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Abstract

Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-

making models that assume a stochastic accumulation of evidence on each trial. Fitting response 

time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-

decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the 

effect of attention on visual decision making. In this study, we show that measures of attention 

obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and 

perceptual preprocessing times during a visual decision making task. Models assuming linear 

relationships between diffusion model parameters and EEG measures as external inputs were fit in 

a single step in a hierarchical Bayesian framework. The EEG measures were features of the 

evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal 

stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the 

onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. 

Within-trial evidence accumulation variance was not found to be influenced by attention to the 

signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of 

accuracy and correct reaction time distributions for individual subjects.

*Corresponding author, mdnunez1@uci.edu (Michael D. Nunez). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Data and code sharing
Pre-calculated EEG measures, raw behavioral data, MATLAB stimulus code, JAGS code, and an example single-trial EEG R script are 
available upon request and in the following repository (as of February 2016) if their use is properly cited.
https://github.com/mdnunez/mcntoolbox/

Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

HHS Public Access
Author manuscript
J Math Psychol. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:
J Math Psychol. 2017 February ; 76(Pt B): 117–130. doi:10.1016/j.jmp.2016.03.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://github.com/mdnunez/mcntoolbox/


Keywords

Visual attention; Perceptual decision making; Diffusion Models; Neurocognitive modeling; 
Electroencephalography (EEG); Hierarchical Bayesian modeling

1. Introduction

There are many situations on the road when the driver of a vehicle must decide to stop or 

accelerate through an intersection by observing a traffic light. The presence of a green arrow 

for an adjacent lane (i.e. the distractor or “noise”) can be distracting for the driver whose 

light is red (i.e. the “signal”). The presence of the distractor affects the reaction time and 

choice of the driver. However the driver can suppress their attention to the green arrow 

and/or attend to the correct red light in their lane. The decision to stop or accelerate is an 

example of a perceptual decision. Perceptual decision making is the process of making quick 

decisions based on objects’ features observed with the senses. As shown in the stoplight 

example, attention is highly influential in the perceptual decision making process. When 

distracting objects exist in visual space, one must attend only to the relevant objects and 

actively ignore distracting objects. Each time an individual reaches a stop light, they will be 

more likely to make a safer decision if they suppress distracting visual input and enhance 

relevant visual input.

The goal of this study was to evaluate whether attention could predict different components 

of the decision making process on each trial of a visual discrimination experiment. We make 

use of high-density electroencephalographic (EEG) recordings from the human scalp to find 

single-trial evoked potentials (EPs) to the onset of visual signal and to the onset of a 

distractor (mask) to measure the deployment of attention to task-relevant features. We found 

that on each trial, modulations of the evoked potentials by attention were predictive of 

specific components of a drift-diffusion model of the decision making process.

1.1. Visual attention and decision making

Attention is beneficial for decision making because relevant features of the environment can 

be preferentially processed to enhance the quality of evidence. During visual tasks 

individuals may deploy different attention strategies such as: enhancing the signal, 

suppressing external noise (distractors), or suppressing internal noise (Lu and Dosher, 1998; 

Dosher and Lu, 2000). These strategies are thought to change based on the signal to noise 

ratio of the stimulus, such that individuals will enhance sensory gain to both signal and noise 

during periods of low noise and sharpen attention to only signal during periods of high noise 

(Lu and Dosher, 1998), although specific strategies have been shown to differ across subjects 

(Bridwell et al., 2013; Krishnan et al., 2013; Nunez et al., 2015). Multiple groups have 

proposed models of visual attention and decision making that yield diverse reaction time and 

choice distributions dependent upon attentional load (Spieler et al., 2000; Smith and Ratcliff, 

2009). Attention can be deployed to the features and/or location of a stimulus, and attention 

can benefit decision making when the subject is cued to the location or features of the 

stimulus (Eriksen and Hoffman, 1972; Shaw and Shaw, 1977; Davis and Graham, 1981).
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Event-related potentials (ERPs) are trial-averaged EEG responses to external stimuli. Visual 

ERPs (also labeled Visual Evoked Potentials; VEPs) have been shown to track visual 

attention to the onset of stimuli (Harter and Aine, 1984; Luck et al., 2000). That is, 

amplitudes of the peaks of the ERP waveform (i.e., ERP “components”) within certain 

millisecond-scale time windows are shown to be larger when subjects encounter task-

relevant stimuli in the expected location in visual space. Two components of particular 

interest are the N1 (or N200) and P2 (or P200) components. The terms N1 and P2 refer the 

order of negative and positive peaks in the time series respectively, and the more general 

alternative names N200 and P200 refer to their approximate latencies in milliseconds. 

Changes in N200 latencies have been shown to correlate with attentional load (Callaway and 

Halliday, 1982), and N200 measures have even been used in Brain-Computer Interfaces 

(BCI) that make use of subjects’ attention to specific changing stimuli, such as letters in a 

BCI speller (Hong et al., 2009). Findings in these trial-averaged EEG (ERP) studies suggest 

that information is also available in single-trials of EEG that can be used to evaluate the 

relationship between attention and decision making. In this paper we will use the alternative 

names P200 and N200 because 1) the exact time windows of components vary across 

studies, 2) components in this study were both localized to around 200 milliseconds, and 3) 

components in this study were found on single-trials as opposed to in the trial-average.

1.2. Behavioral models of decision making

Drift-diffusion models are a widely-used class of models used to jointly predict subjects’ 

choices and reaction times (RT) during two-choice decision making (Stone, 1960; Ratcliff, 

1978; Ratcliff and McKoon, 2008). “Neural” drift-diffusion models have also successfully 

incorporated functional magnetic resonance imaging (fMRI) and EEG recordings into 

hierarchical models of choice-RT (e.g. Mulder et al., 2014; Turner et al., 2015; Nunez et al., 

2015). In this study, we use a hierarchical form of the diffusion model (Vandekerckhove et 

al., 2011), allowing variability between participants and across conditions, to predict and 

describe single-trial reaction times and accuracy during a visual decision making task. While 

other similar models of choice-RT have successfully predicted behavior during visual 

decision making, such as the simpler linear ballistic accumulator model (Brown and 

Heathcote, 2008) or a more complicated drift-diffusion model that intrinsically accounts for 

trial-to-trial variability in parameters within subjects (Ratcliff, 1978; Ratcliff and McKoon, 

2008), we have chosen a diffusion model that allows us to test specific predictions from 

models of attention (i.e. Smith and Ratcliff, 2009; Lu and Dosher, 1998) while being simple-

enough to fit in reasonable time periods given the hierarchical form.

In the drift-diffusion model it is assumed that subjects accumulate evidence for one choice 

over another (or a correct versus incorrect response, as in this study) in a random walk 

evidence accumulation process with an infinitesimal time step. That is, evidence Et 

accumulates following a Wiener process (i.e. Brownian motion) with drift rate δ and 

instantaneous variance ς2 (Ross, 2014) such that

(1)
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Thus the drift rate δ describes mean rate of evidence accumulation within a trial and the 

diffusion coefficient ς influences the variance of evidence accumulation within one trial, 

with the true variance of the current evidence at any particular time t being ς2t. A graphical 

representation of the diffusion model is provided in the middle panel of Figure 1.

A few other parameters describe a diffusion model. The boundary separation α is equal to 

the amount of relative evidence required to make choice A over choice B (or make a correct 

decision over an incorrect decision), and the boundary separation has been shown to be 

manipulated by speed vs. accuracy strategy trade-offs (Voss et al., 2004). The parameter that 

encodes the starting position of evidence β reflects the bias towards one choice or another 

(equal to .5 when modeling correct versus incorrect choices as in this study). The non-

decision time τ is equal to the amount of time within the reaction time of each trial that is 

not dedicated to the decision making process. Typically non-decision time is assumed to be 

equal to the sum of preprocessing time before the evidence accumulation process and motor 

response time after a decision has been reached. The relative contribution of these two non-

decision times is not identifiable from behavior alone and therefore is rarely explicitly 

modeled.

