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ABSTRACT

Background. Electrolytic ablation and electroporation based ablation are minimally
invasive, non-thermal surgical technologies that employ electrical currents and electric
fields to ablate undesirable cells in a volume of tissue. In this study, we explore the
attributes of a new tissue ablation technology that simultaneously delivers a synergistic
combination of electroporation and electrolysis (E2).
Method. A new device that delivers a controlled dose of electroporation field and
electrolysis currents in the form of a single exponential decay waveform (EDW) was
applied to the pig liver, and the effect of various parameters on the extent of tissue
ablation was examined with histology.
Results. Histological analysis shows that E2 delivered as EDW can produce tissue
ablation in volumes of clinical significance, using electrical and temporal parameters
which, if used in electroporation or electrolysis separately, cannot ablate the tissue.
Discussion. The E2 combination has advantages over the three basic technologies
of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible
electroporation with injection of drugs) and irreversible electroporation. E2 ablates
clinically relevant volumes of tissue in a shorter period of time than electrolysis and
electroporation, without the need to inject drugs as in reversible electroporation or use
paralyzing anesthesia as in irreversible electroporation.

Subjects Bioengineering, Biophysics, Oncology, Pathology, Histology

Keywords Tissue ablation, Synergy electroporation and electrolysis, Liver, Electrolytic ablation,
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INTRODUCTION

A number of biophysical and biochemical phenomena occur simultaneously when electric

fields are applied across biological matter. These include Joule heating due to electrical cur-

rent energy dissipation, electrolytic reactions at the interface between the electrodes and the

biological milieu, and cell membrane permeabilization known as electroporation. All these

electrical phenomena are used for tissue ablation. Usually the electrical potential delivery
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protocol is designed in such a way as to maximize one phenomenon, while minimizing the

others. For example, in non-thermal irreversible electroporation (NTIRE) the electrical

potential profile is designed to maximize irreversible electroporation while minimizing

Joule heating (Davalos, Mir & Rubinsky, 2005). The non-thermal aspect of NTIRE was

found to be beneficial in tissue ablation treatments, in which it is desired to spare vital sites

in the treated lesion, such as blood vessels and nerves.

In electrolytic tissue ablation, cell death is caused by the chemical interaction between

the products of electrolysis and cells (Nilsson et al., 2000; Czymek et al., 2011). Because the

ablation is caused by a chemical reaction, it is a function of compounds concentration

and time of exposure. One drawback of tissue ablation by electrolysis is the need for high

concentrations of electrolytes and lengthy times of exposure. An advantage is the very low

currents and voltages used.

In ablation by electroporation, brief, pulsed, high electric fields are used to permeabilize

the cellmembrane. Lower electric fields and small numbers of pulses yield reversible electro-

poration, in which the cell membrane permeabilization is temporary. Higher electric fields

with larger number of pulses yield irreversible electroporation in which the cell membrane

permeabilization is permanent, which results in cell death. Both reversible and irreversible

electroporation are used for tissue ablation, each with their advantages and disadvantages.

Reversible tissue electroporation is used for tissue ablation in combination with cytotoxic

additives, in a procedure known as electrochemotherapy (Mir et al., 1991; Marty et al.,

2006). One advantage of ablation by means of irreversible electroporation over elec-

trochemotherapy is that no chemotoxic drugs are injected into the tissue (Rubinsky, Onik &

Mikus, 2007), while the advantage of electrochemotherapy over irreversible electroporation

is the use of fewer pulses and lower electric fields. The need to inject cytotoxic additives

adds a complicating step to the electrochemotherapy procedure. Cell death through

electrochemotherapy is dependent on mitosis cycle rendering and is possibly more tissue

selective (Mir, Banoun & Paoletti, 1988; Orlowski & Paoletti, 1988), while irreversible elec-

troporation induces apoptosis and necrosis instantaneously over the whole volume exposed

to sufficiently high fields. However, the high electric fields and the large number of pulses

used in conventional irreversible electroporation protocols cause some undesirable effects.

They induce muscle contractions that require the use of a muscle relaxant and deep

anesthesia during surgery. Every clinical electroporation protocols, reversible or irreversible,

generates some products of electrolysis, and some heat (Turjanski et al., 2011; Maglietti et

al., 2013).We have recently shown that if substantial amounts of products of electrolysis are

inadvertently generated during an electroporation protocol, a highly detrimental electrical

discharge across the layer of gas formed on the electrodes can occur (Guenther et al., 2015).

