
A Statistical Model for Event Sequence Data

Kevin Heins and
Department of Statistics, University of California, Irvine

Hal Stern
Department of Statistics, University of California, Irvine

Abstract

The identification of recurring patterns within a sequence of events is an important task in

behavior research. In this paper, we consider a general probabilistic framework for identifying

such patterns, by distinguishing between events that belong to a pattern and events that occur as

part of background processes. The event processes, both for background events and events that are

part of recurring patterns, are modeled as competing renewal processes. Using this framework, we

develop an inference procedure to detect the sequences present in observed data. Our method is

compared to a current approach used within the ethology literature on both simulated data and data

collected to study the impact of fragmented and unpredictable maternal behavior on cognitive

development of children.

1 Introduction

The study of behavior plays an important role in a variety of fields, such as psychology,

neuroscience, sociology, and zoology. However, most behavior studies are qualitative in

nature, as constructs of behavior have proven difficult to characterize quantitatively. In

particular, a great deal of subjectivity is applied when determining what does or does not

constitute an interesting or scientifically relevant behavior, and when attempting to

differentiate between various types of behaviors. Researchers often want both to predict

when an actor will exhibit various behaviors, and to use past behavior to predict other

characteristics. Thus a quantitative construct of behavior would be beneficial to help drive

these fields when investigating behavior.

One possible construct that has proven popular are recurring behavioral patterns, which are

relatively simple to identify and have proven useful for characterizing temporal streams of

behavior [Eibl-Eibesfeldt, 1970]. However, most analyses fix patterns of interest a priori,

and attempt to identify those specific patterns. Approaches to automatically detect such

patterns are in their infancy. In this paper, we present a probabilistic model which serves as

an attempt to model some of these intricacies of behavior, which allows the extraction of

patterns for further analysis.

Appearing in Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland.

HHS Public Access
Author manuscript
JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

Published in final edited form as:
JMLR Workshop Conf Proc. 2014 ; 33: 338–346.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We describe a behavioral sequence as a series of events performed by an actor or actors,

with each event occurring at some point in continuous time. The data we consider can be

represented as a sequence of time-event pairs, including the type of event and the time that it

occurred. Event types are defined from a fixed set of possible behaviors identified by subject

matter experts. Our model identifies repeated patterns within these sequences of events,

which we posit describe an element of the behavior of an individual or individuals. These

types of repeated behavioral patterns have proven beneficial to behavior research in the past.

Often, when patterns are not known a priori, they are identified by visual inspection.

However, it can be very difficult to identify patterns with visual inspection alone, see Fig 1.

Thus most analysts resort to guessing which patterns they expect to exist, and then noting

how often the expected patterns occur.

The aim of this paper is to introduce a general purpose model that can automatically extract

these repeated patterns in sequences of time-indexed events. The existence of such patterns,

and their varied numbers in different individuals, often carry scientific significance, such as

in behavior studies.

In Section 2, we provide a brief background on existing approaches to event sequence

modeling. In Section 3, we describe the data generating process for our model in detail. This

is followed by a discussion of our approach to inference follows in Section 4, experiments

and application in Section 5, and a discussion of future directions in Section 6.

2 Background

There are several techniques for identifying patterns in discrete sequences of observations.

For instance, a rich literature exists on pattern finding within DNA sequences where

repeated patterns, known as motifs, are important for understanding gene expression [Kellis

et al., 2004, Liu et al., 1995]. A motif finding algorithm typically operates by first

establishing a background model and then searching for any sequences that occur more often

than expected by the background model.

Several compression methods can be applied to discrete time series to identify recurring

sequences, such as the Lempel-Ziv algorithm and its derivatives [Welch, 1984, Ziv and

Lempel, 1978]. These lossless compression methods focus on creating a dictionary of

recurring patterns in a series of events, allowing us to represent the original data space with

fewer bits.

