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Summary

The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge 

interferes with new learning, but the mechanisms that minimize proactive interference are 

unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on 

spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC 

inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow 

changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices 

and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity 

modified CA1 codes during learning, which in turn predicted how quickly rats adapted to 

subsequent rule changes. The results suggest that task rules signaled by the mPFC become 

incorporated into hippocampal representations and support prospective coding. By this 

mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve 

distinct representations of similar circumstances.

Introduction

Memory impairs learning if new and established information conflict (Bartlett, 1932; 

Harlow, 1949) or when familiar stimuli must be associated with different responses 

(Greenberg and Underwood, 1950; Underwood, 1957), a phenomenon described as 

proactive interference (Bergström, 1893). Episodic memory represents stimuli in spatial, 

temporal, and personal context (Squire, 2004; Tulving, 1984), superordinate features that 

can reduce interference by dissociating stimulus identity and behavioral significance. For 

example, we know to answer a ringing telephone in our own homes, but not in others’. The 

hippocampus is crucial for episodic memory in people and other animals (Rempel-Clower et 
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al., 1996; Squire, 2004), and coping with proactive interference requires the prefrontal 

cortex. While the homologies between human and rodent PFC are debated (Preuss, 1995), 

proactive interference increases with PFC dysfunction in both species (Peters et al., 2013; 

Xu and Sudhof, 2013), and the neuronal mechanisms of this process are unknown.

Models of executive function suggest that the PFC resolves interference by modulating the 

relative activation strengths of memories during retrieval (Depue, 2012); it may also prevent 

interference by providing internal signals, e.g. task rules, that differentiate the significance 

of stimuli in the same external context. If so, then PFC signals should “pattern separate” 

otherwise overlapping hippocampal representations.

To investigate how the mPFC helps resolve memory interference, we tested the effects of 

mPFC inactivation in rats performing a hippocampus-dependent spatial reversal learning 

task. Though mPFC inactivation did not impair learning one spatial rule, it impaired all 

subsequent reversal learning, as though intact mPFC function differentiated rule-defined task 

episodes and sped subsequent learning by reducing proactive interference. To investigate the 

mechanisms by which functional interactions between the mPFC and the hippocampus 

might resolve memory interference, we recorded unit activity simultaneously in the mPFC 

and CA1 as rats performed the same task. We found that both structures discriminated task 

rules, that the mPFC influenced hippocampal activity, that mPFC inactivation reduced the 

separation of rule representations in the hippocampus, and that the magnitude of this effect 

predicted subsequent learning speed. By modulating hippocampal encoding, rule-related 

mPFC signals differentiate CA1 representations and reduce proactive interference in 

memory.

Results

To determine if mPFC activity altered spatial learning or memory, rats were trained on an 

elevated plus maze to perform a spatial memory task that requires hippocampal function 

(Ferbinteanu and Shapiro, 2003) (Figure 1A). In each daily testing session, a rat was placed 

on one of two potential start arms (north or south) and learned by trial and error to apply one 

of two mutually exclusive rules (‘go east’ or ‘go west’) to obtain food reward. After the rat 

made 10 correct responses in a block of 12 consecutive trials, the reward contingencies were 

reversed and the animal learned to use the opposite rule. After rats performed with ≥ 80% 

accuracy, they were tested with and without mPFC inactivation induced by bilateral 

infusions of either muscimol or vehicle 30 min prior to testing (Figure 1B). mPFC 

inactivation did not affect the initial discrimination (ID), but impaired subsequent reversal 

learning (Figure 1C; repeated measures ANOVA, drug × reversal interaction: F(2,7) = 38.84, 

p < 0.001; muscimol vs. saline post-hoc Bonferroni corrected t-tests: initial association: t(9) 

= 2.33, p > 0.05; first reversal: t(9) = 8.79, p < 0.05; second reversal: t(8) = 11.39, p < 0.05). 

The mPFC was not required for spatial learning or memory retrieval, but it was crucial for 

switching between rapidly changing spatial goals, consistent with findings that mPFC 

function reduces proactive interference among recent and highly overlapping events (Jonides 

and Nee, 2006; Shimamura et al., 1995).
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mPFC activity pre-empts interference

mPFC activity could prevent proactive interference by detecting competing representations 

and modulating their relative activation during memory retrieval (Depue, 2012). For 

example, as a rat approaches the choice point, active memories of the previous 

discrimination could interfere with learning the new competing rule, and mPFC signals 

could suppress the incorrect or enhance the correct one. Alternatively, the mPFC could 

mitigate interference during learning by modulating encoding, e.g. by integrating task rules 

(Miller and Cohen, 2001) that differentiate spatial representations. Because the mPFC was 

inactivated throughout testing first experiment did not address this question.

The next experiment distinguished between these possibilities by comparing the effects of 

inactivating the mPFC either before or after the rats learned the ID. The new procedure 

included both a sham and an actual infusion and separated the ID and the first reversal (R1) 

by a 30 min delay (Figure 1D). If the mPFC modulates active memories during retrieval, 

then inactivating the mPFC after the ID and during memory retrieval should impair R1. If 

the mPFC modulates memory acquisition, however, then inactivating the mPFC after the ID 

should not impair R1 because the first rule (e.g., ‘go east’) would have been integrated 

normally with hippocampal representations. Subsequent reversals (R2, R3...) should be 

impaired, however, because the representations would be encoded without the mPFC rule 

signals that distinguish these otherwise ambiguous situations.

As in the first experiment, inactivating the mPFC before the ID impaired R1 but not ID, and 

the additional delay and sham infusion had no effect on performance (Figure 1E; drug × 

reversal interaction: F(1,7) = 62.07, p < 0.001; post-hoc t-tests between drug conditions: ID: 

t(7) = 0.73, p > 0.05; R1: t(7) = 10.58, p < 0.001; R2: t(3) = 6.61, p < 0.05, cf. Figure 1C). 

Switching the order of the actual and sham infusions inactivated the mPFC after the ID and 

before reversal learning had no effect on R1, demonstrating that mPFC activity was not 

needed to switch from one goal to another. Subsequent reversals were impaired, however, 

indicating that mPFC activity was needed during learning if a new goal was to be learned 

subsequently (drug × reversal interaction: F(2,14) = 14.17, p < 0.001; ID post-hoc: t(7) = 

0.16, p > 0.05; R1 post-hoc: t(7) = 1.06, p > 0.05; R2 post-hoc: t(7) = 4.91, p < 0.01). The 

combined results show that mPFC activity supported reversals during learning, rather than 

during memory retrieval, and suggest that mPFC function may prevent proactive interference 

by differentiating memory representations during encoding.

To investigate if mPFC modulated hippocampal codes, we recorded mPFC and CA1 activity 

simultaneously while animals performed the spatial reversal task and analyzed local field 

potentials (LFPs) and single unit ensembles during learning. This paper focuses on activity 

in the start arm, where identical spatial behaviors precede distinct choices, and when 

memory could inform goal selection. For these analyses, we defined task rules operationally 

as the goal arm entered by the animal, and investigated ‘rule coding’ by comparing neuronal 

activity in ‘east-going’ and ‘west-going’ trials, as rats used identical behaviors in the same 

start arm to approach the choice point(Ferbinteanu and Shapiro, 2003; Rainer et al., 1999). 

Single units in both structures fired at different rates in the start arms on the way to different 

goals, thereby showing prospective coding (examples in Figure S3.2).
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mPFC and CA1 activity is synchronized through theta frequency oscillations
—If the mPFC minimizes interference by modulating hippocampal coding, then activity in 

the two structures should be temporally coordinated. Theta (4–12 Hz) and gamma (30–80 

Hz) oscillations are prominent features of hippocampal activity and are believed to provide 

the synchronization needed for efficient transfer of information between the hippocampus 

and other parts of the brain (Spellman et al., 2015). Each oscillation frequency is observed in 

the mPFC and modulated by the phase of hippocampal theta during memory-guided 

behavior (Lansink et al., 2016; Sirota et al., 2008).

To test how oscillations in the mPFC and CA1 were coordinated during the spatial reversal 

task, we analyzed LFPs and spiking activity from the time the rat was placed in a start arm 

facing away from the maze center (time −1 s) and started moving along the arm (time 0 s, 

distance = 0), through the choice point (time ~1s, distance = 60 cm) until it reached the 

reward point ~2.5 s later (distance = 120 cm, Figure 2A). LFP spectra revealed prominent 

theta oscillations in CA1; theta power was highest as animals traversed the start arm and 

declined as the animal entered the goal arm (Figure 2B). In contrast, the pattern of 

oscillations in the mPFC of typical trials started with low-frequency, high-amplitude 

oscillations in the 4 Hz range, as previously reported (Fujisawa and Buzsaki, 2011). As 

animals initiated forward movement on the start arm, mPFC oscillatory power decreased 

while the frequency increased to about 5 Hz. Theta oscillations became prominent in mPFC 

as animals moved into the goal arm, and the oscillation frequency increased to about 10–12 

Hz as rats approached the reward point. Theta oscillations in the mPFC and CA1 were 

coherent in all arms of the plus maze, with the strongest coherence observed before animals 

initiated a trial and in the goal arm.