All three of the parameters related to evidence accumulation are not identifiable with 

behavioral data alone (i.e. drift rate δ, the diffusion coefficient ς, and the boundary 

separation a). Only two of the three parameters can be assumed to vary across subjects and 

trials (e.g. multiplying ς by two and dividing both a and δ by two would result in the same 

fit of choice-RT) (Ratcliff and McKoon, 2008; Wabersich and Vandekerckhove, 2014). 

Previous studies have typically chosen to fix the diffusion coefficient ς to 1 or 0.1 

(Vandekerckhove et al., 2011; Wabersich and Vandekerckhove, 2014). However due to the 

predictions made by Dosher and Lu (2000), in that internal noise is suppressed by attention 

to the signal, we choose to leave ς to vary. The boundary separation α was fixed at 1 for all 

trials and subjects. Our primary analysis focused on the trial-to-trial variability in the 

evidence accumulation process due to fluctuations in attention from trial-to-trial within 

individuals. Although trial-to-trial speed-accuracy trade-offs can be experimentally 

introduced to find neural correlates of the boundary separation (e.g. van Maanen et al., 2011) 

or may exist due to per-trial performance feedback (Dutilh et al., 2012), we have no reason 

to believe that the boundary separation will vary considerably from trial-to-trial within a 

subject due to changes in attention. Moreover, all subjects were given the same accuracy 

instruction to maintain similar accuracy vs. speed trade-offs across subjects.

1.3. Single-trial EEG measures of attention

EEG correlates of attention and decision making have been found using classification 

methods. One group has shown that the amplitude of certain EEG components in the time 

domain track type and duration of two-alternative forced choice responses and then showed 

that these components’ amplitudes tracked evidence accumulation rate (Philiastides and 

Sajda, 2006; Ratcliff et al., 2009). However the EEG components in these studies were 

found by finding the maximum predictors of the behavioral data and thus had no a priori 

interpretation. Another group has found that that single-trial amplitude in a few frequency 

bands, especially the 4-9 Hz theta band, predicts evidence accumulation rates (van Vugt et 
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al., 2012). However these oscillations were found using canonical correlation analysis 

(CCA; Calhoun et al., 2001), a data driven algorithm that found any EEG channel mixtures 

that contained correlations with the drift diffusion model parameters. While the results were 

confirmed using cross validation, the set of EEG identified by this method also did not have 

an a priori explanation. These studies point us in directions of exploration and perform well 

at prediction, but we have little information as to whether the EEG information reflected 

attention, the decision process itself, or some other correlate of evidence accumulation. In 

this study, we introduce a simple procedure that is informed by ERPs known to be related to 

attention, and we make use of single-trial ERP estimates to model behavior on single trials.

1.4. Hypothesized attention effects

An integrated model of visual attention, visual short term memory, and perceptual decision 

making by Smith and Ratcliff (2009) predicts that attention operates on the encoding of the 

stimulus, and that enhanced encoding increases drift rate during the decision making 

process. Furthermore, the model predicts that visual encoding time (i.e. visual 

preprocessing) will be reduced by attention which is reflected in the non-decision time 

parameter. However, this model of visual attention only considers the detection of a stimulus 

in an otherwise blank field—that is, a field with no visual noise. Thus, it does not have 

predictions for the distinct processes of noise suppression and signal enhancement, as in the 

Perceptual Template Model (Lu and Dosher, 1998). Signal enhancement during the evidence 

accumulation process is predicted to reduce the diffusion coefficient ς because the 

mechanism by which signal enhancement takes place, according to the Perceptual Template 

Model, is additive internal noise reduction1 (Dosher and Lu, 2000); this mechanism is 

predicted to be most effective in low noise conditions since decreasing internal noise will 

lead to better processing of both the visual signal and external visual noise. External noise 

suppression, on the other hand, is expected to reflect the encoding of the stimulus by 

manipulation of a perceptual template, increasing the average rate of evidence accumulation 

δ by improving the overall quality of evidence on a trial. The Perceptual Template Model 

predicts this mechanism is most effective in high noise conditions.

In a previous study we showed that individual differences in noise suppression predicts 

individual differences in evidence accumulation rates and non-decision times (Nunez et al., 

2015). We also showed that differences across individuals in signal enhancement predict 

individual differences in non-decision times and evidence accumulation variance (i.e. the 

diffusion coefficient), which we assume tracks internal noise in the subject. The findings of 

signal enhancement effects on evidence accumulation variance and noise suppression effects 

on evidence accumulation rate seem to correspond closely to predictions made by the 

Perceptual Template Model. However the Perceptual Template Model does not make explicit 

predictions about attention effects on non-decision times. The previous study did not explore 

how trial-to-trial variation in attention affected trial-to-trial cognitive differences. Individual 

differences in attention could be found that are not detected to be changing within a subject, 

and/or trial-to-trial variability in attention could occur that does not change across 

1“In stimulus enhancement, attention increases the gain on the stimulus, which is formally equivalent to reducing internal additive 
noise. This can improve performance only in low external noise stimuli, since external noise is the limiting factor in high external 
noise stimuli.” (Dosher and Lu, 2000, p. 1272)
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individuals. In this study, we show that within-subject, trial-to-trial variability in attention to 

both noise and signal predict variability in drift rate and non-decision times, corresponding 

closely to predictions made by the model of Smith and Ratcliff (2009) that predicts speeded 

encoding time and increased evidence accumulation rate due to enhanced attention. The two 

studies together suggest that within-trial evidence accumulation variances ς varied across 

individuals, but we did not find evidence that this measure varied within individuals due to 

changes in trial-to-trial attention.

2. Methods

2.1. Experimental stimulus: Bar field orientation task

Reported in a previous study, behavioral and EEG data were collected from a simple two-

alternative forced choice task to test individual differences in attention during visual decision 

making (Nunez et al., 2015). Here, we reanalyze these data to explore per-trial attention 

effects on the decision making process. Subjects were instructed on each trial to differentiate 

the mean rotation of a field of small bars that were either oriented at 45 deg or 135 deg from 

horizontal on average. Two representative frames of the display and the time course of a trial 

are provided in Figure 2. The circular field of small bars was embedded in a square field of 

visual noise that was changing at 8 Hz. The bar field was flickering at 15 Hz. These 

frequencies were chosen to evoke steady-state visual evoked potentials (SSVEPs), stimulus 

frequency-tagged EEG responses that were useful in the previous study but will not be used 

in this study. Stimuli were built and displayed using the MATLAB Psychophysics toolbox 

(Psychtoolbox-2; www.psychtoolbox.org).

Subjects viewed each trial of the experimental stimulus on a monitor in a dark room. 

Subjects sat 57 cm away from the monitor. The entire circular field of small oriented bars 

was 9.5 cm in diameter, corresponding to a visual angle of 9.5°. Within each trial subjects 

first observed a black cross for 750 ms in the center of the screen, on which they were 

instructed to maintain fixation throughout the trial. Subjects then observed visual noise for 

750 ms. This time period of the stimulus will henceforth be referred to as cue interval, with 

the onset EEG response at the beginning of this interval being the response to the noise (or 

“distractor”) stimulus. Subjects then observed the circular field of small oriented bars 

overlaid on the square field of visual noise for 1000 to 2000 ms and responded during this 

interval. Subjects were instructed to respond as accurately as possible while providing a 

response during every trial. Because evidence required to make a decision only appeared 

during this time frame, the decision process was assumed to take place during this interval. 

This interval is referred to as the response interval, and attentional onset EEG measures 

during this time period are referred to as responses to the signal stimulus. After the response 

interval the fixation cross was again shown for 250 ms to alert the subjects that the trial was 

over and to collect any delayed responses.

Three levels of variance of bar rotation and three levels of noise luminance were used to 

modulate the task difficulty. However only the noise luminance manipulation is relevant for 

the analysis presented here. Average luminance of the noise was 50% and the luminance of 

the bars was 15%. In the low noise condition, that luminance was drawn randomly at each 

pixel from a uniform distribution of 35% to 65% luminance. In the medium and high noise 
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conditions, noise luminance was drawn randomly at each pixel from a uniform distribution 

of 27.5% to 72.5% and 20% to 80% luminance respectively. Each subject experienced 180 

trials from each noise condition, interleaved, for a total of 540 trials split evenly over 6 

blocks. The total duration of the visual experiment for each subject was approximately one 

hour and 15 minutes including elective breaks between blocks. More details of the 

experiment can be found in our previous publication (Nunez et al., 2015).