The study that motivates our work attempts to search for patterns in sequences of events

measured in continuous time. Time series pattern finding for continuous time data (e.g.,

looking for change points) usually occurs in the context of continuous measurements made

at regular time points. This allows the use of standard time series models as the foundation

for a model. However, our data are categorical measurements occurring at irregular time

points. This type of data could instead be modeled as a series of states, such as a Markov

process, but this would be insufficient for addressing our scientific questions. Instead, we

would like to model each action as an instantaneous event, and then identify temporal

relationships between several events.

Heins and Stern Page 2

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In cases where continuous time points exist, discrete time series methods could be

implemented by simply removing the time element, and assuming that all events are equally

spaced. The times series could also be discretized into equally sized time bins, with

several ’no action’ events assigned to bins where no events are recorded. The former method

could run into issues when the equal time spacing assumption is incorrect, and different

scales of discretization could have significant effects on the latter.

The software package Theme is one existing method to extract sequences from continuous

data [Magnusson, 2000]. Theme begins by assuming that all events occur uniformly within

the observation period, and uses exhaustive search methods to determine if any sequence of

events occurs more often than expected under a uniformly distributed model. However there

are some aspects of Theme that we have found difficult to navigate. The program, using

fairly standard settings, identifies a large number of potential patterns. The assessment of

which of these are genuine and which are false positives is not explicit in Theme’s output.

We discuss this further below.

At present, we are not aware of any alternative models that address these concerns. With

those concerns in mind, we have developed a probabilistic model that explicitly incorporates

continuous time.

3 Data Generating Process

It is easiest to describe our model and our approach to inference by focusing on the model’s

data generating process. Events are assumed to be generated by competing renewal

processes, which we classify as either background or sequence processes. The model

assumes most observed events occur independently of other recent events; these are assumed

to belong to the background processes. Other events are assumed to occur as part of a

sequence; these events are generated by sequence processes.

We consider data comprised of a set of n events that occur over some period of time. Events

are observed as time-event pairs {Ei, Ti} with occurrence times Ti ∈ ℝ+ and event types Ei ∈
Q, where Q = {1, 2, …, J} is a set of possible event types. Occurrence times are strictly

increasing, so Ti > Ti−1, and we define event interarrival times as ti = Ti − Ti−1. While events

are observed as {Ei, Ti}, our model is most easily described with the equivalent interarrival

time-event pairs {Ei, ti}.

3.1 Background Processes

To begin, we describe the background process corresponding to a single event type. For the

event type j, we define its background process as a continuous time renewal process with

independent and identically distributed interarrival times from some arbitrary strictly-

positive distribution ti ~ Fj (ti). For example, if Fj (·) is defined as an exponential distribution,

the resulting process would be a Poisson process.

Our data are assumed to include J possible event types. For each event type, we assume the

events belong to an independent background process, each with its own unique interarrival

time distribution. Thus we consider a multi-event model with several independent processes,

Heins and Stern Page 3

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

each one corresponding to an event in Q. We will distinguish the interarrival times of each of

these processes by a superscript, so for event type j ∈ Q we have .

We consider a competing risks framework to generate the event sequence {Ei, ti}i=1, …, n

from the independent renewal processes. In this scenario, each of the possible actions in Q is

a competing event, where the first to occur will be labeled as the next event to occur in our

observed sequence. The competing risks framework will prove especially useful when we

incorporate sequence processes in the next subsection.

At the initial time T0, we want to know the next pair {E1, t1} to occur in the sequence. The

data generating mechanism generates interarrival times from the J event processes, denoted

. The events are sorted into a schedule according to increasing times, and we

observe the first scheduled event next. Thus the time until the next event can be modeled as

the minimum over the interarrival times and the corresponding event type is

labeled the next event .

Now suppose we are at time Ti and have just observed the pair {Ei, ti}. Recall that the next

event in each background process is scheduled to occur at for j ≠ Ei. We keep these other

events that were already scheduled, , to determine the next event in sequence.

