:46580 | DOI: 10.1038/srep46580 5



www.nature.com/scientificreports/

IFNy (10ng/ml, 36h) + +
Sorbitol (160mM) + — IFNGR1
NaCl (80mM) — + (Basolateral/Whole)

812 p<0.01**
IFNGR1 (Basolateral membrane) ! . ‘ : § 1

So08

o6

o
IFNGR1 (Whole lysate) Bl Bl | 204

T 0.2

J Sorbitol  NaCl

. orpitol a

Actin (Whole lysate) — (160mM) (80mM)

Figure 5. A trafficking defect of IFNGRI to the basolateral membrane in HK2 cells exposed to a high

salt concentration. The cells were treated by IFN~ (10 ng/mL) for 36 h after a 2h exposure of culture medium
supplemented with either NaCl (80 mM) or Sorbitol (160 mM, as an osmotic control). Biotinylation assay

was performed to evaluate the protein abundance of IFNGR1 in the basolateral membrane of HK2 cells. Left,
Representative immunoblotting performed to evaluate the protein abundance of IFNGR1; Right, Densitometry
analysis of the immunoblotting of the protein abundance of IFNGR1 in the basolateral membrane (n=3).
Full-length western blot images are presented in Supplementary Figure S4. Although the protein abundance of
IFNGRI in whole cell lysate was not markedly altered by a high salt concentration, the protein abundance of
IFNGR1 in the basolateral membrane significantly decreased.
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Figure 6. Suppression of JAK1 phosphorylation in mouse kidney with excessive salt intake. The
comparison between C57BL/6 mice fed a high salt diet for 7 days and mice fed a normal diet (n=>5). Left,
Representative immunoblotting performed to evaluate the phosphorylation of JAK1 and JAK2 in kidney; Right-
upper, Densitometry analysis of the immunoblotting of the phosphorylation of JAK1 (n = 4); Right-lower,
Densitometry analysis of the immunoblotting of the phosphorylation of JAK2 (n =4). Full-length western

blot images are presented in Supplementary Figure S5. The phosphorylation of JAK1 at tyrosine 1022/1023

was inhibited in the kidney of C57BL/6 mice fed a high salt diet, whereas phosphorylation of JAK2 at tyrosine
1007/1008 was not inhibited.

ischemic-reperfusion injury causes acute proximal tubular injury through activated immune cells possessing
CXCR3, and CXCR3 '~ mice show substantial resistance to kidney injury®. In addition, cisplatin-induced
nephrotoxicity, one of the most widespread acute proximal tubular injuries, is improved by salt loading!?3¢-%,
mainly damaging the proximal tubule S3 segment with highly expressed CXCL10**%’. The exposure to a high salt
concentration therefore inhibited cisplatin-induced cytopathy in proximal tubular cells in vitro*!. Considering
the above facts that inhibitions of these CXCLs and CXCR3 have protective effect against proximal tubule injury
in vivo and cultured cells in vitro, it is natural to suppose that salt loading ameliorates proximal tubule injury
through the inhibition of IFN~-JAK1-STAT1 signaling pathways and chemokine expression in proximal tubular
cells.

In addition, inhibitors of the JAK-STAT signaling pathway may be useful for most proximal tubular injury
improved by salt loading. In fact, AG490, a widely prevalent JAK2, but not JAKI, specific inhibitor, has been
proven to have renal protective effects on several kinds of proximal tubular injury. In mouse models of renal
ischemic-reperfusion injury and cyclosporin A-induced nephrotoxicity, AG490 was shown to decrease proximal
tubular injury and improve acute renal failure*>**. Considering that STAT1 is a common down-stream molecule
of JAK1 and JAK?2, the inhibition of JAK1 or STAT1 may also suggest a certain degree of renal protective effects
and offer an additional treatment approach.
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Figure 7. The essential involvement of the JAK1-STAT1 signaling pathway in the inductions of the IFN~
inducible chemokines. The cells were treated by a JAK1 and JAK2 specific inhibitor, ruxolitinib (Ruxo) (1 pM),
2h before the 36 h of IFN~ (10 ng/mL) treatment. (A) Left, Representative immunoblotting performed to
evaluate the phosphorylation of STAT1 in the nucleus; Right, Densitometry analysis of the immunoblotting