Behavioral and EEG data were collected concurrently from 17 subjects. Subjects performed 

accurately during the task. The across-subject mean, standard deviation, and median of 

accuracy were 90.1% ± 5.8% ỹ = 91.6%, while the across-subject mean, standard deviation, 

and median of average reaction time were 678±106 , t̃ = 670 ms. Individual differences in 

behavior existed across subjects with the most accurate subject answering 98.3% of trials 

correctly and the least accurate subject answering 78.5% of trials correctly. Two different 

subjects were the fastest and slowest with mean RTs of 502 ms and 866 ms respectively.

2.2. Single-trial EEG predictors

Electroencephalograms (EEG) were recorded using Electrical Geodesics, Inc.'s high density 

128-channel Geodesic Sensor Net and Advanced Neuro Technology's amplifier. Electrical 

activity from the scalp was recorded at a sampling rate of 1024 samples per second with an 

online average reference using Advanced Neuro Technology software. The EEG data was 

then imported into MATLAB for offline analysis. Linear trends were removed from the EEG 

data, and the data were band pass filtered to a 1 to 50 Hz window using a high pass 

Butterworth filter (1 Hz pass band with a 1 dB ripple and a 0.25 Hz stop band with 10 dB 

attenuation) and a low pass Butterworth filter (50 Hz pass band with 1 dB ripple and a 60 Hz 

stop band with 10 dB attenuation).

EEG artifact is broadly defined as data collected within EEG recordings that does not 

originate from the brain. Electrical artifact can be biological (e.g. from the muscles-EMG or 

from the arteries-EKG) or non-biological (e.g. temporary electrode dislocations, DC shifts, 

or 60 Hz line noise). Contribution of muscle and electrical artifact was reduced in recordings 

by using an extended Infomax Independent Component Analysis algorithm (ICA; Makeig et 

al., 1996; Lee et al., 1999). ICA algorithms are used to find linear mixtures of EEG data that 

relate to specific artifact. Components that are indicative of artifact typically have high 

spatial frequency scalp topographies, high temporal frequency or a 1/f frequency falloff, and 

are present either in only a few trials or intermittently throughout the recording. These 

properties are not shared by electrical signals from the brain as recorded on the scalp (Nunez 

and Srinivasan, 2006). Using these metrics, components manually deemed to reflect artifact 

were projected into EEG space and subtracted from the raw data. Components deemed to be 

a mixture of artifact and brain activity were kept. More information about using ICA to 

reduce the contribution of artifact can be found in Jung et al. (2000).

Event-related potential (ERP) components have been shown to index attention (Callaway 

and Halliday, 1982; Harter and Aine, 1984; Luck et al., 2000), in particular the P200 and 

N200 latencies and amplitudes, and these values were used as independent measures of 

attention in the following analyses. Event-related potentials (ERPs) are EEG responses that 

are time-locked to a stimulus onset and are typically estimated by aligning and averaging 
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EEG responses across trials. They usually cannot be directly measured on each trial from 

single electrodes. Raw EEG signals could be used as a single-trial measures but typically 

have very low signal-to-noise ratios (SNR) for task-specific brain responses. Since the goal 

of this analysis was to explore single-trial effects of attention on visual decision making, a 

single-trial estimate of the ERP was developed.

Because the signal-to-noise ratio (SNR) in ongoing EEG increases when adjacent electrodes 

of relevant activity are summed (Parra et al., 2005), we anticipated that the SNR of the 

response to the visual stimulus would be boosted on individual trials by summing over the 

mixture of channels that best described the average visual response. Traditional ERPs at 

each channel (represented by a matrix of size T × C where T is the length of a trial in 

milliseconds and C is the number of EEG channels) were calculated separately for each 

subject. One ERP was calculated for the response to the visual signal and another was found 

for the response to the visual noise by averaging a random set of two-thirds of the trials 

across all conditions for each subject in each window. This random set of trials was the same 

set used as the training set for cross validation, to be discussed later. The test sets of trials 

were not used to calculate the traditional ERPs.

Singular value decomposition (SVD; analogous to principal component analysis) of the trial 
averages were then used to find linear mixtures of channels that explained the largest amount 

of the variance in the ERP data (i.e. the first right-singular vectors v, explaining a percentage 

of variance from 39.4% to 91.9% and 45.0% to 93.2% across subjects in the cue and 

response intervals respectively). The first right-singular vectors were then used as weights to 

mix the raw EEG data into a brain response biased toward the maximum response to the 

visual stimuli, yielding one time course of the EEG per trial for both the cue and response 

intervals. A visual representation of the simple procedure for a single trial is provided in 

Figure 3. The raw data matrix E of dimension N × C was multiplied by the first right 

singular vector v (a C × 1 vector of channel weights) to obtain a N × 1 vector Ev = e, which 

could then be split up into epochs of length T × 1 representing the response to the stimulus 

on each trial. Note that the voltage amplitudes of the ERP measures calculated based on this 

method will differ from traditional single electrode ERP amplitudes since the single-trial 

estimates are a weighted sum of potentials over all electrodes.

Not only did this method boost the SNR of the EEG measures, but this method also reduced 

EEG measures of size T × C on each trial to one latent variable that varies in time of size T 
× 1. Thus the correlation of the EEG as inputs to the model was drastically reduced and the 

interpretability of model parameters was increased compared to analyses with highly 

correlated model inputs. The weight vector v for each subject in both the cue and response 

intervals also yields a scalp map when the values of the weights are interpolated between 

electrodes. Channel weights calculated using SVD on subject's ERPs to the noise onset 

(during the cue interval) are shown in topographic plots for each subject in Figure 7. 

Channel weights calculated using SVD on subject's ERPs to the signal onset (during the 

response interval) are shown in topographic plots for each subject in Figure 6. While raw 

EEG on single trials from single electrodes may have large enough SNRs to be informative 

for our analysis, we would not obtain an idea of the locus of activation or the pattern of 

activation over the scalp.
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We focused our analysis on the windows 150 to 275 ms post stimulus-onset in the cue and 

response intervals. These windows were found to contain P200 and N200 ERP components. 

On each trial, we measured the peak positive and negative amplitudes, and the latency at 

which these peaks were observed. We used these 8 single-trial measures to predict single-

trial diffusion model parameters. However in this paper we will focus only on the results of 

models with 4 single-trial measures: the amplitude and latency of the peak positive 

deflection (P200) during the cue interval and the amplitude and latency of the peak negative 

deflection (N200) during the response interval, because very weak evidence, if any, was 

found for the effects of the other attention measures on diffusion model parameters in 

models with all 8 single-trial measures. It should be noted that single-trial measures of EEG 

spectral responses at SSVEP frequencies (see Nunez et al., 2015) were briefly explored but 

future methods must be developed to increase signal-to-noise ratios of SSVEP measures on 

single-trials.

2.3. Hierarchical Bayesian models

Hierarchical models of visual decision making were assumed and placed into a Bayesian 

framework. Bayesian methods yield a number of benefits compared to other inferential 

techniques such as traditional maximum likelihood methods. Rather than point estimates of 

parameters, Bayesian methods provide entire distributions of the unknown parameters. 

Bayesian methods also allow us to perform the model fitting procedure in a single step, 

maintaining all uncertainty about each parameter through each hierarchical level of the 

model.

One downside of Bayesian methods is that creating sampling algorithms to find posterior 

distributions of Bayesian hierarchical models can be time consuming and cumbersome. 

However Just Another Gibbs Sampler (JAGS; Plummer et al., 2003) is a program that uses 

multiple sampling techniques to find estimates of hierarchical models, only requiring the 

form of the model, data, and initial values as input from the user. In order to find posterior 

distributions, we have used JAGS with an extension that adds a diffusion model distribution 

(without intrinsic trial-to-trial variability) as one of the distributions to be sampled from 

(Wabersich and Vandekerckhove, 2014). Similar software packages to fit hierarchical 

diffusion models have been developed independently in other programming languages such 

as Python (Wiecki et al., 2013).