To test if coherence reflected coordinated neuronal activity (Kajikawa and Schroeder, 2011), 

we examined the extent to which unit activity in the prefrontal cortex was phase modulated 

by the ongoing hippocampal theta rhythm. Indeed, both CA1 units and mPFC units were 

phase locked to hippocampal theta: 75.8% (235/310) of CA1 units were significantly phase 

modulated, as were 20.2% (45/223) of mPFC units (p < 0.05, FDR corrected (Benjamini, 

1995); Figure 2C). mPFC units tended to fire ~ 47 ms before the theta trough, whereas CA1 

units fired ~4 ms after the trough, corresponding to a temporal offset with mPFC units either 

leading CA1 units by about 51 ms or lagging by 67 ms (Figure 2D). Before rats entered the 

choice point, mPFC and CA1 oscillations were synchronized on a timescale that could 

permit activity in each structure to influence the other (Figure 2E).

mPFC and CA1 population activity track task rules—To assess ensemble activity 

during learning we represented each trial as a rate vector based on the firing rate of each 

neuron (CA1 N = 14.82 / session, s.d. = 6.8; mPFC N = 11.8 / session, s.d. = 4.3) in a 

restricted part of the start arm. Vectors were first divided into seven equally spaced bins, 

from the first to the final trials of each contingency, and then averaged within bins. Ensemble 

activity dynamics were quantified by calculating the similarity between average rate vectors 

among all pairs of bins (see supplemental information). To visualize learning-related 

changes in mPFC and CA1 activity, we used multidimensional scaling (MDS) to generate 

two-dimensional projections of a 3D space that represented the similarity of rate vectors 

across all trials (Figures 3A, B, supplemental information). Every point in each MDS plot 

Guise and Shapiro Page 4

Neuron. Author manuscript; available in PMC 2018 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponds to the activity state in one brain region during a single epoch; the proximity of 

points shows the similarity of population vectors, and each triangle indicates activity at the 

seven points across the learning curve. The MDS plots reveal dynamic activity states in 

mPFC and CA1 that correspond to learning each task rule (i.e., ‘go east’ or ‘go west’), with 

distinct activity patterns separating the ID and each reversal. During stable performance 

within a contingency, brain activity was stable, and adjacent trials clustered in the same 

region of the activity space (e.g. the triangles indicating Goal #2 in the lower right of Figure 

3A). When contingencies changed, so did ensemble activity, illustrated by trajectories 

through the activity space from a region corresponding to one goal toward another goal. 

CA1 and mPFC ensemble activity in the start arm appeared to distinguish task rules along 

the vertical axis and time along the horizontal axis. The firing rate patterns of a subset of 

individual units discriminated task rules via prospective coding (Figure S3.2).

To quantify the extent to which ensemble codes predicted the rats’ choices, we used support 

vector machines (SVMs) to categorize the task rule represented in the start arm of all single 

trials, and compared these to SVMs trained on the same data with shuffled goal labels using 

permutation tests. CA1 ensembles predicted the pending choice of each trial with a mean 

accuracy of 82.3%, and 24 of 28 ensembles predicted the goal better than 95% of the 

permutations (Figure 3C; expected (5%): 1.4 out of 28; χ2 (1) = 364.83, p < 0.05). mPFC 

ensembles predicted the goal of single trials with a mean accuracy of 74.0%, and 20 out of 

28 ensembles predicted the goal significantly better than chance (expected (5%): 1.4 out of 

28; χ2 (1) =247.11, p < 0.05). Because mPFC and CA1 ensemble activity distinguished the 

goal of each trial well before the discriminative response, each structure could inform 

downstream brain circuits during memory retrieval.

Ensemble firing rates predict choices, but do not represent rules or goals—
mPFC and CA1 ensembles could inform choices by representing task rules, e.g., “go East”, 

spatial goals, e.g., an “image” of the correct goal arm, a pending egocentric response, e.g., 

“turn left”, or more abstract signals that communicate distinct messages (Shannon, 1948). To 

investigate if prospective activity represented task features, we compared ensemble activity 

in pairs of arms that might share commonalities. We reasoned that if neural activity 

represented “goal images”, then ensembles should be similar in the start and selected goal 

arm, whereas if activity represented abstract rules, then ensembles in the two start arms 

should be correlated on journeys to the same goal. We therefore quantified “goal 

representation” as population vector correlations (PVRs) between each start arm and the 

selected goal arm, “rule representation” as the PVRs between the two start arms in journeys 

to the same goal, and “egocentric representation” as the PVRs between the two start arms in 

journeys to opposite goals. By these measures prospective activity did not represent goals, 

rules, or body turns, but strongly differentiated each type of pending journey. Rather than 

predicting the pending choice with overlapping “goal image” representations of the start and 

goal arms, PVs were weakly anticorrelated in both structures (PVR(start, goal): mPFC: r = 

−0.06, t(27) = 5.8, p < 0.001; CA1: r = −0.11, t(27) = 5.36, p < 0.001). Similarly, PVs in the 

two start arms were either uncorrelated or anticorrelated in journeys to the same goal rather 

than representing the common “rule” with overlapping activity patterns (r(N,S): mPFC: r = 

0.002, t(27) = 0.17, p = 0.86; CA1: r = −0.22, t(27) = 12.51, p < 0.001). Journeys from each 
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start arm require opposite body turns to enter the same goal. If PVs in the two start arms 

represent pending egocentric responses, then they should be positively correlated when the 

same body turn leads to opposite goals. Again, PVs in the two start arm were either 

uncorrelated or anticorrelated prior to the egocentric response, (r(N→E, S →W): mPFC r = 

−0.006, t(27) = 0.51, p = 0.35; CA1 r = −0.19, t(27) = 6.6621, p < 0.001). Moreover, the 

correlation between start arm PVs did not distinguish identical and opposite body turns 

(mPFC: t(27) = 0.89, p = 0.38; CA1: t(27) = 1.35, p = 0.19). Together, the PVRs show that 

neither mPFC nor CA1 prospective codes represent rules, goals, or egocentric patterns in 

different journeys. The results suggest instead that prospective codes differentiate episodes 

guided by similar task features. Because we analyzed only ensemble firing rates, however, 

the results do not exclude rule, goal, or any other representation coded by different 

mechanisms, e.g., firing sequences related to vicarious trial and error (Johnson and Redish, 

2007).

Changes in mPFC activity predict changes in CA1 activity during learning—
mPFC and CA1 ensembles could predict goals independently or cooperatively, 

simultaneously or sequentially. We hypothesized that rule-related mPFC activity modulates 

CA1 encoding, so that changes in mPFC activity should predict CA1 dynamics as learning 

proceeds. Alternatively, if place-related CA1 activity helps select mPFC codes, then changes 

in CA1 activity should predict those in mPFC. We compared temporal relationships between 

mPFC and CA1 ensemble activity in the start arm using Granger prediction analysis, which 

measures the extent to which one time series predicts changes in another beyond what each 

series predicts about itself (Cohen, 2014). We assessed the three trials that immediately 

followed a rule change, and used the activity in the first two trials to predict activity in the 

third. We found that the recent history of mPFC ensemble activity predicted changes in CA1 

ensembles (Figure 3D, see supplemental information for methods). mPFC activity during the 

previous two trials increased the explained variance in CA1 activity during the next trial by 

6.4% (p < 0.001, permutation test). In contrast, CA1 ensemble activity did not predict mPFC 

activity during the same trials (0.8% increase, p > 0.05, permutation test). During stable 

performance, however, the predictive relationship reversed and declined, and CA1 activity 

reliably predicted mPFC activity (< 1% increase in variance explained, p < 0.05, 

permutation test). The results show that predictive coding is asymmetric and emerges 

sequentially, not simultaneously, in mPFC and CA1 during learning, and suggest that mPFC 

activity modulates the formation of CA1 representations. The results so far do not prove 

causality, however: earlier changes in mPFC compared to CA1 activity could reflect, e.g., 

different circuit responses to a common input.

mPFC activity differentiates CA1 prospective coding—If mPFC indeed modulates 

CA1, then mPFC inactivation should reduce predictive coding by CA1. To test this inference 

we inactivated the mPFC unilaterally and recorded ipsilateral CA1 activity. Because 

unilateral mPFC inactivation had no measurable effect on observed behavior or reversal 

learning (Figure S2.1), its effects on CA1 activity was unlikely due to altered behavior. If the 

mPFC reduces interference by enhancing the distinction between CA1 representations, then 

mPFC inactivation should reduce CA1 prospective coding separation, measured as the 

difference between ensemble activity states when rats are guided by different goals. 
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Ipsilateral mPFC inactivation did not reduce overall choice prediction accuracy by CA1 

ensembles (SVM decoded goals: saline: 79.2%; muscimol: 79.1%; Ensemble size: saline: N 

= 15.2 / session, s.d. = 6.7; muscimol: N = 15.3 / session, s.d. = 8.3), and most CA1 

ensembles continued to classify goals better than chance (saline: 10 out of 14, 71.6%, 

expected (5%): 0.70, χ2 (1) = 123.56, p < 0.05; muscimol: 11 out of 12, 91.7%, expected 