of the phosphorylation of STAT1 in the nucleus (n =4). Full-length western blot images are presented in
Supplementary Figure S6. Ruxo inhibited phosphorylation of STAT1 at tyrosine 701 in the nucleus. (B) qRT-
PCR analyses were performed to evaluate CXCLs expression (n =4). The expressions of CXCLs were markedly
suppressed and no difference between the high salt concentration condition and control condition was evident.
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Figure 8. Schematic representation of the mechanism of inhibition of IFN~-JAK1-STAT1 signaling by
the exposure to a high salt concentration in proximal tubular cells. The exposure to a high salt condition
decreased the protein abundance of IFNGRI in the basolateral membrane of proximal tubular cells. This
IFNGRI internalization suppressed phosphorylation of an activation site of JAK1, thereby inhibiting the
transcriptional activity of STAT1 through decreasing phosphorylation of its activation sites. Finally, the
excretion of IFN~ inducible chemokines from proximal tubular cells was suppressed. Accordingly, the
migration of cytotoxic T cells possessing a specific chemokine receptor CXCR3 was presumably decreased.
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Our results show that IFNGR1 expression in the basolateral membrane is decreased when proximal tubular cells
are exposed to a high salt concentration. Many previous studies have reported that several types of receptor internal-
izations often occurred by cellular stresses, including a high salt concentration**>. IFNGR1, but not IFNGR2, has
generally been recognized to show this receptor internalization by various stimulations*. Although the mechanisms
responsible for the IFNGR1 internalization in proximal tubular cells through the exposure to a high salt concen-
tration remains incompletely understood, a receptor internalization specific to IFNGR1 and the subsequent signal
reduction of the JAK1-STAT1 phosphorylation cascade are certainly observed by certain kinds of infections*’.

Although a high salt concentration suppresses the IFN~ related immune response, it must be noted that a
high salt concentration also activates a certain kind of immune systems in renal cells. For example, our results
of microarray analyses indicated that the expression of Transforming growth factor beta (TGF3), a major
pro-fibrotic cytokine, was increased in a mouse model of high salt conditions. In fact, chronic high salt intake has
generally been recognized to cause glomerulosclerosis and tubulointerstitial fibrosis®. Therefore, further research
is required to determine the situation where salt stimulation has beneficial effects on disease states. Nevertheless,
our present research may offer a new insight into the therapeutic possibility of salt.

In conclusion, we demonstrated that salt loading suppresses IFN~-JAK1-STAT1 signaling pathways and
chemokine expression in proximal tubular cells. This finding may explain how salt loading ameliorates proximal
tubular injury and offer a new insight into the direct linkage between salt and immunity.

Methods

Animals. The generation of the WNK4P**!A’+ mice and their genotyping strategies were described previ-
ously*. Studies were performed on each strain using littermates. C57BL/6 mice were purchased from CLEA
Japan. The mice were fed a normal diet [0. 4% NaCl (w/w)] or a high salt diet [8.0% NaCl (w/w)] (Oriental Yeast,
Japan), and plain drinking water for seven days. In some experiments, to trigger the production of IFN~ induc-
ible chemokines, intraperitoneal injection of recombinant mouse IFN~ (0.3 g/kg, Peprotech) was performed 3h
before organ collection. This experiment was approved by the Animal Care and Use Committee of the Tokyo
Medical and Dental University and was performed in accordance with the guidelines for animal experiments of
the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Cell culture. A cultured line of human proximal tubular epithelial cells, HK2 (ATCC; CRL-2190), was cul-
tured in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham (DMEM/F-12, 1:1 mixture) supple-
mented with 10% (v/v) fetal bovine serum (FBS), 100 U per mL penicillin, and 0.1 mg/mL streptomycin. Cells
were grown at 37 °C in a humidified incubator with 5% CO,. The cells were treated by the addition of recombinant
human IFN~ (10 ng/mL, R&D Systems) to trigger IFN~ inducible chemokine ligands. To investigate the effects of
a high salt concentration on the expression of these chemokines, culture medium supplemented with either NaCl
(80mM) or Sorbitol (160 mM, as an osmotic control) was used 2 h before the addition of recombinant human
IFN~. In some experiments, ruxolitinib (1 pM, Cayman Chemical), a JAK1 and JAK2 specific inhibitor, was added
2 h before the addition of recombinant human IFN~.