In order to evaluate the benefit to prediction of adding EEG measures to hierarchical 

diffusion models, three different models were compared. Model 3 assumed that evidence 

accumulation rates, evidence accumulation variances, and non-decision times were each 

equal to a linear combination of EEG measures on each trial. Because we found no effect of 

the observed single-trial EEG measures on single-trial evidence accumulation variances, we 

also fit Model 2, where single-trial evidence accumulation rates and non-decision times were 

influence by EEG, but single-trial evidence variances were not. Model 1 did not assume any 

EEG contribution to any parameters. This model assumed that parameters not varying with 

EEG would change based on subject and condition, drawn from a condition level 

distribution. Graphical representations of the hierarchical Bayesian models are provided in 

Figure 4 following the convention of Lee and Wagenmakers (2014).
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For Model 1 (Figure 4a), prior distributions were kept mostly uninformative (i.e. parameters 

of interest had prior distributions with large variances) so that the analyses would be data-

driven. The prior distributions of parameters for each subject j and condition k free from 

EEG influence had the following prior and hyperprior structure

Where the normal distributions  are parameterized with mean and variance respectively 

and the gamma distributions Γ are parameterized with shape and scale parameters 

respectively.

In Models 2 (Figure 4b) and 3 (Figure 4c), to ensure noninterference by the prior 

distributions, uninformative priors were given for both the effects γjk of EEG on the 

parameters of interest and the linear intercepts ηjk. Note that the effect of EEG γjk is a 

vector with one element per EEG regressor and each effect of EEG is assumed to be 

statistically independent from the others. If a drift-diffusion model parameter was assumed 

to be equal to a linear combination of EEG inputs then the following two lines replaced the 

priors of the respective parameter above.

In Models 2 and 3, the parameter on each trial was assumed to be equal to a simple linear 

combination of the vector of single-trial EEG inputs xijk on that trial i with ηjk and γjk as the 

intercept and slopes respectively:

Where the first two equations refer to the structure of Model 2 and all three equations refer 

to the structure of Model 3. Note that the p ∗ 1 vector of effects γjk of EEG on each 

parameter could include the intercept term ηjk to create a (p + 1) ∗ 1 vector of effects 

(and the EEG vector xijk would include a value of 1 to be multiplied by the intercept term). 

We use this notation in Figure 4 for simplicity.

Because not all trials are believed to actually contain a decision-making process (i.e. the 

subject quickly presses a random button during a certain percentage of trials reflecting a 

“fast guess”), reaction times below a certain threshold were removed from analysis and 

cross-validation. Cutoff reaction times were found for each subject by using an exponential 

moving average of accuracy after sorting by reaction time (Vandekerckhove and Tuerlinckx, 
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2007). The rejected reaction times were all below 511 ms with a mean cutoff of 410 ms 

across subjects. This resulted in an average rejection rate of 1.4% of trials across subjects 

with a maximum of 6.3% of trials rejected for one subject and a minimum of 0.7% of trials 

rejected for 11 of the 17 subjects.

Each model was fit using JAGS with six Markov Chain Monte Carlo (MCMC) chains run in 

parallel (Tange, 2011) of 52,000 samples each with 2,000 burn-in samples and a thinning 

parameter of 10 resulting in 5,000 posterior samples in each chain. The posterior samples 

from each chain were combined to form one posterior sample of 30,000 samples for each 

parameter. All three models converged as judged by R̂ being less than 1.02 for all parameters 

in each model. R̂ is a statistic used to assess convergence of MCMC algorithms (Gelman and 

Rubin, 1992).

Posterior distributions were found for each free parameter in the three models. Credible 

intervals of the found posterior distributions were then calculated to summarize the findings 

of each model. EEG regressor effects were deemed to have weak evidence if the 95% 

credible interval between the 2.5th and 97.5th percentiles of the subject mean parameter μ(γ)j 

was non-overlapping zero. effects were deemed to have strong evidence if the 99% credible 

interval between the 0.5th and 99.5th percentiles was non-overlapping zero.

2.4. Cross-validation

All trials from all subjects were used during initial exploration of the data. However once it 

was decided that the signal onset response was a candidate predictor of drift rate, cross-

validation was performed using a training and test set of trials. Out-of-sample performance 

for both known and unknown subjects were found by randomly assigning two-thirds of the 

trials from each subject in a random sample of subjects (i.e. 13 of 17 subjects were chosen at 

random) as the training set and one-third of the trials from the 13/17 subjects and all trials 

from the remaining 4/17 subjects as the test set. After fitting the model with the training set, 

posterior predictive distributions of the accuracy-RT data were found for each subject. 

Posterior predictive distributions were calculated by drawing from the subject-level 

posteriors of the known subjects and by drawing from the condition-level posteriors of the 

unknown subjects. The posterior predictive distributions were then compared to the sample 

distribution of the test set.

In some recent papers, evaluation of models’ prediction ability has been left to the readers 

with the aid of posterior predictive coverage plots (e.g. see figures in Supplementary 

Materials). Here we formally evaluate the similarity of the posterior predictive distributions 

to the test samples via a “proportion of variance explained” calculation. Specifically, we 

calculated  of subjects’ accuracy and correct reaction time 25th percentiles, medians, 

and 75th percentiles across subjects.  is a measure of percentage variance in a statistic 

T (e.g. accuracy, correct-RT median, etc.) explained by in-sample or out-of-sample 

prediction. In this paper,  is defined as the percentage of total between-subject variance 
of a statistic T explained by out-of-sample or in-sample prediction. It is a function of the 

mean squared error of prediction (MSEP) and the sample variance of the statistic T based on 

a sample size of J = 13 or J = 4 subjects for known and unknown subject calculations 
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respectively. This measure also allows comparisons across studies with similar prediction 

goals. Mathematically,  is defined as

(2)

3. Results

The single-trial EEG measures “regressed” on diffusion model parameters were the peak 

positive and negative amplitudes and latencies (corresponding to P200 and N200 peaks 

respectively) in the 150 to 275 ms windows post noise-onset in the cue interval and post 

signal-onset in the response interval. However the magnitude and latency of the peak 

negative deflection (N200) in response to the noise stimulus and the magnitude and latency 

of the peak positive deflection (P200) in response to the signal stimulus were not informative 

(i.e. most condition-level effect posteriors of these measures overlapped zero significantly in 

models with all P200 and N200 measures included as regressors). For simplicity we only 

discuss results of models with P200 measures following the noise stimulus in the cue 

interval and N200 measures following the signal stimulus in the response interval. Example 

single trial amplitudes of these P200 and N200 peaks for Subject 12 are shown in Figure 5.

Since no effects of explored measures were found on within-trial evidence accumulation 

variance in Model 3 (i.e. posterior distributions of γ(ς)jk were centered near zero), the only 

EEG effects that will be discussed are those on evidence accumulation rate and non-decision 

time from a fit of Model 2. This paradigm also lead to significant improvement in correct-RT 

distribution prediction for those subjects whose behavior was missing. That is, we have 

shown that a new subject’s correct-RT distributions can be predicted when only their single-

trial EEG is collected, given that other subjects’ EEG and behavior has been analyzed. A 

graphical example of the effects found with Model 2 in two representative trials are given in 

Figure 1.

3.1. Intercept terms of evidence accumulation rate and non-decision time

The intercept term of each variable gives the value of each variable not explained by a linear 

relationship to N200 and P200 amplitudes and latencies. That is, the intercept gives the 

value of each parameter that remains constant from trial to trial, with the between-trial 

variability of the parameter being influenced by the changing trial-to-trial EEG measures. 

Model 2's posterior medians of the condition level evidence accumulation rate intercepts 

μ(ηδ)j and non-decision time intercepts μ(ητ)j are reported. In low noise conditions, evidence 

accumulation rate intercepts were 1.46 evidence units per second (i.e. if there was no 

behavioral effect of EEG on each trial and no variance in the evidence accumulation process, 

it would take the average subject 343 ms to accumulate evidence since a decision is reached 

when α = 1 evidence unit is accumulated and subjects start the evidence accumulation 

process with .5 evidence units). In medium and high noise conditions, evidence 

accumulation rate intercepts were 1.30 and 0.86 evidence units per second respectively. 
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Non-decision time intercepts were 340 ms in low noise conditions, 425 ms in medium noise 

conditions, and 440 ms in high noise conditions.