(5%): 0.6, χ2 (1) = 180.27, p < 0.05; Figure 4A). At the same time, mPFC inactivation 

reduced the separation between CA1 prospective codes, quantified as the distance between 

activity in each trial and the SVM classification margin, the boundary separating pending 

East and West choice representations. CA1 prospective codes were less distinct when the 

mPFC was inactivated (Figure 4B) (mean per-session z-scored margin width: saline = 0.854, 

s.d. = 0.26; muscimol= 0.665, s.d. = 0.20, permutation tests, p < 0.05), demonstrating that 

unilateral mPFC inactivation reduced pattern separation in ipsilateral CA1 representations.

mPFC inactivation does not affect CA1 place coding—mPFC inactivation reduced 

predictive prospective code separation in CA1 ensembles, implying that mPFC activity 

modulated CA1 during learning. The results so far do not determine if mPFC activity 

influenced all hippocampal computations or a subset related to task demands. Hippocampal 

neurons fire in place fields that reflect spatial computations and guide navigation (O’Keefe, 

1971), and mPFC activity could modulate these computations or, e.g. attention (Cassaday et 

al., 2014). If mPFC activity modulates CA1 computations generally, then mPFC inactivation 

should reduce spatial pattern separation as well as predictive goal coding. We therefore 

measured place discrimination by CA1 neurons using the same SVM methods described 

earlier, and found that CA1 ensembles discriminated the two start arms on each trial with 

high accuracy whether or not the mPFC was inactivated (mean decoding accuracy, saline: 

98.9%; muscimol 99.3%). Every CA1 ensemble supported the discrimination (saline: 14 of 

14, expected (5%) = 0.70, χ2 (1) = 252.7, p < 0.05; muscimol: 12 of 12, expected (5%) = 

0.6, χ2 (1) = 216.6, p < 0.05; Figure 4C), and mPFC inactivation did not affect the 

magnitude of place discrimination (SVM margin width, saline: mean = 1.79, s.d. = 1.32; 

muscimol: mean = 1.97, s.d. = 1.19; p > 0.05; Figure 4D). Established measures of place 

coding extended the SVM findings: mPFC inactivation resulted in a small, non-significant 

reduction in CA1 spatial information content (c.f.,(Kyd and Bilkey, 2003)). The spatial 

information per spike for CA1 units in the saline condition was 2.37 (s.d. = 1.77), and 2.35 

(s.d. = 1.83) for muscimol (difference: p > 0.05, permutation test). mPFC inactivation 

affected goal but not place coding, suggesting that different networks maintain spatial 

representations as mPFC modulates CA1 rule coding.

mPFC modulation of CA1 predicts subsequent learning rate—The results so far 

suggest that mPFC rule signals modify CA1 encoding, and prevent interference by 

promoting the formation of distinct memory representations. If mPFC separation of CA1 

prospective codes improves subsequent learning, then future performance should vary with 

mPFC’s current influence. In quantitative terms, the magnitude of the Granger value 

measured as one rule is learned should predict how quickly the next rule is acquired. We 

therefore compared the Granger prediction in sets of trials that preceded reversals learned at 

different rates, categorized as fast, moderate, or slow learning speeds (1–3, 4–7, or >7 trials 

to above chance performance; (Smith et al., 2004)). The magnitude of mPFC’s effect on 
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CA1 activity predicted the speed of subsequent rule learning. The largest effect of mPFC on 

CA1 dynamics occurred during early rule learning and stable performance in trials that 

preceded the most rapid reversals, when the next rule was learned in <= 3 trials (increase in 

explained variance: early learning = 29.0%, stable performance = 4.8%, permutation tests p 

< 0.05, Figure 5). mPFC had less effect on CA1 dynamics when subsequent reversal 

learning proceeded in > 3 trials. Moreover, the predictions pertained only to subsequent 

learning. mPFC effects on CA1 dynamics were weak when learning speeds were categorized 

using either the previous or the current rule (maximum increase in explained CA1 variance 

by mPFC: previous rule < 7.1%, p < 0.05; current rule, < 8.3%, p < 0.05). Though both 

mPFC and CA1 ensemble activity predicted goal choices, switching to a new rule was 

fastest when mPFC activity most strongly modulated CA1 as rats learned the previous rule. 

The mPFC may support reversal learning by increasing goal-separated prospective codes in 

CA1 that reduce interference proactively across episodes.

Discussion

In a hippocampus-dependent spatial task, mPFC dysfunction left discrimination learning and 

retrieval intact but impaired switching between rules in serial reversals. mPFC and CA1 

spiking was theta synchronized, ensemble activity in each structure predicted pending 

choices, mPFC inactivation reduced prospective, but not place coding in CA1 

representations, and mPFC modulation of CA1 activity as rats learned one rule predicted 

how quickly they switched to the next rule. These findings are consistent with the view that 

mPFC computations improve hippocampal-dependent learning and memory by signaling 

changing goals, rules that distinguish representations of identical places in the same spatial 

context.

Encoding, retrieval, and memory interference

The mPFC utilizes contextual information to minimize interference, providing task rules that 

discriminate amongst conflicting representations (Preston and Eichenbaum, 2013). While 

the hippocampus is ideally situated anatomically to associate multiple aspects of experience 

that overlap in place and time, the mPFC further integrates representations from the 

hippocampus (Preston and Eichenbaum, 2013) and other regions (Hoover and Vertes, 2007). 

mPFC circuits may help compute neural representations of abstract rules, superordinate 

representations of different behaviors, e.g. “turn left” and “turn right”, performed to 

accomplish the same goals, e.g. ‘go east’ or ‘go west.’ Rules, motives, and other goal-related 

signals define internal contexts that, like space and time, can integrate or segregate 

memories of past and present experience.

The current findings extend the role of the mPFC in hippocampal-dependent learning and 

memory from coping with interference from the past to minimizing potential interference in 

the future, and imply that mPFC inputs contribute to learning and memory retrieval through 

Hebbian mechanisms. As input to the hippocampus, different internal context signals could 

reduce the overlap among active representations when other conditions are similar. If distinct 

input patterns modify synaptic weights during learning, then their subsequent activity will 

help activate rule-separated hippocampal representations, thereby reducing interference 
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during memory retrieval. This view helps integrate disparate studies by proposing that 

mPFC activity during learning is coupled to its subsequent role in memory retrieval.

The present experiment trained rats to switch between spatial goals in a fixed external 

context, so that appropriate responses relied on internal context and had to be learned in each 

reversal. In these conditions, mPFC inactivation impaired neither retrieval of an established 

spatial memory nor learning one new spatial goal. Rather, performance was impaired only if 

the mPFC was inactivated during both initial and reversal learning (Figure 1E), when 

identical stimuli were associated with conflicting responses, as though mPFC activity during 

encoding was necessary for its subsequent contribution to retrieval.

mPFC inactivation impairs contextual memory retrieval in tasks that require the 

hippocampus (Navawongse and Eichenbaum, 2013; Peters et al., 2013; Xu and Sudhof, 

2013). For example, rats were presented with both lemon and peppermint scented cups in 

two spatial environments, and trained to associate one odor with food in each. In this case, 

intact rats learned two fixed associations between external context, stimulus, and reward, and 

mPFC inactivation after training impaired memory retrieval (Navawongse and Eichenbaum, 

2013). If the mPFC is needed to learn contextual associations, then inactivating the mPFC 

during training should prevent the formation of context-separated odor-reward associations 

and thereby preclude subsequent contextual retrieval.

Prospective coding by CA1 ensembles differentiates imminent goal choices, likely 

contributes to memory retrieval, and may require coordinated activity in the hippocampus 

and PFC. Spatial memory tasks favoring a prospective strategy are impaired by both bilateral 

mPFC inactivation as well as crossed inactivation of the mPFC and the contralateral 

hippocampus (Goto and Grace, 2008). Recording studies concur that mPFC activity 

contributes to prospective coding by hippocampal ensembles, and suggest that rule-based 

pattern separation supports contextual retrieval. In another spatial task, prospective coding 

by hippocampal neurons distinguished pending trajectories (e.g., go left vs. go right), and 

inactivating the nucleus reuniens, which relays signals from the mPFC to the hippocampus, 

eliminated the prospective code (Ito et al., 2015). Unilateral inactivation of the mPFC 

reduced, but did not eliminate prospective coding separation in the present experiment, 

perhaps because other inputs from the PFC remained intact, e.g. the OFC and anterior 

cingulate that would be disconnected from the hippocampus by nucleus reuniens inactivation 

(McKenna and Vertes, 2004; Vertes et al., 2006). CA1 activity distinguished between 

identical places and scents in different spatial contexts, and though place fields were 

maintained after mPFC inactivation, firing patterns no longer discriminated the objects 

during stimulus sampling, as if rule information was lost (Navawongse and Eichenbaum, 

2013). The present results agree that mPFC activity modulates CA1 prospective coding, and 

show that the strength of this modulation is strongest during reversal learning, as 

hippocampus ensembles form predictive representations. The data suggest that CA1 

ensembles “learn to retrieve” by incorporating mPFC “rule” signals that subsequently 

activate context-separated representations. The results show that CA1 prospective coding 

differentiates rules and egocentric responses as well as spatial goals, suggesting it 

contributes generally to memory discrimination, distinguishing similar events by their 

association with other salient task features. By linking internal or external contextual 
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features to ambiguous stimuli, mPFC signals establish separate CA1 representations of 

similar events during learning and activate prospective codes during retrieval that reduce 

memory interference.