Two additional steps are required before determining the next time-event pair. First we need

to account for the fact that these events did not occur between Ti−1 and Ti. We update the

corresponding interarrival times by decrementing each time by the value of ti,
for j ≠ Ei. Second, we need to include a new event corresponding to Ei, so we draw a new

interarrival time and append it to the set of interarrival times. The new set of

active interarrival times can now be denoted as .

As a consequence of the decrement, is no longer distributed according to Fj

(ti+1). We can derive the correct distribution most easily by introducing the survival function.

The survival function for the original interarrival time for event type j, , is defined as

. Then, for event types j ≠ Ei, the conditional survival function of

the decremented interarrival time, , is easily derived as

(1)

We refer to (1) as the event specific conditional survival functions S̄
j (t), and refer to the

survival function for the next event as the multi-event survival function S (t). Because we

assume that the J processes are independent, the multi-event survival function can be defined

as the product of the relevant conditional survival functions,

Heins and Stern Page 4

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(2)

To perform inference for our model (see Section 4), we need to derive the density of the

interarrival times from the survival function. The hazard function λ (t), the instantaneous

rate of events conditional on survival to time t, can be defined via the survival function,

. The density of the interarrival times, f (t), is the product of the

survival and hazard functions, f (t) = λ (t) S (t). Following the notation above, we use the

superscript j with the hazard function λj (t) to denote the hazard function for the process of

the jth event type, and let λ (t) denote the hazard function for the multi-event background

process. We can use the relationship of the hazard and survival functions to establish that the

multi-event hazard is , and thus is the density of the

interarrival times.

The previous paragraph defines the density function for the interarrival time. We are

interested in the joint density of the event type and the interarrival time, or the event-time

pair {Ei, ti}. Because the probability density for the interarrival times marginalizes the joint

density over all possible events j, it follows that the background process time-event pairs

have the following density:

(3)

where S (t) is as defined in (2).

3.2 Sequence Processes

In addition to background events, we also want to consider the possibility of recurring

sequences, where certain events tend to occur more often after some other set of events has

occurred. We model these sequences of events as part of sequence processes, which are

assumed independent of the background processes. Sequence processes are identified when

events occur in sequence more often than expected if they belonged to the background

processes. We require all preceding events must have occurred to observe an event in a

sequence process.

For notational convenience, let s index a specific sequence, and let s {ℓ} be the event index

corresponding to the ℓth event in that sequence. Thus for the sequence of behaviors A → B
→ C, we say Es{1} = A, Es{2} = B, and Es{3} = C. We require notation of this form because

it is not necessary that the events in a recurring sequence be consecutive observations. It is

possible that an unrelated event may occur in the midst of a sequence by chance. We refer to

these events as noise events, intervening events that occur during a sequence but do not

belong to that sequence. These events can occur as part of either background processes or

Heins and Stern Page 5

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

other sequence processes. Furthermore, our model allows a single event to belong to

multiple sequence processes.

We introduce a parameter that governs the maximum time allowed between events in a

sequence. We included this parameter both because it is well accepted that events occurring

well in the past have much less direct influence on current behavior, and for computational

convenience. However, no limit is placed on either the number of events in a sequence or its

overall duration, so it remains possible that events well in the past can have indirect

influence on current events.

We denote the time parameter as τ, a positive number that represents the maximum amount

of time that can elapse between events Es{ℓ−1} and Es{ℓ} for each ℓ. Hence we require that the

ℓth event in the sequence s {·} must occur within the time window [Ts{ℓ−1}, Ts{ℓ−1} + τ]. If

Es{l} does not occur by the end of this window, then the sequence does not occur. Given

events Es{1}, …, Es{ℓ−1} have occurred, there is positive probability that event Es{ℓ} does not

occur, and thus neither does the sequence s {·}. This probability is equivalent to the

probability that the interarrival time is greater than τ,

(4)