To understand the degree of influence of EEG on model parameters, approximate condition 

level evidence accumulation rates and non-decision times were calculated and then 

compared to the intercept of the respective parameter. Taking the mean peak positive and 

peak negative amplitudes and latencies across all subjects and trials in each noise condition 

and multiplying by the median posterior of the effects, it was found that evidence 

accumulate rate in low noise was 1.90 evidence units per second, 1.65 evidence units per 

second in medium noise, and 1.35 evidence units per second in high noise. It was also found 

that non-decision time was 393, 400, and 425 ms in the low, medium, and high noise 

conditions. The intercepts of non-decision time thus described approximately 86%, 94%, 

and 96% of the true condition means in low, medium, high noise conditions respectively. 

However, the intercepts of the drift rates only described approximately 77%, 79%, and 63% 

of the true condition means in low, medium, and high noise conditions respectively. While 

this gives the reader an idea of the strength of the influence of single-trial EEG measures on 

the parameters, better evaluations of the degree of effects are presented below.

3.2. Effects of attention on non-decision time in low-noise conditions

Strong evidence was found to suggest that in low noise conditions single-trial non-decision 

times τijk are positively linearly related to delays in the EEG response to the visual signal as 

measured by the latency of the negative peak (N200) following stimulus onset. A probability 

greater than 99% of the condition-level effect being greater than zero in all subjects was 

found. This relationship to an EEG signature 150-275 ms post stimulus onset suggests an 

effect on preprocessing time rather than motor-response time. By exploring the posterior 

distribution of the mean effect across-participants μ(γτ)j, it is inferred that non-decision time 

increases 12 ms (the posterior median) when there is a 40 ms increase in the latency of the 

single-trial negative peak (where 40 ms was the standard deviation across all trials and 

subjects) in the low noise condition, with a 99% credible interval of 3 to 21 ms. Figure 6 
shows the per-subject effects of signal N200 latency on non-decision time in the low noise 

condition. No evidence was found to suggest that the signal N200 latency affected non-

decision time in medium nor high noise conditions. 95% credible intervals for these 

increases in the subject mean non-decision time for 40 ms increased N200 delays were −9 to 

4 ms and was −8 to 3 ms respectively. No evidence found to suggest that attentional delay to 

the noise, the noise P200 latency, affected non-decision time.

Weak evidence was found to suggest that magnitude of the response to the stimulus affects 

non-decision time in the low noise condition. The posterior median suggests that a 26.83 μV 
(the standard deviation) decrease in magnitude of the negative peak (i.e. moves the negative 

peak towards zero) leads to a 11 ms increase in non-decision time. The 95% credible interval 

of this effect of N200 signal magnitude on non-decision time was a 2 to 21 ms. No evidence 

was found to suggest that the magnitude in the medium and high noise conditions affected 

non-decision time.
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3.3. Effects of attention on evidence accumulation

Evidence was found to suggest that per-trial response to the visual signal (measured by the 

negative peak, N200, amplitude) is positively correlated with per-trial evidence 

accumulation rates δijk in each condition. In the low noise condition, μ(γ(δ))j, which 

describes the across-subject mean of the effect of negative peak on drift rate, was found to 

have a 95% credible interval of .02 to .34 evidence units per second increase (where it takes 

α = 1 evidence unit to make a decision) and a posterior median of .17 evidence units per 

second increase for each magnitude increase (i.e. away from zero) of 26.83 μV , the standard 

deviation of the negative peak. Given the same magnitude increase, the posterior median of 

the effects in the medium and high noise conditions were .13 and .14 evidence units per 

second respectively with 95% credible intervals −.01 to .28 and 0 to .28 respectively.

Strong evidence was found to suggest that the magnitude of the positive peak of the response 

to the visual noise during the cue interval affected the future evidence accumulation rate in 

the medium noise and possibly high noise conditions. The median of the posterior 

distribution of the condition-level effect was .20 evidence units per second when there was a 

27.67 μV increase, the standard deviation of the peak magnitude. A 99% credible interval of 

this effect was .04 to .32 evidence units per second. Figure 7 shows the effects of the noise 

P200 amplitudes on specific subjects’ single-trial drift rates in the medium noise condition. 

The probability of there being an effect of this P200 amplitude during the cue interval in the 

high noise condition was 94.6% (i.e. the amount of the posterior density of the condition-

level effect above zero). The median of the posterior distribution of this effect was .09 

evidence units per second with a 95% credible interval of −.02 to .22 evidence units per 

second when there is a 27.67 μV increase in a high noise trial.

3.4. Cross-validation

In-sample and out-of-sample posterior predictive coverage plots of correct-RT distributions 

for each condition and subject are provided in the Supplementary Materials. All three 

models perform well at predicting correct-RT distributions and overall accuracy of training 

data (i.e. in-sample prediction; see Table 3 and Discussion section). However by cross-

validation we found that the addition of single-trial EEG measures of attentional onset 

improved out-of-sample prediction of accuracy and correct reaction time distributions of 

known subjects (i.e. those subjects who had 2/3 of their trials used in the training set). 

indicates the percentage of variance explained by prediction in the given statistic across 

subjects. Table 1 contains  values for accuracy as well as summary statistics of correct-

RT distributions of known subjects. Prediction was improved when using Model 3 for these 

subjects with at least 77.3% of variance in correct-RT medians being explained by out-of-

sample prediction, but Model 2 performed almost as well in comparison to Model 1, the 

model without single-trial EEG inputs. Model 2 was able to predict at least 76.3% of the 

variance in correct-RT medians while Model 1 was able to predict at least 74.5% of the 

variance in correct-RT medians. In the low noise condition, Model 2 did not improve upon 

Model 1's explanation of variance in subject-level accuracy but better predicted accuracy in 

the other two conditions.
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Larger gains in out-of-sample prediction were found for unknown subjects (i.e. those 

subjects who were not used in the training set). These improvements were particularly 

pronounced in the low noise condition. Model 2 outperformed Model 3, which outperformed 

Model 1 in turn, as shown in Table 2. From these results it is clear that Model 2 was the best 

model for out-of-sample prediction overall, especially for new subjects. In the low noise 

condition, Model 2 was able to explain 22.1% of between-subject variance in correct-RT 

25th percentiles in the low-noise condition while Model 1 was not able to predict any 

between-subject variance in this measure. While the included single-trial EEG measures in 

these type of models do not perform as well as new subject prediction when subject-average 
EEG measures of attention are included (Nunez et al., 2015), single-trial EEG does improve 

prediction. The improvements in  across models suggest that it is possible that similar 

models with more single-trial measures of EEG could explain new subjects’ accuracy and 

correct-RT distributions.

3.5. P200 and N200 localizations

Both the subject-average P200 and N200 components were localized in time and space. All 

single-trial P200 and N200 amplitudes and latencies (i.e. single-trial peak positive and 

negative amplitudes 150 to 275 ms in the noise and response interval respectively) were 

averaged across trials for each subject. Localization in time and on the brain are based on 

these across-trial averages. The subject mean and standard deviation of the P200 latency 

during the cue interval was 220±12 ms while the mean and standard deviation the of N200 

latency during the response interval was 217 ± 6 ms. Although these latencies differ slightly 

from traditional P2 and N1 findings (Luck et al., 2000), when viewing the event-related 

waveforms over all trials it is clear that the P2 and N1 are influenced by the single-trial 

measures. As an example, every single-trial evoked response of Subject 12 to the noise and 

signal are shown in Figure 5, sorted by peak P200 amplitude in the cue interval and sorted 

by peak N200 amplitude in the response interval. The P200 and N200 latencies of this 

subject correspond to traditional P2 and N1 components.

While EEG localization is an inexact process that is unsolvable without additional 

assumptions, the surface Laplacian has been shown to match closely to simulated cortical 

activity using forward models (i.e the mapping of cortical activity to scalp potentials) and 

have shown consistent results when used with real EEG data (Nunez and Srinivasan, 2006). 

Unlike 3D solutions, projections to the surface of the cortex (more accurately, the dura) are 

theoretically solvable, and have been used with success in past studies (see Nunez et al., 

1994, for an example).