Microarray analysis. Total RNA from mouse kidneys was extracted using TRIzol Reagent (Invitrogen) and puri-
fied with RNase-free DNase Sets and RNeasy Kits (Qiagen) according to the manufacturer’s protocol. The microarray
experiments were performed using SurePrint G3 Mouse Gene Expression 8 x 60 K microarrays (Agilent Technologies).
Microarray data files can be obtained from the NIH Gene Expression Omnibus with accession number GSE87600. The
data were analyzed by the National Institute on Aging (NIA) microarray analysis tool (http://lgsun.grc.nia.nih.gov/
ANOVA/)*®. Bioinformatics analysis for the gene profile of cytokines and cytokine receptors was performed using the
DAVID Functional Annotation Bioinformatics Microarray Analysis (https://david-d.ncifcrf.gov/)*®%.

gRT-PCR. Total RNA extracted from mouse kidneys and HK2 cells was reverse-transcribed using ReverTra
Ace (TOYOBO, Japan). qRT-PCR analysis was performed in a Thermal Cycler Dice Real Time System (Takara
Bio). Primers and templates were mixed with SYBR Premix Ex Taq II (Takara Bio). The amounts of mRNA were
normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or 3-ACTIN, and were calculated using the
comparative CT method. The primer set for mouse GAPDH was purchased from Takara Bio, and other primer
sequences used are summarized in Supplementary Table S3.

Immunofluorescence. Immunofluorescence was performed as previously described®2. Mouse kidneys
were fixed by perfusion through the left ventricle with 0.2 M periodate lysine and 2% paraformaldehyde in PBS.
Tissue samples were soaked for several hours in 20% sucrose in PBS, embedded in Tissue-Tek OCT Compound
(Sakura Finetechnical), and snap-frozen in liquid nitrogen. Goat anti-CXCL9 antibody was purchased from
R&D Systems. Fluorescent lotus tetragonolobus lectin (LTL) was purchased from Vector Laboratories. Alexa fluor
(Molecular Probes; Invitrogen) was used for secondary antibodies. Immunofluorescent images were obtained
using the Leica TCS SP8 laser-scanning confocal microscope system.

Immunoblotting. Immunoblotting was performed as previously described*. For immunoblotting, we used
whole lysates of entire kidney samples without the nuclear fraction (600g) and crude lysates of HK2 cell sam-
ples (15,000g). Goat anti-CXCL9 antibody was purchased from R&D Systems. Rabbit anti-STAT1 antibody, rabbit
anti-phosphorylated STAT1 (Tyr”"!) antibody, rabbit anti-JAK1 antibody, rabbit anti-phosphorylated JAK1 (Tyr!?2#/1023)
antibody, rabbit anti-JAK2 antibody, rabbit anti-phosphorylated JAK2 (Tyr!'%7/198) antibody, and rabbit anti-Histone
H3 antibody were purchased from Cell Signaling. Rabbit anti-IFNGR1 antibody was purchased from Santa Cruz
Biotechnology. Rabbit anti-3-ACTIN antibody was purchased from Sigma- Aldrich. Alkaline phosphatase-conjugated
anti-IgG antibody (Promega) was used as the secondary antibody, and Western Blue (Promega) was used to detect the
signals. The band intensities of the western blots were quantified using Image J software (NIH).
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ELISA. The culture supernatant of HK2 cells was obtained 72 h after the addition of recombinant human IFN~.
Each protein concentration of IFN~ inducible chemokine ligand in this supernatant was determined using the
appropriate Quantikine ELISA Kit (R&D Systems).

Biotinylation assay. HK?2 cells were seeded on semipermeable filters (Transwell, 0.4 um pore size; Corning
Costar, no. 3412), and cultured for four days with daily changing of the medium. Then, HK2 cells were used for
the biotinylation assay 36 h after treatment with recombinant human IFN~ (10 ng/mL, R&D Systems) to the baso-
lateral side of the filters in a 5% CO, incubator at 37 °C. The amount of IFNGR1 in the basolateral membrane was
quantitated by basolateral surface biotinylation as previously described®*.

Statistics. Statistical significance was evaluated using an un-paired t-test. For multiplex comparisons, the
one-way analysis of variance (ANOVA) test with Tukey’s test was used. P < 0.05 was considered statistically sig-
nificant. Data are presented as mean = standard error of the mean (SEM).
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