Here we introduce Ṡs{ℓ} (τ) as notation for the survival function of the next event. The

censoring at τ complicates the calculation of the survival distribution associated with the

sequence event s {ℓ}. The survival function is right censored at τ, with a nonzero probability

that the event does not occur. We define a new censored survival function S̃s{ℓ} (t) as

(5)

The latter half of the sum in (5) refers to a point mass giving the probability that the event

does not occur. Let λ̇ (t) denote the hazard function associated with Ṡ (t). Then by the

properties of the density function described earlier, the probability density of a sequence

event can be derived as

(6)

To model the noise events defined earlier, assume the ℓth event in the sequence occurs at Ti,

so s {ℓ} = i. The previous event in the sequence, Es{ℓ−1}, occurs at some time Ts{ℓ−1} which is

less than Ti−1 if intervening events are present, but equal to Ti−1 if not. Thus, the time of the

intervening event can be represented as Ti−1 = Ts{ℓ−1} + r where r ≥ 0 is the time between the

previous event in sequence and the noise event. If no noise event is present, then r = 0, but if

a noise event is present, then s {ℓ − 1} < i − 1 and r > 0. The interarrival time for the

sequence can then be represented as Ts{ℓ} − Ts{ℓ−1} = t + r, where t is the time between Ts{ℓ}

and Ti−1 and r is the time between Ts{ℓ−1} and Ti−1. Here we considered the noise event

Heins and Stern Page 6

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

occurring directly before Es{ℓ}, but any number of noise events may occur between events

Es{ℓ−1} and Es{ℓ}.

The hazard function λ̇ (t) remains unchanged, so the new density for event s {ℓ} can be

expressed as

(7)

This defines the density for a single event in a particular sequence process. We now want to

consider multiple sequence processes, in addition to the background processes that were

described earlier.

3.3 Combining Background and Sequence Processes

Our model assumes that background and sequence events occur independently, which allows

us to combine them in a relatively straightforward manner. We assume that all sequence

events are initialized by a background event as their initial event, thus s {1} effectively

belongs to both a background and a sequence process.

As before, assume the current time is Ti and we observe {Ei, ti}. Now the pool of possible

next events is comprised both of all background events as well as events belonging to all live

sequences. We define a live sequence as any process such that s {1} through s {ℓ − 1} has

occurred previously and Ts{ℓ−1} < Ti < Ts{ℓ−1} + τ. Let ℬ = {1, …, J} denote all background

processes, and = {s1, …, sK} denote all K live sequence processes at time Ti, so the next

event must occur from either ℬ or S.

From our independence assumption, and .

Furthermore, from the definition of the sequence process, we have

(8)

where .

Finally, we get the following density, inserting the modification from (7) as needed:

(9)

where Λ̇e (t) = ∑s∈ for which s{ℓ}=e λ̇s (t)

Heins and Stern Page 7

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finally, we can calculate the likelihood of the model by taking the product of the densities

for all time-event pairs: , where Θ denotes the set of all model

parameters.

Though not the focus of our paper, we note that our probabilistic model also has a built in

mechanism for prediction. The equation in (9) provides the density of a given time-event

pair. One could simply calculate the likelihood for each possible event type, and then

normalize to obtain the predictive probability that the next event is a particular event type.

4 Inference

To this point, we have not specified the functional form for the survival and hazard functions

of the renewal processes. Fortunately, our inference approach is general, and can handle a

wide variety of functional forms. To describe our inference approach, we assume each

background and sequence process has its own parameters θ, which includes the maximum

time parameter τ for sequence processes. We denote the entire parameter set as Θ. We take a

Bayesian approach to learning the parameters in our model. For our experiments, we place

independent Cauchy priors on all parameters, truncated to the support of each parameter.

Parameters will be sampled via a Markov Chain Monte Carlo (MCMC) procedure, described

below.