In this study we have found surface spline-Laplacians (Nunez and Pilgreen, 1991) on the 

realistic MNI average scalp (Deng et al., 2012) of the mean positive peak during the cue 

interval (the P200) and the mean negative peak during the response interval (the N200) by 

averaging over trials and subjects. The surface Laplacians were then projected onto one 

subject's cortical surface using Tikhonov (L2) regularization and a Finite Element (FE; 

Pommier and Renard, 2005) forward model to the MNI 151 average head, maintaining 

similar distributions of activity of the surface Laplacians on the cortical surface. The 

subject's brain was then labeled using the Destrieux cortical atlas (Fischl et al., 2004). 
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Cortical topographic maps of both peaks are given in Figure 8. Because we expect the 

majority of the Laplacian to originate from superficial gyri (Nunez and Srinivasan, 2006), 

we have localized both the positive and negative peaks only to maximally active gyri. This 

localization suggested that both the P200 and N200 were in the following extrastriate and 

parietal cortical locations: right and left middle occipital gyri, right and left superior parietal 

gyri, right and left angular gyri, the left occipital inferior gyrus, the right occipital superior 

gyrus, and the left temporal superior gyrus. Although we should note that the exact 

localization must have some errors due to between-subject variance in cortex and head shape 

and between-subject variance in tissue properties.

Brain regions found using this cortical-Laplacian method point to activity in early dorsal and 

ventral pathway regions associated with visual attention (Desimone and Duncan, 1995; 

Corbetta and Shulman, 2002; Buschman and Miller, 2007) and decision making (Mulder et 

al., 2014). Corroborating our findings, White et al. (2014) found that blood-oxygen-level 

dependent (BOLD) activity in the right temporal superior gyrus, right angular gyrus, and 

areas in the right lateral occipital cortex (e.g. the right middle occipital gyrus) correlated 

with non-decision time during a simple visual and auditory decision making task. It was 

hypothesized that this activity was due to motor preparation time instead of visual 

preprocessing time (White et al., 2014); however the time-scale of BOLD signals does not 

provide additional knowledge to separate visual preprocessing time from motor preparation 

time. Informed by EEG, BOLD signals associated with evidence accumulation rates have 

been previously localized to right and left superior temporal gyri and lateral occipital 

cortical areas, thought to correspond to early bottom-up and late top-down decision making 

processes respectively during a visual face/car discrimination task (Philiastides and Sajda, 

2007). The right and left middle occipital gyri have also previously been shown to contribute 

to evidence accumulation rates during a random dot motion task (Turner et al., 2015).

4. Discussion

4.1. Attention influences perceptual decision making on each trial

The results of this study suggest that fluctuations in attention to a visual signal accounts for 

some of the trial-to-trial variability in the brain's speed of evidence accumulation on each 

trial in each condition. There is also evidence to suggest that increased response to the 

competing visual noise increases the brain's speed of evidence accumulation, but only in 

medium and high noise conditions. Although a simple explanation of this effect would be 

differences in trial-to-trial arousal, we note that the effect only occurs in medium-noise and 

high-noise conditions. We have previously found evidence that noise suppression during the 

cue interval predicts enhanced drift rates based on the subject-average SSVEP responses in 

these data (Nunez et al., 2015). Thus, our effect may reflect the attention the subject places 

on the cue, which determines whether to engage mechanisms of noise suppression, but we 

could not directly assess this possibility as new methods must be developed to measure 

SSVEPs on single trials. This would reflect a hypothesis based on the Perceptual Template 

Model that predicts that subjects will suppress attention to visual distractors during tasks of 

high visual noise (Lu and Dosher, 1998).

Nunez et al. Page 16

J Math Psychol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We assume that the effect of N200 latency on non-decision time during the response interval 

is on preprocessing time instead of motor response time. There was no a priori reason to 

believe that an attention effect that takes place 150-275 ms after stimulus onset would affect 

the speed of efferent signals to the muscle, given that the response times were at least 500 

ms. These findings lead us to conclude that the effect of attention in response to the signal in 

low noise conditions is to reduce preprocessing delay time. This appears consistent with 

predictions of signal enhancement in low-noise conditions in the Perceptual Template 

Model. However, we note there is not a perfect equality between N200 latency and 

preprocessing time (the condition and subject-level coefficient posteriors are not centered on 

1). And the identification of both preprocessing time and motor response time is not possible 

with a drift-diffusion model fit without additional assumptions or external inputs such as 

EEG.

Reaction time (RT) and choice behavior during visual decision making tasks are well 

characterized by models that assume a continuous stochastic accumulation of evidence. And 

many observations of increasing spike-rates of single neuron action potentials lend support 

to this stochastic theory of evidence accumulation on a neural level (Shadlen and Newsome, 

1996, 2001). Recently some macroscopic recordings of the cortex have shown that 

increasing EEG potentials ramping up to P300 amplitudes are correlates of the stochastic 

accumulation of evidence (O'Connell et al., 2012; Philiastides et al., 2014; Twomey et al., 

2015). It has been hypothesized that this EEG data reflects the evidence accumulation 

process itself (or a mixture of this process with other decision-making correlates) and not a 

correlated measure such as top-down attention. This hypothesis leads to the natural 

prediction that single-trial drift rates are explained by single-trial P300 slopes. However 

within a small region of the cortex, neurons will have diverse firing patterns during the 

decision making process, only some of which are observed to have increasing spiking-rate 

behavior indicative of stochastic evidence accumulation (Meister et al., 2013). The 

properties of volume conduction through the cortex, skull, and skin only allow for 

synchronous post-synaptic potentials to be observed at the scalp (Nunez and Srinivasan, 

2006; Buzsaki, 2006). Therefore an increasing spike-rate as observed on the single-neuron 

level is not likely to be observed as an increasing waveform in EEG recorded from the scalp. 

We also would expect the evidence accumulation process to terminate before the response 

time since a portion of the response time must be dedicated to the motor response after the 

decision is made. This may not be the case for the ramping P300 waveform on single-trials 

even though it is predictive of model parameters (Philiastides et al., 2014). If the stochastic 

evidence accumulation process was truly reflected in the ramping of EEG, a testable 

prediction would be that the variance around the mean rate of the P300 ramp on each trial 

would be linearly related to the diffusion coefficient ς, in addition to single-trial P300 slopes 

being linearly related to the drift rate δ. There are many EEG measures thought to be related 

to attention such as event related potential (ERP) components, power in certain frequency 

bands, and steady-state visual evoked potential (SSVEP) responses. It is likely that EEG 

measures that share similar properties with stochastic evidence accumulation processes are 

in fact due to these correlates of attention or other forms of cortical processing that can 

influence the decision making process.
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4.2. External predictors allow for trial level estimation of diffusion model parameters

The Wiener distribution (i.e. the diffusion model) used in this study does not incorporate 

trial-to-trial variability in drift rates within the probability density function as assumed by 

Ratcliff (1978). Instead we assume that each trial's drift rate is exactly equal to a linear 

function of EEG data and use an evidence accumulation likelihood function that does not 

assume drift rates vary trial-to-trial by any other means. Per-trial non-decision times and 

diffusion coefficients were also assumed to be exactly equal to linear functions of EEG data.

Per trial estimates of diffusion model parameters cannot be obtained without imposing 

constraints or including external inputs. In this study, we have shown that the single-trial 

P200 and N200 attention measures can be used to discover per trial estimates of all three 

free parameters, non-decision time, drift rate, and the diffusion coefficient. Non-decision 

time, the drift rate, and the evidence boundary could also be modeled as per trial estimates of 

external inputs, as would be useful in other speeded reaction time tasks where external per-

trial physiological measurements are available. Other possible per-trial external inputs that 

could be used include: magnetoencephalographic (MEG) measures, functional magnetic 

resonance imaging (fMRI) measures, physiological measurements such as galvanic skin 

response (GSR), and near infrared spectroscopy (NIRS), where each modality may have 

multiple external inputs (e.g. multiple linear EEG regressors of single-trial parameters, as in 

this study). The more external inputs correlated with single-trial parameters included in the 

model, the better the single-trial estimate of the parameters will be. This will allow decision 

model researchers to better explore the efficacy of the diffusion model by comparing single-

trial estimates of parameters.