In several recent papers we have shown that combining electroporation and electrolysis

(E2) sagaciously yields a new technology of tissue ablation with certain advantages over

tissue ablation by electroporation (reversible or irreversible) or electrolysis alone (Phillips

et al., 2015; Phillips et al., 2016; Stehling et al., 2016). We have developed several possible

synergistic electroporation and electrolysis (E2) protocols. One effective combination

entails delivering first several (eight) reversible electroporation type pulses followed by the

injection of a low voltage direct current to generate products of electrolysis. While effective,
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this combination requires two different power supplies, one for electroporation and the

second for electrolysis (Phillips et al., 2015; Phillips et al., 2016; Stehling et al., 2016). The

combined voltage profile of electroporation pulses followed by low voltage electrolysis

reminded us of an exponential decay waveform (EDW), generated by the discharge of a

capacitor; a type of pulse which was rather common in the early stages of electroporation

research (Sale & Hamilton, 1968). The shape of the capacitor discharge exponential decay

waveform is a high initial voltage followed by a rapid decay towards a trailing low voltage.

This type of waveform is still used in cell electroporation. We thought that with a properly

chosen set of capacitor discharge parameters, the initial high voltage over a suitable

timeframe could serve for electroporation, while the trailing lower voltage could generate

sufficient charge for the generation of electrolytic products. The feasibility of tissue ablation

with a EDW, was shown in the liver of a small rodent (Phillips et al., 2016).

The goal of this study was to extend the observations made in a small animal model

and in an acute study (Phillips et al., 2016) to a larger animal model and a chronic study in

order to show that EDW has the ability to ablate tissue volumes of clinical significance. The

experimental study was supported by a first order mathematical analysis to evaluate the

electric fields and extent of thermal damage generated by the exponential decay waveform.

MATERIALS AND METHODS

Animal protocol
The study was approved by Sir José Antonio Rodríguez Correa, Director of Animal Health

Programs and General Director of Department of Agriculture and Livestock, Ministry of

Environment and Rural, Agricultural Policies and Territory, Government of Autonomous

Community of Extremadura (Spain), with application form number: 2015209030009567

and study register number: 100370001499. The experiment was conducted on in vivo pig

liver, which was in accordance with Royal Decree Law 53/2013 (Feb.1st). According to

the study protocol, three female pigs between 90 and 110 kg were treated. After being

fasted for 24 h, animals were pre-medicated with a combination of diazepam (0.4 mg/kg)

and ketamine (15 mg/kg) injected intramuscularly (IM). Anesthesia was induced with

intravenous (IV) Propofol (3 mg/kg). Endotracheal intubation was performed and

anesthesia was maintained with sevoflurane in oxygen (adjusted to 1.8–2% End tidal

sevoflurane). Possible postoperative pain was treated with Buprenorphine 0.01 mg/kg IM

Pre-med at recovery and Carprofen 4 mg/kg at extubation/recovery. Cefazolin 25 mg/kg IV

was administrated every 2 h. If found to be needed during the procedure, the study had the

ability to deliver pancuronium (0.1 mg/kg, at a dose of 1 mg/ml) through an IV to reduce

muscle contractions during the application of the electrical pulses. The liver was exposed via

amidline incision. The treatment was delivered using two 18-gauge Titaniumneedles (Inter

Science GmbH, Ch) with a variable length (1–4 cm exposed treatment length) insulating

sheath inserted in the liver. Titanium was chosen because, unlike steel or aluminum, it

is chemically inert, is biocompatible and at room temperature inert to oxygen, chloride

and corrosion (Emsley, 2001). The 18-gauge (1.02 mm) variable length electrodes were

custom designed for the delivery of both electroporation and electrolytic pulse sequences.
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The experiment was carried out in an open-surgery setting to maximize the availability

of liver compartments. The delivery of the single exponential decay waveform solely took

place through the described needle-type electrodes. This type of intervention in which only

probes are inserted in tissue for ablation is defined as minimally invasive, as opposed to

invasive resection surgery. This definition applies to cryosurgery, radiofrequency ablation

and the various electroporation modalities.

Two electrodes were inserted in the liver under ultrasound monitoring, in a roughly

axial parallel configuration, normal to the liver surface. Ultrasound images were also

taken throughout the procedure. Since no apparatus is currently available to produce the

exponential decay voltage waveformneeded for the SEE procedure conceived by us, we have

designed and built a newpower supply described in the following device section. The param-

eters varied in this study were: the initial voltage and the time constants of the exponential

voltage waveform. In addition, we varied the number of exponential voltage waveforms

delivered. A total of 23 lesions were produced, in three pigs, in separate experiments.

Animals were sacrificed at 24 h. The pigs were euthanized using Euthasol 2.2 ml/kg IV.