Our model allows for a potentially unlimited number of sequence processes to exist, so we

need to determine which sequences actually exist in the observed data. Including all possible

sequences is impractical; when we consider sequences of increasing maximum length, the

number of possible sequences grows exponentially. Instead, we only include a small subset

of all possible sequences in our model at any given point in the sampler, and use a birth-

death MCMC technique to vary the subset of sequences.

Sequences that are very unlikely to occur will have a hazard rate near zero, and thus a

survival function constantly near one. When λ (t) ≈ 0 and S (t) ≈ 1 for all t, from (9) we see

that the sequence is effectively not included in the model. In this case, we fix the sequence

process parameters θ such that the hazard rate is fixed at zero.

Our complete approach to inference uses the No-U-Turns Sampler (NUTS) for sampling the

parameters, with occasional birth-death steps incorporated for model selection. First, we

describe NUTS, implemented with the Stan software [Hoffman and Gelman, 2012, Stan

Development Team, 2013], and then describe the birth-death steps.

NUTS is a form of Hamiltonian Monte Carlo (HMC), an MCMC algorithm that avoids the

random walk behavior of several other popular MCMC methods. However, standard HMC is

sensitive to user provided parameters: the number of leap frog steps and the step size. NUTS

improves upon the standard HMC implementation by eliminating the need to set both

parameters, though our implementation does still require that we set the step size, as

described below. Furthermore, the Stan implementation uses reverse-mode algorithmic

differentiation to calculate the gradient, eliminating the need for us to calculate it by hand.

Heins and Stern Page 8

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

While NUTS is very effective for sampling from the posterior distribution, it does not

address model selection. To determine which sequence processes belong in the model, we

apply the birth-death process of Stephens for model selection, an alternative to reversible

jump steps [Stephens, 2000]. Stephen’s birth-death MCMC views the parameters of the

model as a point process, which allows the number of components to vary by allowing new

ones to be ’born’ and existing ones to ’die.’ At various times within the overall NUTS chain,

we perform a birth-death step by constructing an easily simulated process that changes the

number of sequences in the model. The births and deaths both occur according to Poisson

processes. Births occur at a constant rate, while deaths occur at a low rate for sequences

critical for explaining the data, and a high rate for sequences that do not help explain the

data.

When a birth-death step occurs, we fix some simulation time W and run through a series of

birth or death steps until the simulated time exceeds W. Birth steps occur according to a

Poisson process with rate δB. Each sequence s currently in the model receives an

independent death process with rate , described in the next paragraph. The overall rate of

death steps is . The time to the next step is exponentially distributed with rate δB

+ δD. Times are generated until they pass time W, with a birth or death step occurring at

each time with probability proportional to the rate for the birth/death.

To ensure that important sequences are retained within the model, the death rate for a given

sequence s will be equal to the birth rate multiplied by the ratio of the time-event likelihoods

with and without sequence s included. Thus sequences that have a profound positive effect

on the likelihood when included, and thus for which the data suggests they belong in the

model, will have very low death rates.

For the birth step, we choose a sequence not currently in the model, and draw parameters

from an appropriate distribution, e.g. the prior distribution for it. To choose the new

sequence, we pool all existing sequences in the model, randomly sample two of them and

combine them to form a new sequence. For these purposes, we include all single events as

sequences in addition to the multi-event sequences in the model. For example, assume the

model has background events A, B, and C, as well as the C→A pattern. We sample, with

replacement, two of those four possible events, and combine them to form the new pattern.

Possible new patterns include A→B, C→A→B, or C→A→C→A, among others.

A death step simply chooses an existing sequence process, and fixes its parameters such that

the hazard function is zero for all possible times t.