4.3. Behavior prediction and BCI applications

We have observed that single-trial measures of EEG in a hierarchical Bayesian approach to 

decision-making modeling improves overall accuracy and correct-RT distribution prediction 

for subjects with observed behavior. This paradigm also lead to significant improvement in 

overall accuracy and correct-RT distribution prediction for those subjects whose behavior 

was missing. That is, we have shown that a new subject's accuracy and correct-RT 

distributions can be predicted when only their single-trial EEG is collected, given that other 

subjects’ EEG and behavior has been analyzed. If the goal of a future project is solely 

prediction (and no explanation of the cognitive or neural process is desired, as was in this 

paper), a whole host of single-trial EEG measures could be included in a hierarchical model 

of decision making, using perhaps a simpler model of decision making such as the linear 

ballistic accumulator model to ease analysis (e.g. Forstmann et al., 2008; Ho et al., 2009; 

van Maanen et al., 2011; Rodriguez et al., 2015) or a more complicated model to improve 

prediction. The set of single-trial measures could include: ERP-like components as we 

discussed in this paper, measures of evoked amplitudes in certain frequency bands, and 

measures of steady-state visual evoked potentials.

However, as observed in Table 3, we have not shown prediction of reaction times for when 

subjects committed errors because 1) few errors were committed by the subjects in the 

presented data and 2) the type of model we used has been shown to explain incorrect-RT 

distributions well only when intrinsic trial-to-trial variability in evidence accumulation rates 
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(as opposed to extrinsic due to neural regressors, for which it has not been shown) is 

included in the likelihood function (Ratcliff, 1978; Ratcliff and McKoon, 2008). In future 

work we plan to compare the predictive ability of more complicated models containing both 
intrinsic trial-to-trial variability and extrinsic trial-to-trial variability in evidence 

accumulation rate due to external neural measures.

The prediction ability of the presented models for accuracy and correct-RT distributions may 

have implications for Brain-Computer Interface (BCI) frameworks, especially in paradigms 

which attempt to enhance a participant's visual attention to particular task to improve 

reaction time. To maximize prediction, every EEG attention measure should be included, 

and the predictors that offer the best out-of-sample prediction within initial K-fold validation 

sets should be included. After collection of behavior and EEG from a few participants and a 

hierarchical Bayesian analysis of the data, later participants’ single-trial preprocessing times 

or evidence accumulation rates could be predicted using only single-trial EEG measures. 

Conceivably this would allow for trial-by-trial intervention in order to enhance a 

participant's attention during the task, perhaps using neural feedback (e.g. via direct current 

stimulation or transcranial magnetic stimulation) during those trials in which a participant is 

predicted to be slow in their response because of a small evidence accumulation rate (e.g. 

when an N200 magnitude is small) or a slow preprocessing time (e.g. when an N200 latency 

is long). Although whether the participant could use such feedback in time to affect reaction 

time and accuracy remains to be tested.

4.4. Neurocognitive models

The term “neurocognitive” has been used to describe the recent trend of combining 

mathematical behavioral models and observations of brain behavior to explain and predict 

perceptual decision making (Palmeri et al., 2014). The usefulness of combining behavioral 

models and neural dynamics has been motivated on theoretical grounds. Behavioral models 

suggest links between subject behavior and cognition while laboratory observation and 

neuroimaging can suggest links between neural dynamics and cognition. The combination of 

these methods then provides a predictive chain of neural dynamics, cognition, and behavior. 

Another obvious benefit is the inference gain when predicting missing data. That is, we will 

be able to better predict behavior when brain activity is available. This is especially true 

when using hierarchical Bayesian models as they maintain uncertainty in estimates through 

different levels of the analysis (Vandekerckhove et al., 2011; Turner et al., 2013). While 

there are a variety of methods using cognitive models to find cognitive correlates in the brain 

dynamics (see Turner et al., 2016, for a review of these methods), some studies do not 

further constrain the cognitive models by informing those models with known neural links to 

specific cognitive processes. In this paper, and our previous study of individual differences 

(Nunez et al., 2015), we demonstrate another important use of neural data in cognitive 

models. Independent neural measures of cognitive processes, such as attention, can be used 

to better understand how cognition influences the mechanisms of behavior, furthering 

explanation and prediction of the cognitive process.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Our goal is to elucidate the effect of attention on visual decision making.

• Models with linear relationships between diffusion model parameters and 

EEG were fit.

• Single-trial EEG attention measures explain evidence accumulation and 

preprocessing.

• Accuracy and correct reaction time distributions were predicted out-of-

sample.
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Figure 1. 
Two trials of Subject 10's SVD weighted EEG (Top and Bottom with bounds −85 to 85 μV) 

and representations of this subject's evidence accumulation process on 6 low noise trials 

(Middle). Evidence for a correct response in one example trial (denoted by the red line) first 

remains neutral during an initial period of visual preprocessing time τpre. Then evidence is 

accumulated with an instantaneous evidence accumulation rate of mean δ (the drift rate) and 

standard deviation ς (the diffusion coefficient) via a Wiener process. The subject acquires 

either α = 1 evidence unit or 0 evidence units to make a correct or incorrect decision 

respectively. After enough evidence is reached for either decision, motor response time 

τmotor explains the remainder of that trial's observed reaction time. The 85th and 15th 

percentiles of Subject 10's single-trial drift rates δi,10,1 in the low noise condition are shown 

as orange and green vectors, such that it would take 253 and 299 ms respectively to 

accumulate the .5 evidence accumulation units need to make a correct decision if there was 

no variance in the accumulation process. The larger drift rate is a linear function of the larger 

single-trial N200 amplitude (**), while the smaller drift rate is a linear function of the 

smaller N200 amplitude (*). The scalp activation (SVD weights multiplied by one trial's 

N200 amplitude) of this subject's response to the visual signal ranges from −13 to 13 μV on 

both trials. The two dark blue and red evidence time courses were randomly generated trials 

with the larger drift rate. The three dotted, light blue evidence time courses were randomly 

generated trials with the smaller drift rate. True Wiener processes with drifts δi,10,1 and 
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diffusion coefficient ς10,1 were estimated using a simple numerical technique discussed in 

Brown et al. (2006).
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Figure 2. 
The time course of one trial of the experimental stimulus. One trial consisted of the 

following: 1) 750 ms of fixation on a black cross on a gray screen, then 2) visual contrast 

noise changing at 8 Hz for 750 ms while maintaining fixation (dubbed the cue interval) and 

3) a circular field of small oriented bars flickering at 15 Hz overlaid on the changing visual 

noise for 1000 to 2000 ms while maintaining fixation (dubbed the response interval). The 

subjects’ task was to indicate during the response interval whether the bars were on average 

oriented towards the “top-right” (45° from horizontal; as in this example) or the “top-left” 

(135° from horizontal). It was assumed that subjects’ decision making process occurred only 

during the response interval but could be influenced by both onset attention to the visual 

noise during the cue interval and onset attention to visual signal during the response interval.
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Figure 3. 
A visual representation of the singular value decomposition (SVD) method for finding 

single-trial estimates of evoked responses in EEG. The EEG presented here is time-locked to 

the signal onset during the response interval, such that the single-trial ERP encoded the 

response to the signal onset. A single trial of EEG from Subject 16 (Left) can be thought of 

as a time by channel (T × C) matrix. The first SVD component explained the most 

variability (79.9%) in Subject 16's ERP response to the signal across all trials in the training 

set. SVD weights v (C × 1) are obtained from the ERP response (i.e. trial-averaged EEG; T 
× C) and can be plotted on a cartoon representation of the human scalp with intermediate 

interpolated values (Middle). This specific trial's ERP (Right) was obtained by multiplying 

the time series data from each channel on this trial by the associated weight in vector v and 

then summing across all weighted channels.
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Figure 4. 
Graphical representations of the three hierarchical Bayesian models following the 

convention of Lee and Wagenmakers (2014). Each node represents a variable in the model 

with arrows indicating what variables are influenced by other variables. The magenta 2 ∗ 1 

vector of reaction time and accuracy yijk and the blue (p + 1) ∗ 1 vector of p EEG regressors 

