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Abstract

The identification of recurring patterns within a sequence of events is an important task in 

behavior research. In this paper, we consider a general probabilistic framework for identifying 

such patterns, by distinguishing between events that belong to a pattern and events that occur as 

part of background processes. The event processes, both for background events and events that are 

part of recurring patterns, are modeled as competing renewal processes. Using this framework, we 

develop an inference procedure to detect the sequences present in observed data. Our method is 

compared to a current approach used within the ethology literature on both simulated data and data 

collected to study the impact of fragmented and unpredictable maternal behavior on cognitive 

development of children.

1 Introduction

The study of behavior plays an important role in a variety of fields, such as psychology, 

neuroscience, sociology, and zoology. However, most behavior studies are qualitative in 

nature, as constructs of behavior have proven difficult to characterize quantitatively. In 

particular, a great deal of subjectivity is applied when determining what does or does not 

constitute an interesting or scientifically relevant behavior, and when attempting to 

differentiate between various types of behaviors. Researchers often want both to predict 

when an actor will exhibit various behaviors, and to use past behavior to predict other 

characteristics. Thus a quantitative construct of behavior would be beneficial to help drive 

these fields when investigating behavior.

One possible construct that has proven popular are recurring behavioral patterns, which are 

relatively simple to identify and have proven useful for characterizing temporal streams of 

behavior [Eibl-Eibesfeldt, 1970]. However, most analyses fix patterns of interest a priori, 

and attempt to identify those specific patterns. Approaches to automatically detect such 

patterns are in their infancy. In this paper, we present a probabilistic model which serves as 

an attempt to model some of these intricacies of behavior, which allows the extraction of 

patterns for further analysis.
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We describe a behavioral sequence as a series of events performed by an actor or actors, 

with each event occurring at some point in continuous time. The data we consider can be 

represented as a sequence of time-event pairs, including the type of event and the time that it 

occurred. Event types are defined from a fixed set of possible behaviors identified by subject 

matter experts. Our model identifies repeated patterns within these sequences of events, 

which we posit describe an element of the behavior of an individual or individuals. These 

types of repeated behavioral patterns have proven beneficial to behavior research in the past.

Often, when patterns are not known a priori, they are identified by visual inspection. 

However, it can be very difficult to identify patterns with visual inspection alone, see Fig 1. 

Thus most analysts resort to guessing which patterns they expect to exist, and then noting 

how often the expected patterns occur.

The aim of this paper is to introduce a general purpose model that can automatically extract 

these repeated patterns in sequences of time-indexed events. The existence of such patterns, 

and their varied numbers in different individuals, often carry scientific significance, such as 

in behavior studies.

In Section 2, we provide a brief background on existing approaches to event sequence 

modeling. In Section 3, we describe the data generating process for our model in detail. This 

is followed by a discussion of our approach to inference follows in Section 4, experiments 

and application in Section 5, and a discussion of future directions in Section 6.

2 Background

There are several techniques for identifying patterns in discrete sequences of observations. 

For instance, a rich literature exists on pattern finding within DNA sequences where 

repeated patterns, known as motifs, are important for understanding gene expression [Kellis 

et al., 2004, Liu et al., 1995]. A motif finding algorithm typically operates by first 

establishing a background model and then searching for any sequences that occur more often 

than expected by the background model.

Several compression methods can be applied to discrete time series to identify recurring 

sequences, such as the Lempel-Ziv algorithm and its derivatives [Welch, 1984, Ziv and 

Lempel, 1978]. These lossless compression methods focus on creating a dictionary of 

recurring patterns in a series of events, allowing us to represent the original data space with 

fewer bits.