The simulated birth-death process proceeds as follows:

Algorithm 1

Birth-Death Process

Fix δB, W ; // Birth Rate, BirthDeath Sim Time

w ← 0;

Heins and Stern Page 9

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

while w < W:

 ; // Sequence Death Rate

 ; // Overall Death Rate

 Sample u ~ unif (0, 1);

 if u < δB δB + δD:

 Birth Step

 else:

 Death Step

 Sample t exp (1 δB + δD); // Next Jump Time

 w ← w + t;

Here Θ − θs denotes the parameter set Θ excluding parameters related to the sequence s. The

birth-death process helps the model selection process traverse the posterior distribution more

efficiently than reversible jump steps, as well as improve sampling efficiency by never

rejecting a proposed change in model.

Finally, we describe how our model selection technique is integrated within the NUTS

algorithm. The birth-death process is run once every m iterations of the sampler, allowing

NUTS to explore the state space for every model. The standard implementation of NUTS

within Stan determines the step size needed for HMC during the warmup phase. To ensure

ergodicity, we estimate the step size for the initial model (typically without sequence

processes included), and then fix the step size at this value when running NUTS.

5 Results

For this paper, all experiments assume sequences have a constant hazard function, and

therefore the interarrival times are exponentially distributed. However, our model can

accommodate more general hazard rates. We have implemented our model to include

renewal processes with Weibull increments, and have plans to consider other alternative

distributions.

5.1 Simulation

We first consider the results for simulated data under three different simulation scenarios.

The first simulation is a simple scenario, with only three possible event types which we label

events 1, 2, and 3. We include only one sequence process, a simple 2-event sequence: 3 →
1. We fix the background exponential process parameters λ1 = 0.16, λ2 = 0.57, and λ3 =

0.40, the sequence exponential process parameter λ3→1 = 0.25 and the corresponding time

window parameter as τ3→1 = 1.12. Using these parameters, we sample M = 100 data sets of

length n = 500 events, and fit the model to each data set.

Heins and Stern Page 10

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our other two simulations consider data which are more consistent with possible

applications. Both simulations are comprised of 20 different possible event types. The first

has three 2-event sequences, representing an actor with very few repeated patterns. The

second simulates data with both more patterns (six) and more complex patterns (up to 4-

events in one pattern). Again, we sample M = 100 data sets of length n = 500 events for both

of the more complex scenarios.

For each simulated data set in each scenario, we run our inference procedure treating all

parameters as unknown. We calculate a 95% posterior credible interval for each parameter.

Table 1 shows the coverage probabilities for the posterior intervals for the parameters in the

first scenario. All are 0.95 or higher. For the second and third scenarios, there are

considerably more parameters; all have coverage probabilities above 0.90.

We also record which sequences were included by the model selection process for each data

set in each scenario. We record the proportion of trials in which the correct sequence was

identified (power), the number of null sequences incorrectly identified as being present

(false positives), and the proportion of declared sequences that are true sequences

(precision). Our Renewal Process Model’s results for the first scenario are in the final

column of Table 2.

We also ran Theme with its default settings on each of the simulated data sets for the first

scenario, and recorded the same summaries. As described earlier, assessing significance in

Theme is not always straightforward, and not all patterns are assumed real. After the patterns

are identified, a permutation procedure can be used, which compares the results with the

results using randomized data. However, it does not indicate which patterns are most

important. Here we just summarize the patterns identified recognizing that practiced Theme

users would not consider all of these as real. These results are also included in Table 2.

Theme identified the correct sequence about as often as our model, though it often identified

several other sequences that do not actually exist.

For the second simulation scenario, all 3 patterns were found in 91% of the simulations

using the RPM, with an average of 0.87 false positive patterns per simulation. In the final

scenario, all 6 patterns were found in 87% of all simulations with an average of 1.6 false

positives per simulation. Thus our method performs similarly well for more complex data.

Furthermore, these simulations were designed to be consistent with our application (see

below), and it does not appear that the complexity of the model, including the larger

parameter space, has any negative effects on our model. For applications where more

complexity is expected (more event types, more patterns, longer patterns), further simulation

studies would be recommended.