While the PFC may reduce interference during both encoding and retrieval, its contribution 

to behavior likely depends on task demands that interact with a limited functional capacity. 

In people, proactive strategies decline as demand for “real time” working memory increases 

(Braver, 2012), as though keeping current and potential future items “in mind” require the 

same computational resources. As in people, mPFC activity in rats may guide present or 

future behavior as ongoing tasks demands vary. For example, increasing the frequency of 

spatial reversal discriminations (Riceberg and Shapiro, 2012) or the number of simultaneous 

discriminations (Peters et al., 2013) may “shift” mPFC resources away from memory 

encoding and toward handling interference among co-active representations. The 

mechanisms affected by task demands that shift PFC resources are unknown, and may 

depend on how discriminative information is presented in time. Discrete trials separated by 

seconds to minutes include behavioral pauses typically accompanied by hippocampal sharp 

wave ripples (SWRs) that coordinate PFC and CA1 activity and support memory 

consolidation (Jadhav et al., 2016), conditions that may promote mPFC integration with 

hippocampal encoding. Continuous trials separated by shorter delays may reduce behavioral 

pauses, SWRs, and opportunities for integrating mPFC signals with hippocampal encoding.

In summary, behavioral and physiological evidence suggest that mPFC activity during 

learning modifies hippocampal encoding to proactively minimize subsequent interference 

among representations during memory retrieval (Figure S4.1). mPFC activity conveys rules 

in the present that help separate hippocampal representations and facilitate subsequent 

learning; eliminating mPFC signals reduces rule discrimination in hippocampal codes. 

mPFC signals related to abstract rules exemplify one type of internal context that can help 

memory discriminations when the world appears stable but the situation has changed.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for additional information may be directed to, and will be fulfilled by, the lead 

contact, Dr. Matthew Shapiro (matthew.shapiro@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAIL

All experiments described in this paper used Adult Long-Evans rats purchased from Charles 

River Laboratories (N = 17; age: ~2 months; weight: ~280 grams). Rats acclimated to the 

colony for one week with ad-lib access to food and then started on food restriction. Food 

intake was monitored and adjusted so that the rats maintained at least 80% of their projected 

ad-lib weight, supplemented for normal growth. After 5 days of food restriction animals 

were handled by the experimenter for 20 minutes a day for 5 days to acclimate them to 

human contact.
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METHOD DETAILS

Behavioral testing

Apparatus: Behavioral testing and recording was performed on an elevated plus maze (arms 

64 cm long, 6.5 cm wide) and a waiting platform were centered in a room decorated with 

high-contrast posters to allow the rats to visually orient themselves in space. The maze was 

painted matte black and was fitted with infrared emitter/sensor pairs to automatically log 

animals’ responses and to trigger LED cue onsets. The emitter/sensor electronics were 

purpose built, interfaced with a PC via a NI-DAQ 6008 (National Instruments), and 

controlled using in-house software written in Matlab.

Behavior Training

Shaping: Animals were introduced to the behavioral testing room after handling. The 

experimenter placed chocolate sprinkles in the ends of the goal arms of the plus maze and on 

the wait platform, where he then placed a rat. After the rat consumed all the food on the 

platform, it was placed on the north start arm facing away from the choice point and allowed 

to explore the maze until all the chocolate sprinkles at the end of both of the goal arms were 

consumed. The rat was then returned to the wait platform, and the experimenter re-baited the 

goal arms of the maze. After ~1 minute, the rat was placed on the south start arm facing 

away from the choice point and allowed to explore the maze until the chocolate sprinkles in 

both goal arms were consumed. The rat was then returned to the wait platform for 1 minute 

and then returned to its home cage. Training on the behavioral tasks started on the following 

day

Training: One group of rats (N = 4) was trained only in the spatial reversal task. Another 

group (N = 6) was trained in both the spatial reversal task and a cue-response task (see next 

two headings). Training in both tasks occurred in separate sessions separated by 

approximately 6 hours, and the order of task presentation was randomized day to day. The 

behavioral results described in the main text of the paper were indistinguishable in the two 

groups of rats (Figure S1), and data from the cue-response task are not discussed here. After 

a rat reached the training criterion (see below), it was implanted with cannula in the mPFC 

bilaterally (Figure S4.2) and allowed to recover for 7 days before being handled again. 

Animals were then re-trained to criterion performance before behavioral testing resumed. A 

second group of animals was trained similarly and implanted either with dual site 

hyperdrives targeting mPFC and CA1 (N = 3), or with a cannula in the right mPFC and a 

recording hyperdrive targeting the ipsilateral CA1 (N=4).

Spatial reversal task: Rats were trained to perform a spatial memory task that requires 

hippocampal function. In each trial, the experimenter put food at the end of one goal arm in 

the plus maze, picked up the rat from the wait platform, and placed it on one of the two start 

arms (north or south); the rat was allowed to enter a goal arm, and was then returned to the 

wait platform. The same goal arm was rewarded throughout a block of trials, when the rat 

learned by trial and error to apply one of two mutually exclusive rules (‘go east’ or ‘go 

west’) to find the food. After a correct choice the rat was allowed to consume the reward 

before it was returned to the wait platform. Errors trials were counted when a rat put all four 
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paws into the non-rewarded goal arm. During the first three trials of a block the animals 

were allowed to self-correct; otherwise, the error trial ended when the rat reached the end of 

the incorrect goal arm or turned around. After the rat made 10 correct responses in a block 

of 12 consecutive trials, the reward contingencies were reversed and the animal learned to 

use the opposite rule to find food. This procedure was repeated until animals completed ~64 

trials. If a rat did not learn a spatial discrimination within 20 trials it was returned to its 

home cage. Animals were given rat chow in their home cages after >= 2 hours had elapsed 

since the end of testing on a given day. Rats were trained in the task until they performed at 

or above 80% accuracy for 3 out of 4 consecutive training days.

The start arm sequence was chosen pseudorandomly so that the rank correlation between 

subsequent start arms was less than +/− 0.100 and the same start arm was not repeated more 

than 4 times in four consecutive trials. The identity of the initial goal arm was chosen 

pseudorandomly across days.

Cue-Response Task: A group of animals (N=6) was trained to perform a cue-response task 

as well as the spatial reversal task, and the cue-response data are not described in the main 

text. As described in the supplemental material, animals trained in one or both tasks 

performed indistinguishably. Animals were trained on the cue-response task in the same 

testing room, but in near-complete darkness to minimize interference from spatial cues 

around the plus maze (deep-red light allowed the experimenter to see). All behavioral 

procedures were identical to the spatial task, except that the entrance to the correct goal arm 

was signaled by LEDs that were illuminated when the rat reached the halfway point of the 

start arm. Entering the cued goal arm led to the reward. The identity of the goal arm was 

chosen pseudorandomly in the same fashion as the start arms, with the additional criterion 

that the rank correlation between the start and goal arm sequences was less than +/− 0.100.

Cannula infusions: During the infusion procedure, animals were held in the experimenter’s 

lap and given a small piece of rat chow while the dummy cannula were removed and the 

infusion cannula were inserted into the guides. No anesthesia was used, and cannula were 

held in place with a small piece of masking tape. Animals were pet gently to keep them 

occupied during the infusion, and were not otherwise restrained. The infusion cannula were 

connected to 1 μL Hamilton syringes and an electronic pump delivered the infusate 

(muscimol or saline; see below) at a rate of 0.25 μL/min for two minutes (0.5 μL total). The 

infusion cannula were left in place for an additional five minutes to allow for diffusion of the 

drug/vehicle. When the infusion was complete, animals were given another piece of rat 

chow while the injection cannula were replaced with the dummy cannula. The animals were 

then returned to their home cages for 25 minutes prior to the start of testing.

Muscimol was dissolved in phosphate buffered saline (PBS) (0.1 μg/μL), and PBS was used 

as the control infusate (Rich and Shapiro, 2007; Young and Shapiro, 2009).

Delayed infusion experiments: A second set of experiments added a delay between ID and 

R1 to compare the effects of mPFC inactivation given before or after ID. The first 

experiment delivered infusions before the ID as described earlier. In the delayed infusion 

procedure, the animals were removed from the testing room after the ID, given a sham 
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infusion that mimicked the sensory aspects of the actual infusion using empty cannula and 

infusing nothing, and then placed on the wait platform for 25 min before R1. The second 

experiment switched the order of the actual and sham infusions, so that the sham infusion 

preceded the ID and the actual infusion preceded R1.

Task order: The infusion/testing schedule followed an ABBA design, with saline infusions 

given on days 1 and 4, and muscimol on days 2 and 3. Behavioral testing started 25 minutes 

after the infusion. For the first four days of testing, six of the animals performed the spatial 

task first and the cue task immediately after. The other four animals performed only the 

spatial task. The animals trained in both tasks repeated the first four days of testing, except 

that they performed the cue task first and the spatial task second. During these days, 

infusions took place 50 minutes before the spatial reversal task, as opposed to the usual 25. 