The study that motivates our work attempts to search for patterns in sequences of events 

measured in continuous time. Time series pattern finding for continuous time data (e.g., 

looking for change points) usually occurs in the context of continuous measurements made 

at regular time points. This allows the use of standard time series models as the foundation 

for a model. However, our data are categorical measurements occurring at irregular time 

points. This type of data could instead be modeled as a series of states, such as a Markov 

process, but this would be insufficient for addressing our scientific questions. Instead, we 

would like to model each action as an instantaneous event, and then identify temporal 

relationships between several events.
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In cases where continuous time points exist, discrete time series methods could be 

implemented by simply removing the time element, and assuming that all events are equally 

spaced. The times series could also be discretized into equally sized time bins, with 

several ’no action’ events assigned to bins where no events are recorded. The former method 

could run into issues when the equal time spacing assumption is incorrect, and different 

scales of discretization could have significant effects on the latter.

The software package Theme is one existing method to extract sequences from continuous 

data [Magnusson, 2000]. Theme begins by assuming that all events occur uniformly within 

the observation period, and uses exhaustive search methods to determine if any sequence of 

events occurs more often than expected under a uniformly distributed model. However there 

are some aspects of Theme that we have found difficult to navigate. The program, using 

fairly standard settings, identifies a large number of potential patterns. The assessment of 

which of these are genuine and which are false positives is not explicit in Theme’s output. 

We discuss this further below.

At present, we are not aware of any alternative models that address these concerns. With 

those concerns in mind, we have developed a probabilistic model that explicitly incorporates 

continuous time.

3 Data Generating Process

It is easiest to describe our model and our approach to inference by focusing on the model’s 

data generating process. Events are assumed to be generated by competing renewal 

processes, which we classify as either background or sequence processes. The model 

assumes most observed events occur independently of other recent events; these are assumed 

to belong to the background processes. Other events are assumed to occur as part of a 

sequence; these events are generated by sequence processes.

We consider data comprised of a set of n events that occur over some period of time. Events 

are observed as time-event pairs {Ei, Ti} with occurrence times Ti ∈ ℝ+ and event types Ei ∈ 
Q, where Q = {1, 2, …, J} is a set of possible event types. Occurrence times are strictly 

increasing, so Ti > Ti−1, and we define event interarrival times as ti = Ti − Ti−1. While events 

are observed as {Ei, Ti}, our model is most easily described with the equivalent interarrival 

time-event pairs {Ei, ti}.

3.1 Background Processes

To begin, we describe the background process corresponding to a single event type. For the 

event type j, we define its background process as a continuous time renewal process with 

independent and identically distributed interarrival times from some arbitrary strictly-

positive distribution ti ~ Fj (ti). For example, if Fj (·) is defined as an exponential distribution, 

the resulting process would be a Poisson process.

Our data are assumed to include J possible event types. For each event type, we assume the 

events belong to an independent background process, each with its own unique interarrival 

time distribution. Thus we consider a multi-event model with several independent processes, 
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each one corresponding to an event in Q. We will distinguish the interarrival times of each of 

these processes by a superscript, so for event type j ∈ Q we have .

We consider a competing risks framework to generate the event sequence {Ei, ti}i=1, …, n 

from the independent renewal processes. In this scenario, each of the possible actions in Q is 

a competing event, where the first to occur will be labeled as the next event to occur in our 

observed sequence. The competing risks framework will prove especially useful when we 

incorporate sequence processes in the next subsection.

At the initial time T0, we want to know the next pair {E1, t1} to occur in the sequence. The 

data generating mechanism generates interarrival times from the J event processes, denoted 

. The events are sorted into a schedule according to increasing times, and we 

observe the first scheduled event next. Thus the time until the next event can be modeled as 

the minimum over the interarrival times  and the corresponding event type is 

labeled the next event .

Now suppose we are at time Ti and have just observed the pair {Ei, ti}. Recall that the next 

event in each background process is scheduled to occur at  for j ≠ Ei. We keep these other 

events that were already scheduled, , to determine the next event in sequence. 

Two additional steps are required before determining the next time-event pair. First we need 

to account for the fact that these events did not occur between Ti−1 and Ti. We update the 

corresponding interarrival times by decrementing each time by the value of ti, 
for j ≠ Ei. Second, we need to include a new event corresponding to Ei, so we draw a new 

interarrival time  and append it to the set of interarrival times. The new set of 

active interarrival times  can now be denoted as .