5.2 Mother-Child Data

Previous experimental research has identified fragmented and unpredictable maternal

behavior in rodents as a risk factor for outcomes that are analogous to emotional and

cognitive disorders in humans [Baram et al., 2012]. However, how to best characterize

fragmented and unpredictable behavior in humans in clinically meaningful ways remains an

Heins and Stern Page 11

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

open research question. One proposed method evaluates maternal behaviors and defines

fragmented and unpredictable behavior using the number and length of recurring sequences.

We define consistent behavior as long repeated sequences of actions, whereas fragmented

behavior has few, if any, long repeated sequences. Unpredictable behavior refers to the

inability to determine the mother’s next action after considering the previous actions

performed by her and the child. For the purposes of this paper, the degree to which a

mother’s behavior is deemed fragmented or unpredictable will be determined via the length

of the longest repeated sequence and the number of different sequences identified. Note that

the definition of fragmented and unpredictable behavior does not consider whether the

actions are positive or negative, but rather only considers the structure of the behavior.

As part of a longitudinal study to examine the impact of early interactions between a mother

and her child on the child’s development through adolescence, our collaborators have

recorded several instances of mothers playing with their children in the research lab. The

data consists of short videos, about 10 minutes long, which have been annotated by the

researchers to include the type of each event and the time when it occurs. Event types

include both changes in the mother’s expression or emotional state (smiling, content, bored)

as well as physical interactions (hug, play with toy, pick up child, speak). The number of

events in any particular session ranges from about 100 to 400 events, with about 20 unique

event types per session. An example of a mother-child session can be seen in Figure 1,

where time is on the horizontal axis, and events (with numerically assigned labels) are on the

vertical axis.

We ran both our model and Theme for five different mothers. Each mother has one 10

minute session, and we consider both models independently across the five mothers. Results

are summarized in Table 3. As before, Theme detects considerably more patterns than our

model, as well as longer sequences.

While our model detects considerably fewer sequences, the sequences that are detected are

largely quite sensible. Examples of detected patterns, with the mothers demonstrating each

pattern in parentheses, include:

• New Toy → Manipulating Toy (1, 2, 3, 4, 5)

• Smiling → Laughing (1, 2, 3)

• Carrying Child → Setting Child Down (5)

• Speaking → Child in Lap → Hug/Kiss (2)

• Sing → Smile → Silent (5)

The first two patterns are shared across several mothers, and it does seem likely that certain

patterns will be common across different mothers. We return to this point below.

6 Conclusion

In this paper, we proposed a generative model, the Renewal Process Model, and an inference

procedure for identifying recurring patterns from a stream of events in continuous time. Our

Heins and Stern Page 12

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

experiments show that our model correctly identifies patterns in simulated data, performs

admirably with increasing complexity, and finds considerably fewer false positives than the

current state of the art algorithm. Furthermore our model identifies both interesting and

intuitive patterns in real data. The Renewal Process Model appears to provide several

advantages, including a rigorous probability structure that is easily generalized and a marked

improvement on the number of false positives that are generated.

Behavior data, such as the maternal care behavior we examined, can be expensive to collect,

and time consuming to annotate. This means that we have relatively little data per individual,

which can make it difficult to identify patterns. As noted above, it is reasonable to expect

similar patterns across the population of mothers. This suggests a hierarchical model in

which each actor has her own model parameters, but the parameters are assumed to come

from a common population distribution. Such a hierarchical model would improve our

inference by borrowing strength across actors, which can help us to identify sequences that

may not be significant in just one observation period. This is an area of current research.

Furthermore, our model can easily be adapted to incorporate different probability

distributions for the interarrival times. In our experiments, we only consider sequence

processes with constant hazards, but including more complicated hazard or survival

functions would allow for more complex modeling. In particular, we are working to expand

the model to include several families of distributions, as well as to develop a version that can

accommodate nonparametric interarrival time distributions.