To fix the liver for microscopic viewing, a Foley catheter was placed into the descending

aorta and the hepatic vein was snipped off for drainage of the affluent. The liver was flushed

with physiological saline for ten minutes at a hydrostatic pressure of 80 mmHg from a

pressurized IV drip. Immediately following saline perfusion, a 10% formalin fixative was

perfused in the same way for ten minutes. The liver lobe in which the SEE lesion was made

was removed and stored in the same formalin solution. For microscopic analysis, the tissue

was bread loafed perpendicular to the capsule surface and parallel to the needle tracts. The

needle tracts were marked on the liver surface and the exact location of each experiment

was noted to be able to find the correct needle tracts. All cassettes were processed routinely

from 10% phosphate buffered formalin to wax blocks. Five micrometer sections were made

from each block and stained with Masson’s trichromatic stain for histologic examination.

The stained samples were examined and analyzed by an independent histology service

company and reports were prepared (Narayan Raju, Inc., South San Francisco, CA, USA).

The focus of the histology was to verify the extent and nature of tissue ablation with E2. To

produce information of practical clinical value, the focus of the analysis was on verifying

the ability to produce a continuous lesion between the electrodes.

Device
Wewere unable to find a power supply that can produce the waveformparameters, required

for an EDW protocol in tissues with the dimensions of the pig liver. Therefore, we designed

a power supply that operates in the modality of capacitor discharge electroporation systems

(e.g., Gene Pulser XcellTM Electroporation System; BioRad, Hercules, CA, USA) with an

enhanced performance. The conventional type capacitors used were replaced with a 100

microfarad capacitor to provide the charge required for electrolysis. Similar to the Gene

Pulser XcellTM, the generator has an output of up to 3 kV. Because of the larger capacitors

it can generate exponential decay waveforms up to time ranges of hundred milliseconds,

depending on tissue conductivity and thereby simultaneously deliver electrolysis and

electroporation. The apparatus selects and matches the internal components needed to
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Figure 1 (A) Generator and data acquisition schematic. (B) An illustrative waveform applied in pig
liver for 1,000 V and a time constant of 37 ms including statistical details of the measurement and fit
from the DAC. (C) Needle configuration.

produce the time constants selected for the specific tissue conductivity of the treatment

area by selecting an appropriate capacitor. The apparatus is able to produce and deliver the

exponential decay voltage profile in the time and voltage range for the specific treatment

area. Figure 1B illustrates typical exponential decays shapes obtained for the in Table 1

listed electrical parameters of resistance and capacitance. Resistance and capacitance fully

define the electrical components of the device.

Mathematical analysis
The conductivity of the tissue in the model was adjusted to best fit the measured discharge

curve of the capacitors of each pulse, which, since the charge of the capacity was defined, also

defines the current. An illustrative waveform is shown in Fig. 1.Whilemuchmore advanced

mathematical models for electroporation and their thermal effects during pulse delivery

are available (Corovic et al., 2013) we used a simplified model for several reasons. First,

the available models do not have an exponential decay form yet. Second, electrolysis may

substantially change the electrical and thermal parameters of the tissue, in a way that is not

yet understood. Also, there are not described effects on the metallic surface of the electrode

changing conductivity. Therefore, we have used a simplified first order model which can

provide the necessary information needed for this study. For future studies, the conductivity

increase due to Joule heating and electroporation should be taken into account. The thermal

and electrical field simulations in this study were performed using a finite element solver

(Comsol Multiphysics 5.2) for the Laplace equation (electrical field) and Pennes Bioheat
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Table 1 Parameters used for the thermal and electrical field calculations.

Initial voltage U0 750 V (Fig. 3), 1,000 V (Figs. 4 and 5), 1,500 V (Fig. 6)

Exposure length 1 cm (Figs. 3–5) 2 cm (Fig. 6)

Decay Exponential capacitor discharge

Power supply capacitance Listed in figures

Distance between electrodes 1.5 cm

Electrode diameter 1 mm

Liver: electrical conductivity 0.286 S/m

Liver: heat capacity 3,750 J/(kg*K)

Liver: density 1,000 kg/m3

Liver: thermal conductivity 0.52 W/(m*K)

Titanium: electrical conductivity 7.4e5 S/m

Titanium: heat capacity 710 J/(kg*K)

Titanium: density 4,940 kg/m3

Titanium: thermal conductivity k 7.5 W/(m*K)

equation, in a way identical to that described in (Davalos, Mir & Rubinsky, 2005) in a 3D

model. The setup was approximated as two parallel titanium cylinders in a large volume

of liver tissue with the parameters shown in Table 1. In case of discharging capacitors, the

amount of Joules heating in tissue is prescribed by the dissipation of the charge energy,

Q, (Q=C ∗U0). Therefore, specifying only, the initial voltage (U0) and capacity (C) is

sufficient to simulate the experiment. Thermal damage begins at temperatures higher than

42 ◦C, but only for prolonged exposures on the order of several seconds to hours. Damage

is relatively low until 50–60 ◦C at which the rate of damage dramatically increases (Diller,

1992). Our interest was not in the distinction between these two processes, but only in

the ‘‘worst case scenario’’ to estimate a radius of damage that could have been caused by

thermal effects. We chose 30 s to look at a ‘‘worst case scenario’’ of tissue damage by heat

to observe a lager distance from the electrode due to heat dissipation.