As a consequence of the decrement,  is no longer distributed according to Fj 

(ti+1). We can derive the correct distribution most easily by introducing the survival function. 

The survival function for the original interarrival time for event type j, , is defined as 

. Then, for event types j ≠ Ei, the conditional survival function of 

the decremented interarrival time, , is easily derived as

(1)

We refer to (1) as the event specific conditional survival functions S̄
j (t), and refer to the 

survival function for the next event as the multi-event survival function S (t). Because we 

assume that the J processes are independent, the multi-event survival function can be defined 

as the product of the relevant conditional survival functions,
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(2)

To perform inference for our model (see Section 4), we need to derive the density of the 

interarrival times from the survival function. The hazard function λ (t), the instantaneous 

rate of events conditional on survival to time t, can be defined via the survival function, 

. The density of the interarrival times, f (t), is the product of the 

survival and hazard functions, f (t) = λ (t) S (t). Following the notation above, we use the 

superscript j with the hazard function λj (t) to denote the hazard function for the process of 

the jth event type, and let λ (t) denote the hazard function for the multi-event background 

process. We can use the relationship of the hazard and survival functions to establish that the 

multi-event hazard is , and thus  is the density of the 

interarrival times.

The previous paragraph defines the density function for the interarrival time. We are 

interested in the joint density of the event type and the interarrival time, or the event-time 

pair {Ei, ti}. Because the probability density for the interarrival times marginalizes the joint 

density over all possible events j, it follows that the background process time-event pairs 

have the following density:

(3)

where S (t) is as defined in (2).

3.2 Sequence Processes

In addition to background events, we also want to consider the possibility of recurring 

sequences, where certain events tend to occur more often after some other set of events has 

occurred. We model these sequences of events as part of sequence processes, which are 

assumed independent of the background processes. Sequence processes are identified when 

events occur in sequence more often than expected if they belonged to the background 

processes. We require all preceding events must have occurred to observe an event in a 

sequence process.

For notational convenience, let s index a specific sequence, and let s {ℓ} be the event index 

corresponding to the ℓth event in that sequence. Thus for the sequence of behaviors A → B 
→ C, we say Es{1} = A, Es{2} = B, and Es{3} = C. We require notation of this form because 

it is not necessary that the events in a recurring sequence be consecutive observations. It is 

possible that an unrelated event may occur in the midst of a sequence by chance. We refer to 

these events as noise events, intervening events that occur during a sequence but do not 

belong to that sequence. These events can occur as part of either background processes or 
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other sequence processes. Furthermore, our model allows a single event to belong to 

multiple sequence processes.

We introduce a parameter that governs the maximum time allowed between events in a 

sequence. We included this parameter both because it is well accepted that events occurring 

well in the past have much less direct influence on current behavior, and for computational 

convenience. However, no limit is placed on either the number of events in a sequence or its 

overall duration, so it remains possible that events well in the past can have indirect 

influence on current events.

We denote the time parameter as τ, a positive number that represents the maximum amount 

of time that can elapse between events Es{ℓ−1} and Es{ℓ} for each ℓ. Hence we require that the 

ℓth event in the sequence s {·} must occur within the time window [Ts{ℓ−1}, Ts{ℓ−1} + τ]. If 

Es{l} does not occur by the end of this window, then the sequence does not occur. Given 

events Es{1}, …, Es{ℓ−1} have occurred, there is positive probability that event Es{ℓ} does not 

occur, and thus neither does the sequence s {·}. This probability is equivalent to the 

probability that the interarrival time is greater than τ,

(4)

Here we introduce Ṡs{ℓ} (τ) as notation for the survival function of the next event. The 

censoring at τ complicates the calculation of the survival distribution associated with the 

sequence event s {ℓ}. The survival function is right censored at τ, with a nonzero probability 

that the event does not occur. We define a new censored survival function S̃s{ℓ} (t) as

(5)