(+1 intercept) xijk are observed variables, as indicated by the shaded nodes. Bolded blue 

variables indicate (p + 1) ∗ 1 vectors, such as the subject j level effects  of each EEG 

regressor and the condition k level effects μ(γ∗)k of each EEG regressor. In Model 3 for each 
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trial i, values of non-decision time τijk, drift rate (evidence accumulation rate) δijk, the 

diffusion coefficient (evidence accumulation variance) ςijk are deterministic linear 

combinations of single-trial EEG regressors xijk and the effects of those regressors  that 

vary by subject and condition.
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Figure 5. 
Single-trial evoked responses of an example subject, Subject 12, to the visual noise during 

the cue interval (Left) and single-trial evoked responses to the visual signal during the 

response interval (Right). Single-trial P200 and N200 magnitudes were found by finding 

peak amplitudes in 150 to 275 ms time windows (as indicated by the vertical dashed lines) 

of the SVD-biased EEG data in both the cue and response intervals. The first 300 ms of the 

intervals are sorted by single-trial P200 magnitudes in the cue interval and single-trial N200 

magnitudes in the response interval. Latencies of the single-trial P200 and N200 components 

correspond to known latencies of P2 and N1 ERP components.
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Figure 6. 
The posterior distributions of the effect of a trial's N200 latency during the response interval 

(onset attention latency to the signal stimulus) on trial-specific non-decision times τijk for 

each subject j in the low noise condition k = 1. Subjects 2, 6, 7 and 11 were left out of the 

training set and their predicted posterior distributions are shown in red. Thick lines forming 

the distribution functions represent 95% credible intervals while thin lines represent 99% 

credible intervals. Crosses and vertical lines represent posterior means and modes 

respectively. Also shown are the topographic representations of the channel weights of the 

first SVD component of each subject's response interval ERP, indicating the location of 

single-trial N200s over occipital and parietal electrodes. Evidence suggests that longer 

attentional latencies to the signal, N200 latencies, are linearly correlated with longer non-

decision times in the low noise condition.
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Figure 7. 
The posterior distributions of the effect of a trial's P200 amplitude during the cue interval 

(onset of attention to the noise stimulus) on trial-specific evidence accumulation rates δijk 

for each subject j in the medium noise condition k = 2. Subjects 2, 6, 7 and 11 were left out 

of the training set, their predicted posterior distributions are shown in red. Thick lines 

forming the distribution functions represent 95% credible intervals while thin lines represent 

99% credible intervals. Crosses and vertical lines represent posterior means and modes 

respectively. Also shown are the topographic representation of the channel weights of the 

first SVD component of each subject's cue interval ERP, indicating the location of single-

trial P200s over occipital and parietal electrodes. Evidence suggests that the effect of the 

attention to the noise, reflected in P200 amplitudes, positively influenced the drift rate of 

each subject in each trial, in the medium and high noise conditions.
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Figure 8. 
Right and left sagittal and posterior views of localized single-trial P200 evoked potentials 

during during the cue interval (Top) and localized single-trial N200 evoked potentials during 

the response interval (Bottom) averaged across trials and subjects. The cortical maps were 

obtained by projecting MNI-scalp spline-Laplacians (Nunez and Pilgreen, 1991; Deng et al., 

2012) onto a subject's anatomical fMRI image via Tikhonov (L2) regularization, maintaining 

similar distributions of activity of the surface Laplacians on the cortical surface. Blue and 

orange regions in microamperes per mm2 correspond to cortical areas estimated to produce 

negative and positive potentials observed on the scalp respectively. These two particular 

projections of the Laplacians suggest that P200 and N200 activity occurs in extrastriate 

cortices and areas in the parietal lobe.
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Table 1

Percentage of across-subject variance explained by out-of-sample prediction ( ) for accuracy and 

summary statistics of correct-RT distributions of those subjects’ that were included in the training set. 13 of 

the subjects’ data were split into 2/3 training and 1/3 test sets. Posterior predictive distributions that predicted 

test set behavior were generated for 13 of the subjects by drawing from posterior distributions generated by the 

training set. In the Low, Medium, and High noise conditions, the 25th, 50th (the median), and 75th percentiles 

and means were predicted reasonably well by the model without single-trial measures of EEG, Model 1. 

However including single-trial measures of EEG improved prediction of correct-RT distributions, especially in 

the Low noise condition, with Model 3 (which assumes evidence accumulation rate, non-decision time, and 

evidence accumulation variance vary with EEG per-trial) only slightly outperforming Model 2 (which assumes 

evidence accumulation rate and non-decision time vary with EEG per-trial).

Prediction of new data from known subjects

Model 1 Comparison Model 2 EEG-δ,τ Model 3 EEG-δ,τ,ς

Low

25th t1 Percentile 81.6% 85.2% 85.6%

t1 Median 74.5% 76.3% 77.3%

75th t1 Percentile 60.2% 63.3% 63.8%

Accuracy 24.5% 20.8% 27.7%

Medium

25th t1 Percentile 84.1% 85.1% 86.1%

t1 Median 86.8% 87.6% 88.9%

75th t1 Percentile 63.1% 68.2% 69.3%

Accuracy 58.1% 63.5% 63.5%

High

25th t1 Percentile 73.0% 76.4% 76.6%

t1 Median 77.4% 76.8% 77.8%

75th t1 Percentile 71.0% 74.2% 74.2%

Accuracy 46.3% 48.9% 51.3%
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Table 2

Percentage of across-subject variance explained by out-of-sample prediction ( ) for accuracy and 

summary statistics of new subjects' and correct-RT distributions. Posterior predictive distributions were 

generated for 4 new subjects by drawing from condition level posterior distributions. Most  measures are 

negative because the amount of variance in prediction was greater than the variance of the measure across 

subjects; however the relative values from one model to the next are still informative about the improvement in 

prediction ability. The model without single-trial EEG measures, Model 1, does not predict new subjects' 

correct-RT distributions. Models with single-trial EEG measures of onset attention, Model 2 and Model 3, can 

predict some variance of the new subjects' 25th percentiles, with Model 2 outperforming Model 3.

Prediction of new data from new subjects

Model 1 Comparison Model 2 EEG-δ,τ Model 3 EEG-δ,τ,ς

Low

25th t1 Percentile –9.8% 22.1% 17.9%

t1 Median –37.6% –11.6% –14.3%

75th t1 Percentile –67.3% –46.7% –47.6%

Accuracy –8.1% –22.8% –65.9%

Medium

25th t1 Percentile –5.3% 8.4% 5.3%

t1 Median –30.7% –22.5% –25.7%

75th t1 Percentile –62.6% –53.9% –56.2%

Accuracy –13.1% –35.5% –67.7%

High

25th t1 Percentile –1.7% 8.2% 7.7%

t1 Median –12.0% –4.3% –2.9%

75th t1 Percentile –37.6% –25.5% –23.7%

Accuracy –4.3% –14.1% –29.1%
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Table 3

Percentage of variance across subjects explained by in-sample prediction ( ) for summary statistics of 

known subjects' accuracy-RT distributions. All three models fit accuracy and correct-RT t1 data very well, 

explaining over 92% of median correct-RT and over 90% of accuracy in each condition. However none of the 

models explain incorrect-RT t0 distributions well, a known problem for simple diffusion models that can be 

overcome by including variable drift rates directly in the likelihood function (Ratcliff, 1978; Ratcliff and 

McKoon, 2008).

Prediction of training data from known subjects

Model 1 Comparison Model 2 EEG-δ,τ Model 3 EEG-δ,τ,ς

Low

25th t1 Percentile 96.5% 97.1% 97.8%

t1 Median 96.6% 96.5% 97.3%

75th t1 Percentile 91.4% 93.4% 94.5%

Accuracy 95.1% 95.2% 97.3%

t0 Median –118.8% –108.3% –111.6%

Medium

25th t1 Percentile 86.0% 87.5% 88.6%

t1 Median 95.9% 95.6% 96.3%

75th t1 Percentile 84.7% 89.4% 90.1%

Accuracy 90.7% 94.1% 95.3%

t0 Median –163.9% –158.6% –163.9%

High

25th t1 Percentile 85.4% 87.3% 86.7%

t1 Median 93.1% 92.5% 92.9%

75th t1 Percentile 79.1% 83.8% 84.0%

Accuracy 95.9% 97.4% 95.9%

t0 Median –73.4% –71.2% –76.4%
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