Acknowledgments

This work was supported by NIH grant MH096889.

References

Baram TZ, Davis E, Obenaus A, Sandman C, Small S, Solodkin A, Stern H. Fragmentation and
unpredictability of early-life experience in mental disorders. Am J Psychiatry. 2012; 169(9):907–
915. [PubMed: 22885631]

Eibl-Eibesfeldt, I. Ethology: The Biology of Behavior. Holt, Rinehart and Winston: 1970.

Hoffman MD, Gelman A. The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian
Monte Carlo. Journal of Machine Learning Research. 2012

Kellis M, Patterson N, Birren B, Berger B, Lander ES. Methods in comparative genomics: genome
correspondence, gene identification and regulatory motif discovery. Journal of Computational
Biology. 2004; 11(2–3):319–55. [PubMed: 15285895]

Liu JS, Neuwald AF, Lawrence CE. Bayesian models for multiple local sequence alignment and gibbs
sampling strategies. Journal of the American Statistical Association. 1995; 90(432):1156–1170.

Magnusson MS. Discovering hidden time patterns in behavior: T-patterns and their detection. Behavior
Research Methods, Instruments, and Computers: a Journal of the Psychonomic Society, Inc. 2000;
32(1):93–110.

Stan Development Team. Stan: A c++ library for probability and sampling, version 1.3. 2013 URL
http://mc-stan.org/.

Stephens M. Bayesian analysis of mixture models with an unknown number of components- an
alternative to reversible jump methods. The Annals of Statistics. 2000; 28(1):40–74.

Welch TA. A technique for high-performance data compression. Computer. 1984; 17(6):8, 19.

Ziv J, Lempel A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf.
Theor. 1978; 24(5):530–536.

Heins and Stern Page 13

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mc-stan.org/

Figure 1.
Graphs of behavior data. The 15 events types, represented as integers, are on the vertical

axis. Horizontal axis gives time in seconds. Each dot represents a recorded event. Top and

bottom panels are the same, with patterns identified in the lower plot.

Heins and Stern Page 14

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heins and Stern Page 15

Table 1

Coverage probability estimates for each parameter for M = 100 simulated data sets

λ1 λ2 λ3 λ3→1 τ3→1

0.97 0.95 0.97 0.97 0.95

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heins and Stern Page 16

Table 2

Number of sequences for M = 100 simulated data sets

Theme Renewal
Process Model

of Correct
Sequences

94/100 99/100

of False Positives 384 57

of False Negatives 6 1

Power/Recall 0.94 0.99

Precision 0.20 0.64

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heins and Stern Page 17

Ta
b

le
 3

N
um

be
r

of
 P

at
te

rn
s

an
d

L
on

ge
st

 P
at

te
rn

 in
 M

at
er

na
l B

eh
av

io
r

D
at

a
fo

r
T

he
m

e
an

d
th

e
R

en
ew

al
 P

ro
ce

ss
 M

od
el

 (
R

PM
)

M
ot

he
r

O
ne

T
w

o
T

hr
ee

F
ou

r
F

iv
e

Se
q.

 L
en

gt
h

31
3

16
0

21
3

27
3

21
0

N
um

be
r

of
 P

at
te

rn
s

Id
en

tif
ie

d

T
he

m
e

39
27

73
80

64

R
PM

5
3

4
3

4

L
on

ge
st

 P
at

te
rn

 I
de

nt
if

ie
d

T
he

m
e

9
6

10
11

9

R
PM

2
3

2
2

3

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 April 20.

	Abstract
	1 Introduction
	2 Background
	3 Data Generating Process
	3.1 Background Processes
	3.2 Sequence Processes
	3.3 Combining Background and Sequence Processes

	4 Inference
	Algorithm 1
	5 Results
	5.1 Simulation
	5.2 Mother-Child Data

	6 Conclusion
	References
	Figure 1
	Table 1
	Table 2
	Table 3