The latter half of the sum in (5) refers to a point mass giving the probability that the event 

does not occur. Let λ̇ (t) denote the hazard function associated with Ṡ (t). Then by the 

properties of the density function described earlier, the probability density of a sequence 

event can be derived as

(6)

To model the noise events defined earlier, assume the ℓth event in the sequence occurs at Ti, 

so s {ℓ} = i. The previous event in the sequence, Es{ℓ−1}, occurs at some time Ts{ℓ−1} which is 

less than Ti−1 if intervening events are present, but equal to Ti−1 if not. Thus, the time of the 

intervening event can be represented as Ti−1 = Ts{ℓ−1} + r where r ≥ 0 is the time between the 

previous event in sequence and the noise event. If no noise event is present, then r = 0, but if 

a noise event is present, then s {ℓ − 1} < i − 1 and r > 0. The interarrival time for the 

sequence can then be represented as Ts{ℓ} − Ts{ℓ−1} = t + r, where t is the time between Ts{ℓ} 

and Ti−1 and r is the time between Ts{ℓ−1} and Ti−1. Here we considered the noise event 
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occurring directly before Es{ℓ}, but any number of noise events may occur between events 

Es{ℓ−1} and Es{ℓ}.

The hazard function λ̇ (t) remains unchanged, so the new density for event s {ℓ} can be 

expressed as

(7)

This defines the density for a single event in a particular sequence process. We now want to 

consider multiple sequence processes, in addition to the background processes that were 

described earlier.

3.3 Combining Background and Sequence Processes

Our model assumes that background and sequence events occur independently, which allows 

us to combine them in a relatively straightforward manner. We assume that all sequence 

events are initialized by a background event as their initial event, thus s {1} effectively 

belongs to both a background and a sequence process.

As before, assume the current time is Ti and we observe {Ei, ti}. Now the pool of possible 

next events is comprised both of all background events as well as events belonging to all live 

sequences. We define a live sequence as any process such that s {1} through s {ℓ − 1} has 

occurred previously and Ts{ℓ−1} < Ti < Ts{ℓ−1} + τ. Let ℬ = {1, …, J} denote all background 

processes, and  = {s1, …, sK} denote all K live sequence processes at time Ti, so the next 

event must occur from either ℬ or S.

From our independence assumption,  and . 

Furthermore, from the definition of the sequence process, we have

(8)

where .

Finally, we get the following density, inserting the modification from (7) as needed:

(9)

where Λ̇e (t) = ∑s∈  for which s{ℓ}=e λ̇s (t)
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Finally, we can calculate the likelihood of the model by taking the product of the densities 

for all time-event pairs: , where Θ denotes the set of all model 

parameters.

Though not the focus of our paper, we note that our probabilistic model also has a built in 

mechanism for prediction. The equation in (9) provides the density of a given time-event 

pair. One could simply calculate the likelihood for each possible event type, and then 

normalize to obtain the predictive probability that the next event is a particular event type.

4 Inference

To this point, we have not specified the functional form for the survival and hazard functions 

of the renewal processes. Fortunately, our inference approach is general, and can handle a 

wide variety of functional forms. To describe our inference approach, we assume each 

background and sequence process has its own parameters θ, which includes the maximum 

time parameter τ for sequence processes. We denote the entire parameter set as Θ. We take a 

Bayesian approach to learning the parameters in our model. For our experiments, we place 

independent Cauchy priors on all parameters, truncated to the support of each parameter. 

Parameters will be sampled via a Markov Chain Monte Carlo (MCMC) procedure, described 

below.

Our model allows for a potentially unlimited number of sequence processes to exist, so we 

need to determine which sequences actually exist in the observed data. Including all possible 

sequences is impractical; when we consider sequences of increasing maximum length, the 

number of possible sequences grows exponentially. Instead, we only include a small subset 

of all possible sequences in our model at any given point in the sampler, and use a birth-

death MCMC technique to vary the subset of sequences.

Sequences that are very unlikely to occur will have a hazard rate near zero, and thus a 

survival function constantly near one. When λ (t) ≈ 0 and S (t) ≈ 1 for all t, from (9) we see 

that the sequence is effectively not included in the model. In this case, we fix the sequence 

process parameters θ such that the hazard rate is fixed at zero.