Figure S1 illustrates that training on the additional task had no effect on the observed 

interference effect following mPFC inactivation.

Electrophysiology

Hyperdrive implants and tetrode lowering: Hyperdrives with 24 independently movable 

tetrodes were built in-house. Tetrodes were spun from 12.5 μm nichrome wire (Kanthal 

Precision Technologies), loaded into the hyperdrive, and cut and gold plated until the 

impedance on each wire was approximately 200 kΩ measured at 1000 Hz. During 

implantation, the electrode interface board (EIB 36 24TT; Neuralynx) was connected via 

0.003” stainless steel wire to four ground screws distributed across the skull as well as two 

reference screws implanted above the cerebellum. The implant coordinates in mm from 

Bregma were CA1: AP −3.6, ML 2.0; mPFC: AP +3.0, ML 0.5. See the section on general 

surgical procedures for more detail. The tetrodes were lowered 1.4 mm into the cortex after 

surgery and were not moved again for at least one week. The tetrodes were advanced slowly 

(μm/day) towards the recording target, reaching either CA1 or mPFC after 2.5–3 weeks. The 

proximity of CA1 tetrodes to the pyramidal cell layer was estimated by sharp wave / ripple 

profiles (Csicsvari et al., 1999); Tetrodes were lowered to the mPFC (3–4 mm) by turning 

the microdrive screws 10.6 – 14.2 times. To ensure recording stability, the tetrodes were not 

adjusted for >= 24 hours before behavior testing and recording.

Recording apparatus: Multiunit spike and LFPs were acquired using either a Cheetah 160 

(N=1 rat from saline/muscimol study) or a Digital Lynx SX (Neuralynx). For both systems, 

an electrode interface board connected tetrodes to a headstage containing unity gain 

amplifiers to minimize cable motion artifact; the headstages were connected to the system 

amplifiers with thin-wire tethers. Unit activity was filtered between 600 and 9000 Hz and 

digitized at 32,000 Hz (or about 28,000 Hz for the Cheetah 160) prior to online spike 

detection. For each tetrode, amplitude thresholds were manually set on each wire to 

maximize the signal to noise ratio for spike detection. When the amplitude on a single wire 

rose above the threshold, the signal waveform around the threshold crossing was saved 

(along with a timestamp) for all four wires. The waveforms were sorted offline into single 

units. LFPs signals were sampled continuously at 2000 Hz with a band-pass filter (1– 512 

Hz) and recorded with the active electrode referenced directly to a skull screw implanted 

above the cerebellum or to another tetrode implanted in the brain. In the latter case, the 
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reference tetrode was also recorded with respect to a skull screw implanted above the 

cerebellum so that the signal from the active electrode with respect to the skull could be 

recovered offline by subtraction. The position of LEDs mounted on the headstage was 

recorded by an overhead video camera, digitized (30 Hz), converted to time-stamped XY 

coordinates, and stored for offline analysis by the Cheetah recording system.

General surgical procedures: Each animal was given its daily allotment of rat chow ~2 

hours before surgery, and was then anesthetized in a Plexiglas chamber with 5% isoflurane 

delivered at a rate of 1 L/min. Once deeply anesthetized, the rat was given ketoprofen 

subcutaneously (3 mg/kg; Sigma) to minimize post-operative pain, its head was shaved and 

positioned in a Kopf stereotax. Isoflurane (1–3%) delivered via a nose cone maintained 

anesthesia during surgery. The scalp was cleaned with Povidone-Iodine (Dynarex) and 

anesthetized with 0.7 cc of lidocaine / epinephrine (0.5% / 1:200,000; Hospira, Inc.). Core 

body temperature was monitored and maintained using a rectal probe and heating pad (part 

number: ATC 1000; World Precision Instruments). Sterile normal saline (1 cc) was delivered 

subcutaneously every hour to maintain hydration, and an ophthalmic ointment (Puralube vet 

ointment; Dechra) was applied to the animal’s eyes and reapplied hourly; otherwise the eyes 

were covered for the duration of surgery. Twenty min after keotprofen administration, the 

scalp was resected and the skull was cleaned using distilled water and a dilute solution of 

hydrogen peroxide. Five holes were drilled into the thicker parts of the skull for stainless 

steel bone screws (part number: 40-77-8; FHC) to stabilize the implants. The skull was 

cleaned again and lambda and bregma were set to the same DV level. Target sites were 

measured and marked, thin layers of Metabond (Parkell) and Panavia (Kuraray) were 

applied to the skull to increase implant stability, excluding the areas around the implant site. 

Burr holes were drilled through the skull above the implant target site to expose the dura, 

and a stereo microscope was used to ensure that it was fully exposed and clean. The dura 

was incised with micro scissors, retracted, and the exposed cortex was kept clean and 

hydrated with normal saline until the implant was lowered into place. The craniotomy 

around the implant was sealed with Kwik-Cast (WPI), and the entire implant was then 

secured to the skull with dental acrylic (Coltene/Whaledent Inc.). After surgery, animals 

were returned to a clean home cage containing a wet mash of rat chow. For the three days 

following the procedure the mash was infused with a Meloxicam suspension (1 mg/kg; 

Boehringer Ingelheim) to minimize pain due to swelling, and the rats were monitored to 

ensure they consumed the food. Animals generally responded well to this treatment and 

return to preoperative levels of activity after three days. Animals were not handled by the 

experimenter for 7 days post-surgery.

Cannula implants: Cannula pre-cut to size were purchased from Plastics One. Guise 

cannula (26 gauge; C315GRL/SPC, 3.5 mm from plastic base to the tip), and the dummy 

and infusion cannula (33 gauge; C315DC, and C315I, respectively) extended 1.5 mm 

beyond the guide. The relatively short guide cannula was used to minimize damage to the 

frontal white matter during implantation. The tip of the infusion cannula targeted the mPFC 

(mm from bregma: AP: +3.0, ML +/− 0.92, and −3.45 mm ventral to the cortical surface)
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Histology: After the recording experiments the rats were anesthetized with pentobarbital, 

perfused transcardially with normal saline followed by formalin, the brains were removed 

and cryoprotected in a PBS sucrose solution. Coronal slices (40um) cut by cryostat were 

taken to span the electrode target regions (AP from Bregma, mPFC = 2.5 – 4.0; CA1 = −3.0 

– −5.5). The slices were stained with formol-thionin and the electrode tracts were inspected 

microscopically. The mPFC electrode bundles extended through infralimbic and prelimbic 

cortices with the final depth of the electrode tips above. The CA1 electrode bundles 

terminated above the stratum radiatum.

Replication: All analyses were carried out at the group level, and we have not replicated the 

tests in another group of animals.

Strategy for randomization and/or stratification: All experiments were performed 

sequentially using animals selected randomly from an available population; experiment 

assignments were not randomized. All behavioral experiments utilized a within-subjects 

design, and the order of conditions was fixed across animals.

Blinding: The experimenter was not blinded with respect to any task parameters or 

conditions.

Sample-size estimation: Our aim was to power each experiment in order to detect statistical 

effects with as few animals as possible. However, calculation of the required N’s is difficult 

when true effect sizes are unknown, as was the case with these experiments. We selected N’s 

based on our previous experience using within-subjects behavioral (e.g., Rich and Shapiro, 

2009; Young and Shapiro, 2009)) and recording studies (e.g., (Riceberg and Shapiro, 2017)).

Inclusion and exclusion criteria: All animals that were trained to criteria in the behavioral 

task were included in their respective experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior

General behavioral analyses: Spatial task behavioral performance is illustrated in Figure 

S1. Maze behavior was categorized in four possible journey types: north-east (NE), north-

west (NW), south-east (SE), and south-west (SW). During recording experiments, the rats’ 

horizontal and vertical coordinates from the video tracker was linearized and expressed in 

terms of distance from the start of each journey. Reliable trajectories for all trials of a given 

journey type were fit with a polynomial ranging between 5th and 7th order to derive a 

canonical trajectory onto which data from individual trials were projected. Unit activity was 

analyzed on the start arm from 20 to 58 cm marks, after the rat turned toward the maze 

center and before it entered the choice point. Differences in heading angle and running speed 

did not influence the decoding or LFP analyses (see supplemental information Figure S2.2). 

Running speed was assessed on a trial-by-trial basis to generate a distribution of velocities at 

each point on the maze. Positions on the maze within a trial in which animal’s speed fell 

outside of two standard deviations of the mean for that position were removal from LFP 

analyses.
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Behavioral measures: Behavioral performance was quantified by three metrics: trials to 

criterion (TTC), number of errors (NE), and percent correct (PC). TTC was the number of 

trials the animal performed during the initial discrimination (ID) or any of the reversals (R1 

or R2) prior to reaching the learning criterion (10 correct trials within a block of 12 

consecutive trials). NE was the number of errors committed during any of these epochs, and 

PC was the proportion of correct trials during any of these epochs. Analyses carried out on 

TTC included only learning epochs in which animals reached the learning criterion, whereas 

NE and PC include any reversal block in which animals completed at least 12 trials.