Our complete approach to inference uses the No-U-Turns Sampler (NUTS) for sampling the 

parameters, with occasional birth-death steps incorporated for model selection. First, we 

describe NUTS, implemented with the Stan software [Hoffman and Gelman, 2012, Stan 

Development Team, 2013], and then describe the birth-death steps.

NUTS is a form of Hamiltonian Monte Carlo (HMC), an MCMC algorithm that avoids the 

random walk behavior of several other popular MCMC methods. However, standard HMC is 

sensitive to user provided parameters: the number of leap frog steps and the step size. NUTS 

improves upon the standard HMC implementation by eliminating the need to set both 

parameters, though our implementation does still require that we set the step size, as 

described below. Furthermore, the Stan implementation uses reverse-mode algorithmic 

differentiation to calculate the gradient, eliminating the need for us to calculate it by hand.
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While NUTS is very effective for sampling from the posterior distribution, it does not 

address model selection. To determine which sequence processes belong in the model, we 

apply the birth-death process of Stephens for model selection, an alternative to reversible 

jump steps [Stephens, 2000]. Stephen’s birth-death MCMC views the parameters of the 

model as a point process, which allows the number of components to vary by allowing new 

ones to be ’born’ and existing ones to ’die.’ At various times within the overall NUTS chain, 

we perform a birth-death step by constructing an easily simulated process that changes the 

number of sequences in the model. The births and deaths both occur according to Poisson 

processes. Births occur at a constant rate, while deaths occur at a low rate for sequences 

critical for explaining the data, and a high rate for sequences that do not help explain the 

data.

When a birth-death step occurs, we fix some simulation time W and run through a series of 

birth or death steps until the simulated time exceeds W. Birth steps occur according to a 

Poisson process with rate δB. Each sequence s currently in the model receives an 

independent death process with rate , described in the next paragraph. The overall rate of 

death steps is . The time to the next step is exponentially distributed with rate δB 

+ δD. Times are generated until they pass time W, with a birth or death step occurring at 

each time with probability proportional to the rate for the birth/death.

To ensure that important sequences are retained within the model, the death rate for a given 

sequence s will be equal to the birth rate multiplied by the ratio of the time-event likelihoods 

with and without sequence s included. Thus sequences that have a profound positive effect 

on the likelihood when included, and thus for which the data suggests they belong in the 

model, will have very low death rates.

For the birth step, we choose a sequence not currently in the model, and draw parameters 

from an appropriate distribution, e.g. the prior distribution for it. To choose the new 

sequence, we pool all existing sequences in the model, randomly sample two of them and 

combine them to form a new sequence. For these purposes, we include all single events as 

sequences in addition to the multi-event sequences in the model. For example, assume the 

model has background events A, B, and C, as well as the C→A pattern. We sample, with 

replacement, two of those four possible events, and combine them to form the new pattern. 

Possible new patterns include A→B, C→A→B, or C→A→C→A, among others.

A death step simply chooses an existing sequence process, and fixes its parameters such that 

the hazard function is zero for all possible times t.

The simulated birth-death process proceeds as follows:

Algorithm 1

Birth-Death Process

Fix δB, W ; // Birth Rate, BirthDeath Sim Time

w ← 0;
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while w < W:

  ; // Sequence Death Rate

  ; // Overall Death Rate

  Sample u ~ unif (0, 1);

  if u < δB δB + δD:

    Birth Step

  else:

    Death Step

  Sample t exp (1 δB + δD); // Next Jump Time

  w ← w + t;

Here Θ − θs denotes the parameter set Θ excluding parameters related to the sequence s. The 

birth-death process helps the model selection process traverse the posterior distribution more 

efficiently than reversible jump steps, as well as improve sampling efficiency by never 

rejecting a proposed change in model.

Finally, we describe how our model selection technique is integrated within the NUTS 

algorithm. The birth-death process is run once every m iterations of the sampler, allowing 

NUTS to explore the state space for every model. The standard implementation of NUTS 

within Stan determines the step size needed for HMC during the warmup phase. To ensure 

ergodicity, we estimate the step size for the initial model (typically without sequence 

processes included), and then fix the step size at this value when running NUTS.

5 Results

For this paper, all experiments assume sequences have a constant hazard function, and 

therefore the interarrival times are exponentially distributed. However, our model can 

accommodate more general hazard rates. We have implemented our model to include 

renewal processes with Weibull increments, and have plans to consider other alternative 

distributions.

5.1 Simulation

We first consider the results for simulated data under three different simulation scenarios. 

The first simulation is a simple scenario, with only three possible event types which we label 

events 1, 2, and 3. We include only one sequence process, a simple 2-event sequence: 3 → 
1. We fix the background exponential process parameters λ1 = 0.16, λ2 = 0.57, and λ3 = 

0.40, the sequence exponential process parameter λ3→1 = 0.25 and the corresponding time 

window parameter as τ3→1 = 1.12. Using these parameters, we sample M = 100 data sets of 

length n = 500 events, and fit the model to each data set.
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Our other two simulations consider data which are more consistent with possible 

applications. Both simulations are comprised of 20 different possible event types. The first 

has three 2-event sequences, representing an actor with very few repeated patterns. The 

second simulates data with both more patterns (six) and more complex patterns (up to 4-

events in one pattern). Again, we sample M = 100 data sets of length n = 500 events for both 

of the more complex scenarios.

For each simulated data set in each scenario, we run our inference procedure treating all 

parameters as unknown. We calculate a 95% posterior credible interval for each parameter. 

Table 1 shows the coverage probabilities for the posterior intervals for the parameters in the 

first scenario. All are 0.95 or higher. For the second and third scenarios, there are 

considerably more parameters; all have coverage probabilities above 0.90.

We also record which sequences were included by the model selection process for each data 

set in each scenario. We record the proportion of trials in which the correct sequence was 

identified (power), the number of null sequences incorrectly identified as being present 

(false positives), and the proportion of declared sequences that are true sequences 

(precision). Our Renewal Process Model’s results for the first scenario are in the final 

column of Table 2.

We also ran Theme with its default settings on each of the simulated data sets for the first 

scenario, and recorded the same summaries. As described earlier, assessing significance in 

Theme is not always straightforward, and not all patterns are assumed real. After the patterns 

are identified, a permutation procedure can be used, which compares the results with the 

results using randomized data. However, it does not indicate which patterns are most 

important. Here we just summarize the patterns identified recognizing that practiced Theme 

users would not consider all of these as real. These results are also included in Table 2. 

Theme identified the correct sequence about as often as our model, though it often identified 

several other sequences that do not actually exist.

For the second simulation scenario, all 3 patterns were found in 91% of the simulations 

using the RPM, with an average of 0.87 false positive patterns per simulation. In the final 

scenario, all 6 patterns were found in 87% of all simulations with an average of 1.6 false 

positives per simulation. Thus our method performs similarly well for more complex data. 

Furthermore, these simulations were designed to be consistent with our application (see 

below), and it does not appear that the complexity of the model, including the larger 

parameter space, has any negative effects on our model. For applications where more 

complexity is expected (more event types, more patterns, longer patterns), further simulation 

studies would be recommended.

5.2 Mother-Child Data

Previous experimental research has identified fragmented and unpredictable maternal 

behavior in rodents as a risk factor for outcomes that are analogous to emotional and 

cognitive disorders in humans [Baram et al., 2012]. However, how to best characterize 

fragmented and unpredictable behavior in humans in clinically meaningful ways remains an 
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open research question. One proposed method evaluates maternal behaviors and defines 

fragmented and unpredictable behavior using the number and length of recurring sequences.