Quantifying learning curves: We used the Smith algorithm (Smith et al., 2004) to derive 

learning curves (e.g., Figure S1) and to divide trials into early learning and stable 

performance epochs within reversals (Rich and Shapiro, 2009; Young and Shapiro, 2011). 

The Smith algorithm utilizes all trial outcomes across a learning epoch to calculate the 

probability (with confidence intervals) that a rat will select the correct goal on each trial. We 

defined early learning as the trials before the Smith algorithm predicted with 95% 

confidence that the animal was performing above chance. Stable performance was defined as 

the trials after this point. These operational definitions categorized trials for physiological 

analyses to compare interactions between the mPFC and the hippocampus during standard 

levels of learning and stable performance.

Recording Analyses

Movement analysis: The decoding analyses described in the main text showed that 

population codes in both mPFC and CA1 differentiated animals’ pending goals on the start 

arm of the maze. To determine the extent to which the decoding could be explained by 

different behaviors on the start arm, we analyzed differences in heading angles in 1 cm 

increments along the segment of the start arm used for the decoding analysis (20 to 58 cm). 

The mean heading angle was calculated at each position for each journey type, and the 

differences between East and West journeys were calculated for the North and South start 

arms separately. A null difference distribution was generated by shuffling trial labels for 

each start arm and re-calculating the heading angle differences 1000 times. Visual inspection 

of the data revealed that the differences were von Mises distributed, and the parameters of 

the distribution were calculated accordingly (Fisher, 1993). The probability that the actual 

heading angle difference was obtained by chance alone was evaluated according to the null 

difference PDF, and the threshold for a significant difference was set at alpha = 0.05, FDR 

corrected at each position (see Figure S2.2).

Spike sorting: Spikes recorded on individual tetrodes were clustered into functional units, 

with single neurons as putative sources. Spike waveform parameters describing the shapes 

and relative amplitudes of the waveforms across all four tetrode wires were selected to 

define the basis for a space in which clustering was performed. Semi-automatic clustering 

was performed in several steps starting with KlustaKwik (http://

klustakwik.sourceforge.net/). Noise clusters (e.g. from chewing artifact) were manually 

rejected, the remaining data automatic clustered again and then edited to identify well-

segregated clusters of spikes that were assigned to functional units. The stability of 

individual units was assessed using a combination of waveform features and firing rates. The 
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mean spike amplitude for a given unit was calculated in 20 equal temporal bins spanning the 

entire recording session for each tetrode wire. Any unit showing a significant Spearman rank 

correlation between time and amplitude on any wire (α = 0.05, uncorrected) and an 

accompanying drift in mean firing rate (α = 0.05, uncorrected) were rejected from further 

analysis. Visual inspection revealed that the statistical approach was conservative and units 

that seemed stable by eye were rejected; the included units had markedly stable waveforms.

Units with stable waveforms were clustered into putative pyramidal cell and interneuron 

groups separately for each region analyzed (i.e., CA1 and mPFC) based on waveform 

features (Bartho et al., 2004) and firing rate. Spike asymmetry and firing rate were the best 

discriminators, with interneurons having higher firing rates and more asymmetric waveforms 

and making up approximately 8% of the total number of identified units. All further analyses 

describe putative pyramidal units.

All analyses of neural representations (i.e., multidimensional scaling, SVM, and Granger) 

excluded units with firing rates < 2% of the unit with the highest firing rate. Units firing ≤ 20 

spikes on the start arm were excluded from the spike-LFP phase locking analysis. The 

number of units included in each analysis is described in the relevant sections of the main 

text. The mean number of stable units recorded in single sessions were: Dual site, CA1 N = 

29.4 (s.d. = 13.0), mPFC N = 17.2 (s.d. = 6.5); CA1 recordings with mPFC saline infusions: 

N = 28.1 (s.d. = 11.7); CA1 recordings with mPFC muscimol infusions: N = 27.2 (s.d. = 

11.6).

Local field potentials

Pre-Processing: LFPs were segmented into single trial epochs for analysis and marked as 

useable or unusable on a trial-by-trial basis. CA1 LFPs were inspected for sharp waves to 

determine the relative placement of tetrodes with respect to the pyramidal cell layer 

(Csicsvari et al., 1999). For each recording session, one tetrode from mPFC and CA1 was 

selected for LFP analysis by the proportion of usable trials and the number of recorded units. 

For CA1, LFPs showing positive-going sharp waves were selected to ensure fair comparison 

of theta phase across recordings (Buzsaki, 2002). After re-referencing, the LFPs were 

filtered (2–250 Hz) for further analysis. To measure spike-phase locking LFPs were filtered 

for theta (5–18 Hz).

Frequency analysis: LFPs were padded with a time-reversed copy of themselves to prevent 

wrap-around effects due to convolution in the frequency domain and wavelet transformed 

using Morlet wavelets in 1–14 Hz, 14–30 Hz, and 30–80Hz frequency bands. The wavelet 

factor (i.e., the parameter controlling the tradeoff between frequency and time resolution) 

was set to 14 for 1–14 Hz, 24 for 14–30 Hz, and 32 for 30–80Hz. The position of the animal 

on the plus maze was interpolated at each time point, and time slices of the spectra were 

saved in 1 mm increments so that they could be averaged across trials.

Coherence: Position-locked, complex wavelet spectra were used to calculate coherence. 

Coherence measures the degree to which the phase and amplitude of one signal can be 

predicted by the same information from another. Perfect coherence (Cxy2 = 1; see below) 

occurs when the phase offset between two signals is constant across observations (here, 
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across trials at a given position on a maze at a particular frequency) and the amplitude of 

both signals scale perfectly with one another. Zero coherence occurs when phase and 

amplitude vary randomly with respect to one another. Coherence was calculated as follows 

(Cohen, 2014):

Sxy is the cross-spectral density and Sxx and Syy are the autospectral densities. If the power 

spectrum of a given signal is normalized to unity, Cxy2 measures the consistency of the 

phase offset between the two signals. The manuscript reports raw coherence, and the 

supplemental information show that the coherence was driven almost entirely by phase 

consistency (Figure S3.1).

Spike-phase analysis: The preferred firing phase of units was measured with respect to the 

hippocampal theta oscillation by calculating the phase angle coincident with each spike from 

each neuron. The distribution of phase angles for each given unit was quantified by the 

Rayleigh test for non-uniformity. Filtered CA1 LFPs (5 – 18 Hz) were Hilbert transformed 

to extract the instantaneous phase of the theta oscillation, and the endpoints of each theta 

cycle were detected as phase ‘wraparounds’ from pi to −pi. The phase corresponding to each 

unit’s spike time was interpolated linearly between these endpoints to avoid the nonuniform 

distribution of Hilbert transform values caused by the saw tooth shape of theta oscillations.

Ensemble Coding and the “Kernel trick”: We used nonlinear rate vectors to investigate 

the similarity of neural representations across trials as animals used different memories to 

guide behavior. The elements of these vectors include not only the firing rates of individual 

neurons, but also the products of firing rates of pairs of neurons, triplets, or higher order 

groupings (the method for selecting the size of the groupings, referred to as the expansion 

order, is described in the methods section of the main text). A practical drawback to this 

method is that the number of elements in these vectors can become prohibitively large for 

explicit calculation even for moderate ensemble sizes and relatively low order expansions. 

The kernel method, colloquially referred to as ‘the kernel trick’ (Schölkopf, 2001; 

Schölkopf, 2002), provides a method via which the similarity amongst these expanded rate 

vectors can be calculated without having to explicitly compute the interaction terms of the 

vector for each trial. We used the inhomoengous polynomial kernel to calculate the 

similarity amongst expanded rate vectors for the analyses described in the main text. This is 

a general form of the simpler homogenous polynomial kernel function, described below.

The polynomial kernel takes the form:

where 〈.,.〉 indicates the dot product, Φ represents the mapping of our simple rate vector into 

a space that includes products amongst individual units, x and y are our rate vectors for trials 

x and y, and k(.,.) is the kernel (i.e., the similarity of population activity between the two 
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trials). For this example, assume that x and y are two elements long (i.e., they include rates 

from just two units) and a second order expansion (i.e., one that includes only pairwise 

products of units). The similarity amongst these trials including the expanded rate vectors is 

obtained by calculating the dot product between x and y raised to the power of 2, the 

expansion order in this example.

The expanded rate vector for x (which need not be explicitly calculated) would be:

This expansion includes all pairwise products of firing rates.

The inhomogenous polynomial kernel takes the form:

The inhomogenous polynomaial kernel includes a constant term, c, that controls the 

inclusion of polynomial terms up to order p, whereas the homogenous polynomial kernel (c 
= 0) includes only polynomial terms of order p. Setting c = 1 for the example above, the 

calculation becomes:

The equivalent expanded rate vector would be:

This representation includes terms related to the individual unit firing rates ( ), 

as well as the pairwise products of firing rates ( ). As the expansion order and 

the number of units in the simple rate vector increase, the number of elements in the 

expanded rate vector becomes very large, thus the appeal of the kernel trick. We set c = 1 for 

all of our analyses so that expansions included polynomial terms up to and including the 

expansion order. For example, if the expansion order was set to 3, then the expanded rate 

vector includes the individual unit rates, all pairwise products of individual units, and all 

triplet-wise products.

Ensemble activity was normalized before further processing. Z-scoring the firing rates of 

individual units prevents units with high activity from having disproportionate influence on 

classification, and normalization of rate vectors limits the maximum similarity to one value 

so that no trial is more self-similar than any other. Expansions up to 8th order were 
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simultaneously optimized with respect to KKT complementary condition violation 

tolerance, box constraint, and kernel scale (see below) using a direct search procedure. The 

box constraint parameter affects the ‘softness’ of the SVM margin by controlling the penalty 

for misclassifications and is used to minimize over-fitting. The kernel scale parameter 

divides the kernel arguments by a scalar so that values in the kernel matrix don’t become so 

large or so small that round off errors occur due to limitations on machine precision. The 

KKT complementary condition violation tolerance value sets the stopping tolerance for the 

algorithm. The direct search procedure explores the parameter space by iteratively moving 

along directions that best minimize a cost function, which in this case was the cross-

validation misclassification rate. The direct search algorithm was run with random start 

points 100 times for each expansion order, and the parameter set with the best cross 

validation accuracy and lowest order expansion (in the case of a tie) was chosen for 

subsequent analysis.

Neuronal trajectories—To quantify population coding during learning and memory 

performance, we calculated the similarity of expanded population vectors for all pairs of 

trials in a 38 cm section of each start arm where rats approached but did not reach the choice 

point (20–58 cm of the linearized journey). Firing rates of each unit were calculated for each 

trial in the start arm, z-score normalized across trials, and smoothed with a Gaussian of ½ 

trial standard deviation. Smoothing was carried out on a per-neuron basis across trials by 

first padding the trial-wise rate vector with a time-reversed copy of itself. Data from missing 

trials due to poor video tracking were linearly interpolated. The resulting padded rate vector 

was convolved with the Gaussian by multiplication in the frequency domain, and then 

transformed back to the time domain. The padded portion and interpolated elements were 

then discarded. The purpose of padding the rate vector with a time-reversed copy of itself 

was to prevent mixing of information from the first and last trials of the recording session.

The per-trial rate vectors included all simultaneously recorded units that met inclusion 

criteria and were normalized to unit length. To measure ensemble states during learning, all 

trials within the initial discrimination and each reversal were divided into 7 bins spanning 

the learning curve. Firing rate vectors recorded in trials within a bin were averaged, the 

similarity across all pairs of bins was computed using the kernel trick, and the unique pairs 

of the resulting dot product bins were reduced to 3 dimensions using multidimensional 

scaling. A 2-D projection of the 3-D embedding is shown in Figs. 3A and B.

Support vector machines—Support vector machines (SVMs) quantified the extent to 

which ensemble activity in mPFC and CA1 distinguished between animals’ pending goal 

choices (Schölkopf, 2002). SVMs were trained to distinguish two classes of data (‘go east’ 

vs. ‘go west’) using Matlab’s statistics toolbox (R2014a, Mathworks). For each ensemble, 

single unit firing rates were z-score normalized across trials, and each trial’s vector was 

normalized to unit length. SVMs were fit using an inhomogeneous polynomial kernel, and 

each SVM was optimized to maximize the leave-one-out cross validation accuracy (see 

below and supplemental information). The mean expansion order required for CA1 goal 

prediction in the dual-site implant animals was 2.64 (s.d. = 1.75), and 3.00 (s.d. = 1.92) for 

mPFC. The average expansion order for CA1 goal prediction after mPFC saline infusion 
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was 2.90 (s.d. = 2.45), and after muscimol was 2.75 (s.d. = 2.42). The average expansion 

order required for CA1 start arm decoding after mPFC saline infusions was 1.05 (s.d. = 

0.22) and after saline infusions was 1.00 (s.d. = 0.00).

Cross validation accuracy and significance testing—The accuracy of each SVM 

was defined as the leave-one-out cross validation accuracy. A given SVM was fit to a dataset 

with the exception of a single trial, which was subsequently input to the SVM to classify. 

The cross validation accuracy was the proportion of trials correctly classified. To determine 

if the SVMs were classifying trial goals by discovering task structure or unrelated noise, we 

repeated the above procedure using the same data and parameter sets after shuffling the trial 

labels (e.g., the current goal or current start arm). We calculated the cross-validation 

decoding accuracy following 1000 separate shuffles of the data to determine if the observed 

decoding accuracy was better than chance, defined here as > 95% of the shuffles.

Control procedure: SVM decoding of time-shifted goal vectors: Previous reports note 

that stably recorded units exhibit firing rates that drift over time (Hyman et al., 2012), which 

we also observed in our trajectory plots (Figure 3). To determine if the SVMs were 

discovering neural states associated with temporal variation in firing rates as a proxy for task 

features, we circularly shifted trial label vectors in time (e.g. the last trial became the first, 

and so on), until we found a shifted version that exhibited a near 0 rank correlation with the 

original (+/− 0.100) and re-evaluated the SVM using the shifted vector. Unlike the shuffled 

cross validation, the shifted vector has similar temporal properties as the original. We found 

that decoding of the time shifted data was almost always worse than those with the actual 

goal or start arm labels, indicating that the SVMs were not discovering convenient temporal 

structure that served as a proxy for current goals or start arms. For the dual implant animals, 

decoding accuracy for all 28 CA1 ensembles was greater using the original goal state vector 

(expected: 14 out 28; χ2 (1) =14.0, p < 0.05), and 19 out of 28 of the SVMs fit to time 

shifted data showed better than chance decoding. For mPFC, 27 out of 28 ensembles had 

greater decoding accuracy of the actual goal-state relative to the time-shifted version 

(expected: 14 out of 28; χ2 (1) = 12.07, p < 0.05), and 18 out of 28 of the SVMs fit to time 

shifted data showed better than chance decoding. For CA1 recordings along with ipsilateral 

mPFC saline infusions, 20 out of 21 ensembles had better decoding accuracy on the original 

goal vector (expected: 10.5 out of 21; χ2 (1) = 8.60, p < 0.05), and every ensemble was 

better for the muscimol condition (12 out of 12; expected: 6 out of 12; χ2 (1) = 6.00, p < 

0.05). Similarly, decoding of the current start arm was better for data with actual start arm 

labels relative to their time-shifted counterparts (saline: 21 out of 21; expected: 10.5 out of 

21; χ2 (1) = 10.50, p < 0.05; muscimol: 12 out of 12, expected: 6 out of 12; χ2 (1) = 6.00, p 

< 0.05).

SVM margins—The SVM margin width quantified the magnitude of goal discrimination 

by ensembles using the SVM score, a signed value indicating the distance of a trial from the 

decision boundary. The SVM margin is the difference in SVM scores between a given trial 

(the ‘true’ class) and the trial of the opposite class (the ‘false’ class) with the largest SVM 

score and thereby estimates the distance or separation between two classes. Because each 

SVM was fit using parameters optimized for a given ensemble, we normalized the margins 
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before subsequent analysis. A null distribution of SVM margins was estimated from models 

fit using shuffled trial labels, and actual SVM margins were z-scored according to the null 

distribution. Because the normalized margins were not normally distributed, the data were 

log transformed before ANOVAs or t-tests to stabilize the variance. Only trials in which 

animals made correct responses were included in analyses of SVM margins.

Granger prediction—Granger prediction assesses the temporally directed statistical 

relationship between two time series by testing if the recent history of one time series 

predicts changes in a target time series beyond what is predicted by the history of the target 

series itself. The Granger value quantifies this prediction as the log ratio of the residual 

variances for the model incorporating only one time series (the target) and the model 

incorporating both. The higher the Granger value, the greater the prediction gained by 

including the second time series. Firing rates of individual units were z-score normalized 

across trials and smoothed (1/2 trial standard deviation) to minimize variance due to place 

coding. The smoothing procedure involved linearly interpolating missing trials (e.g., due to 

poor video tracking), padding individual units’ trial-wise rate vectors with a time-reversed 

copy of itself, and convolution with a Gaussian via multiplication in the frequency domain. 

The result was then transformed back into the time domain, the padded portion of the vector 

was discarded, and interpolated data points removed. The padding procedure prevented 

mixing of information from the first and last trials of the recording session. The activity state 

of each trial was defined by the dot product of its population vector with the mean vector of 

the last two trials of the previous contingency using the kernel trick. Dependent variables in 

the linear models were power transformed to stabilize the variance.

Granger predictions were compared to chance using permutation testing. After calculating 

the residual variance of the model that incorporated only the target time series (the 

numerator of the Granger value), we shuffled the trial order of the non-target series and 

calculated the Granger value after each of 1000 shuffles to generate a null distribution. 

Shuffling eliminated the temporal correspondence between the two series and tested the 

extent to which any increase in explained variance of the target was produced merely by the 

increased number of independent variables provided by the non-target series. Actual 

Granger values were compared to the shuffled values to calculate the corresponding 

probability. A similar procedure was followed to assess differences between Granger values. 