We define consistent behavior as long repeated sequences of actions, whereas fragmented 

behavior has few, if any, long repeated sequences. Unpredictable behavior refers to the 

inability to determine the mother’s next action after considering the previous actions 

performed by her and the child. For the purposes of this paper, the degree to which a 

mother’s behavior is deemed fragmented or unpredictable will be determined via the length 

of the longest repeated sequence and the number of different sequences identified. Note that 

the definition of fragmented and unpredictable behavior does not consider whether the 

actions are positive or negative, but rather only considers the structure of the behavior.

As part of a longitudinal study to examine the impact of early interactions between a mother 

and her child on the child’s development through adolescence, our collaborators have 

recorded several instances of mothers playing with their children in the research lab. The 

data consists of short videos, about 10 minutes long, which have been annotated by the 

researchers to include the type of each event and the time when it occurs. Event types 

include both changes in the mother’s expression or emotional state (smiling, content, bored) 

as well as physical interactions (hug, play with toy, pick up child, speak). The number of 

events in any particular session ranges from about 100 to 400 events, with about 20 unique 

event types per session. An example of a mother-child session can be seen in Figure 1, 

where time is on the horizontal axis, and events (with numerically assigned labels) are on the 

vertical axis.

We ran both our model and Theme for five different mothers. Each mother has one 10 

minute session, and we consider both models independently across the five mothers. Results 

are summarized in Table 3. As before, Theme detects considerably more patterns than our 

model, as well as longer sequences.

While our model detects considerably fewer sequences, the sequences that are detected are 

largely quite sensible. Examples of detected patterns, with the mothers demonstrating each 

pattern in parentheses, include:

• New Toy → Manipulating Toy (1, 2, 3, 4, 5)

• Smiling → Laughing (1, 2, 3)

• Carrying Child → Setting Child Down (5)

• Speaking → Child in Lap → Hug/Kiss (2)

• Sing → Smile → Silent (5)

The first two patterns are shared across several mothers, and it does seem likely that certain 

patterns will be common across different mothers. We return to this point below.

6 Conclusion

In this paper, we proposed a generative model, the Renewal Process Model, and an inference 

procedure for identifying recurring patterns from a stream of events in continuous time. Our 
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experiments show that our model correctly identifies patterns in simulated data, performs 

admirably with increasing complexity, and finds considerably fewer false positives than the 

current state of the art algorithm. Furthermore our model identifies both interesting and 

intuitive patterns in real data. The Renewal Process Model appears to provide several 

advantages, including a rigorous probability structure that is easily generalized and a marked 

improvement on the number of false positives that are generated.

Behavior data, such as the maternal care behavior we examined, can be expensive to collect, 

and time consuming to annotate. This means that we have relatively little data per individual, 

which can make it difficult to identify patterns. As noted above, it is reasonable to expect 

similar patterns across the population of mothers. This suggests a hierarchical model in 

which each actor has her own model parameters, but the parameters are assumed to come 

from a common population distribution. Such a hierarchical model would improve our 

inference by borrowing strength across actors, which can help us to identify sequences that 

may not be significant in just one observation period. This is an area of current research.

Furthermore, our model can easily be adapted to incorporate different probability 

distributions for the interarrival times. In our experiments, we only consider sequence 

processes with constant hazards, but including more complicated hazard or survival 

functions would allow for more complex modeling. In particular, we are working to expand 

the model to include several families of distributions, as well as to develop a version that can 

accommodate nonparametric interarrival time distributions.
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Figure 1. 
Graphs of behavior data. The 15 events types, represented as integers, are on the vertical 

axis. Horizontal axis gives time in seconds. Each dot represents a recorded event. Top and 

bottom panels are the same, with patterns identified in the lower plot.
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Table 1

Coverage probability estimates for each parameter for M = 100 simulated data sets

λ1 λ2 λ3 λ3→1 τ3→1

0.97 0.95 0.97 0.97 0.95
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Table 2

Number of sequences for M = 100 simulated data sets

Theme Renewal
Process Model

# of Correct
Sequences

94/100 99/100

# of False Positives 384 57

# of False Negatives 6 1

Power/Recall 0.94 0.99

Precision 0.20 0.64
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