In this procedure, the within-trial correspondence between variables in an observation (e.g. 

CA1t-1, CA1t-2, mPFCt-1, mPFCt-2) was preserved, and observations were shuffled between 

models (e.g. from the model examining the influence of mPFC on CA1 to the model 

examining the influence of CA1 on mPFC) prior to calculating Granger values. The 

difference in Granger values was then calculated after each shuffle to generate the null 

difference distribution against which the observed difference was compared.

Granger prediction: Bayes information criterion: The dependent variable (DV) for each 

observation was the similarity of a given trial’s ensemble activity to that observed at the end 

of the previous learning epoch (i.e., ID, R1, or R2). The independent variables (IVs) were 

the similarity measures for the two previous trials for either the target time series alone or 

both time series. The number of IVs (2) was determined by minimizing the Bayes’ 
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information criterion (BIC) with respect to trial number. The BIC aids in model selection by 

balancing model fit with parsimony (i.e., the number of parameters). The BIC was calculated 

using the following equation:

where n is the number of observations in the model, RSS is the residual sum of squares, and 

k is the number of parameters in the model that includes both time series.

Granger prediction: expansion order: Granger prediction was carried out on neuronal 

ensemble states calculated using expanded rate vectors, as described for the SVM analysis. 

A third order expansion was selected for every ensemble to ensure that all data were 

represented on the same scale. This order expansion was chosen because it was the average 

order expansion required to maximize decoding accuracy in the SVM analysis.

Statistical analyses: All statistical analyses of behavioral data were carried out using 

standard ANOVAs and t-tests. All correlations were carried out using the Pearson correlation 

method unless otherwise noted (e.g., Spearman rank correlation for evaluating randomized 

task parameters). Where parametric statistical tests were not appropriate (e.g. in comparing 

Granger values), permutation techniques were used. Statistical significance was set at alpha 

= 0.05 for all statistical analyses unless otherwise noted.

DATA AND SOFTWARE AVAILABILITY

Data and MATLAB scripts are available upon request from Matthew Shapiro 

(matthew.shapiro@mssm.edu)

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Forane (Isoflurane) Baxter NDC: 10019-360-60

Ketoprofen Sigma K1751

Lidocaine / Epinepherine Hospira NDC: 0409-0996-01

Puralube Vet Ointment Dechra NDC: 17033-211-38

Metabond Parkell S380

Panavia Kuraray 488KA

Muscimol Sigma M1523

Experimental Models: Organisms/Strains

Long Evans Rats Charles River 006

Software and Algorithms

MATLAB R2014a Mathworks R2014a

Other

96 Channel DigitalLynx 
16SX

Neuralynx neuralynx.com/products/digital_data_acquisition_systems/digital_lynx_16sx
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cheetah 160 Neuralynx neuralynx.com

12.5 μm nichrome wire Kanthal Precision Technology RO-800

NI-DAQ USB-6008 National Instruments 779051-01

Stainless steel bone screws FHC 40-77-8

Guide cannula Plastics One C315GRL/SPC

Internal cannula Plastics One C315I

Dummy cannula Plastics One C315DC

Metabond Parkell S380

Panavia Kuraray 488KA

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
mPFC inactivation impairs serial reversal learning in a hippocampus-dependent spatial 

memory task. (A) Rats are put on one of two pseudorandomly chosen start arms (North or 

South) in each trial and learn to associate one of two possible goal arms (East or West) with 

food reward. The same goal is rewarded during a block of trials until a rat performs well (10 

of 12 correct choices), and then the other goal is rewarded in a new block of trials. Well-

trained animals learned the initial discrimination (ID) and each spatial reversal in ~5 min. 

(B) The mPFC of each rat was infused bilaterally with muscimol or saline 25 or 50 minutes 

before testing. (C) mPFC inactivation had no effect on initial learning but profoundly 

impaired subsequent reversal learning (R1, R2). Similar effects were observed using other 

behavioral metrics, as illustrated in Figure S1 and Table S1A. (D) Additional experiments 

included a sham infusion and a 25 min delay between ID and R1. One experiment gave the 

real infusion before the ID and the sham infusion before R1 (upper timeline); a second 

experiment reversed this order so that the sham preceded the ID and the actual infusion 

preceded R1 (lower timeline). (E) Inactivating the mPFC before ID impaired R1 despite the 

additional delay (cf. panel C). Inactivating the mPFC after the ID and before R1 had no 

effect on R1, but impaired learning a second reversal (R2). Similar findings were obtained 

using other behavioral metrics, as illustrated in Tables S1B, S2A, and S2B. *above columns 

indicate significant differences between drug conditions within each learning epoch.
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Figure 2. 
Theta oscillations were coordinated in the mPFC and CA1 as rats perform the spatial 

reversal task. (A) Typical examples of LFPs recorded in CA1 (top traces) and mPFC (bottom 

traces) as rats progress through a single trial, each filtered in either low (lower trace) or high 

(upper trace) frequency bands. CA1 LFPs oscillate persistently in theta while mPFC LFPs 

revealed a different pattern in which oscillations increased in frequency and decreased in 

amplitude across the trial. (B) Power spectrograms quantified group averaged LFP data in 0–

14, 14–30, and 30–80 Hz bands, and show that CA1 theta power was greatest on the start 

arm (left). Spectrograms verified the more dynamic mPFC power spectra (middle). Trials 

began with prominent 4 Hz oscillations that increased in frequency as animals approached 

Guise and Shapiro Page 28

Neuron. Author manuscript; available in PMC 2018 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the goal arm. Theta oscillations became prominent as animals entered the goal arm, and 

increased in frequency just before animals reached the reward point. Theta coherence was 

strongest before a trial was initiated, and after animals crossed into the goal arm (right). 

Negative values on the horizontal axis indicate time before initiation of the trial, and positive 

values indicate position on the maze in cm. The dotted line marks the boundary between the 

start arm and the maze choice point. Different panels represent wavelet transformations 

carried out using different parameters to optimize wavelet time-frequency resolution. (C) 

Unit activity in both structures is coordinated by hippocampal theta rhythm. A significant 

portion of units in both mPFC (20.2%) and CA1 (75.8%) showed greater than chance 

modulation of spiking activity by theta phase. Top: the magnitude of theta locking expressed 

in terms of the resultant vector length (see methods). Bottom: the proportion of CA1 and 

mPFC units passing significance at various alpha values. The dotted line represents alpha = 

0.05. (D) mPFC and CA1 units fired at different preferred theta phases. Most CA1 units 

tended to fire near the trough of the hippocampal theta cycle, while mPFC units tended to 

prefer to fire early in the descending phase (Beta2 in (Lansink et al., 2016)). The different 

phase preferences correspond to a temporal offset in spiking between the two structures of 

about 51 ms. (E) Theta trough-triggered averages of the firing rate of mPFC and CA1 units 

verified the phase modulation of firing rates in both regions and the temporal offset of 

activity between the two structures.
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Figure 3. 
Ensemble activity in both CA1 and mPFC distinguish rules, and mPFC activity predicts 

CA1 dynamics. All activity was recorded in the start arm before the rat entered the choice 

point. Population coding dynamics across testing sessions are illustrated qualitatively as 2D 

projections of CA1 (A) and mPFC (B) ensemble states analyzed by MDS. Trials in each 

contingency block were averaged and subdivided into 7 points to span learning curves, 

shown here by arrow heads. The colors show the progression of neuronal activity from the 

start of a new contingency (red) through the learning curve (brightening colors, goal 1 in 

shades of green, and goal 2 in shades of blue) to criterion performance and the end of the 

block (white). Ensemble states distinguish time (or distance) and goals (X and Y axes, 

respectively; goal 1 top, goal 2 bottom). (C) Ensemble codes recorded in the start arms were 

quantified by SVMs that decoded pending goals in single trials, showing rule coding in both 

brain regions. Each dot represents a single ensemble, blue indicates better than chance 

decoding. (D) The history of mPFC activity helped predict changes in CA1 activity early in 

learning (EL), but not during stable performance (SP), when CA1 activity has a small but 
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significant influence on mPFC states. * Above columns indicate significantly different than 

chance defined by permutation tests.
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Figure 4. 
mPFC inactivation reduces the separation of rule, but not place representations in CA1 

ensembles recorded in the start arms. (A) mPFC inactivation did not impair prediction 

accuracy coding by CA1 ensembles, but (B) did reduced the separation between prospective 

codes as measured by the distance between activity patterns in each trial and the SVM goal-

decoding margin. (C) mPFC inactivation did not affect start arm decoding accuracy by CA1 

ensembles, (D) and did not alter the separation between spatial codes recorded in the start 

arm.
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Figure 5. 
mPFC activity during learning influenced CA1 activity most strongly when the subsequent 

reversal is learned most quickly. Granger values were calculated during early learning (A) 

and stable performance (B) for trials that preceded reversals that were learned at different 

rates. Significant influence of mPFC on CA1 was only observed when animals learned the 

subsequent reversal quickly, in ≤ 3 trials (see main text). * above columns indicate 

significantly different than chance calculated by permutation tests.
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