A total of 30 s appeared to be the worst case in terms of radius of possible thermal induced

tissue necrosis when using the perfusion parameters as cited. The waveform delivered to the

electrodes was assumed to be a perfect exponential decay in time, t , (U =U0∗exp−(t/τ )),

where U0 is the initial voltage and the time constant is, τ. The time constant was taken

from the experimental data, through the analysis of the voltage trace during the delivery of

the waveform.

RESULTS

A series of 23 lesions were generated in experiments in which we studied the effects of the E2

waveform parameters on tissue ablation. The study examined the effects of the initial volt-

age, the time constant and the number of exponential decay voltage waveforms delivered.

To facilitate a systematic and well defined analysis of the E2 phenomenon, we will focus

on the results at midline between the two electrodes. The parameters chosen for this study

were drawn from the experimental results of (Phillips et al., 2016) and are listed in Table 2.

They were chosen to deliver substantial amounts of electrolytic products.
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Table 2 Relevant parameters of the displayed experiments.

Lesion # U /V E-field/V/cm Distance/mm Exposure/mm C/µF τ/ms Comment

1 750 500 15 10 100 50 Fig. 2C

2 750 500 15 10 100 100 Fig. 2D

3 1,000 667 15 10 100 70 Fig. 3

4 2 × 1,000 2 × 667 15 10 100 79, 92 2 pulses 30 s interval,
same polarity, Figs. 4 and 5

6 1,500 1000 15 20 100 70 Figs. 6 and 7

Figure 2 Study with an EDWwith initial voltage difference between electrodes of 750 V and vari-
ous time constants. (A) Calculated electric field. (B) Calculated thermal field after 30 s. (C) Macroscopic
image—50 ms time constant—no ablation was noticed. (D) Macroscopic image—100 ms time constant—
some ablation near electrodes.

Figure 2 shows results from a series of studies in which the initial voltage between

electrodes was 750 V, the distance between electrodes was 15 mm, the exposed length was

10 mm and the depth of penetration was 20 mm. This configuration produces an initial

voltage over distance of 500 V/cm. The calculated electrical field norm is displayed in

Fig. 2A and the calculated temperature in Fig. 2B. Geometrically, both graphs represent the

1d-cutline through the perpendicularly induced electrodes with the electrical field and the
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temperatures respectively on the y-axis. Figures 2C and 2D are the macroscopic histology

from lesions treated with a voltage of 750 V between the electrodes and time constants of

50 ms and 100 ms, respectively. If tissue resistance and conduction between electrode and

tissue were constant, the discharge could be fully described using the time constant of the

EDW. However, secondary effects like thin layers of burned tissue, can cause insulation

and hence disrupt the ideal exponential decay. This does not necessarily have any negative

effect on the ablation, but will limit τ to adequately describe the delivered waveform. The

panels show the formalin embedded samples, sectioned in a plane that is transverse to the

centers of the two electrodes. In all the different experiments with 750 V (500 V/cm voltage

to distance between electrodes) there was no configuration in which the lesion between

electrodes became continuous. Figures 2A and 2B show that at the line midway between

the electrodes the electric field is less than 200 V/cm and the temperature is below 40 ◦C.

Figure 3 shows results from an experiment in which the initial voltage between electrodes

was 1,000 V, the distance between electrodes was 15mm, the exposed length was 10mm, the

depth of penetration was 20 mm and the time constant was 70 ms. The slides were prepared

with Masson’s trichrome staining. Figure 3A gives an overview of the evaluated slide. The

image is taken in a plane that transverses the centers of the two electrodes. The area of

the probe is clearly visible, with a deep blue color at the site of the probes, representing

the cellular damage caused by thermal necrosis, surrounded by areas of coagulated blood

(deep red color). The 10× magnification at the anode (Fig. 3B) illustrates an area of

thermal necrosis, where the hepatocytes have sustainedmore intense cellular ablation injury

resulting in denaturation of the cytoplasmic organelles. At the cathode (Fig. 3D) we can

witness the gradual effect of the treatment: Around the macroscopically visible lesion there

is a pale area which represents less affected cells immediately adjacent to the severely affected

hepatocytes (marked with an arrow). The sinusoidal spaces are dilated due to edema and/or

hepatocellular swelling, while the nuclei are condensed. The space between the electrodes

is not fully ablated, as the microscopic images show areas of unaffected cells (Fig. 3C).

Figure 3E shows the calculated electric field for a voltage of 1,000 V and Fig. 3F shows the

calculated temperature distribution. Figures 3E and 3F show that, for these experimental

conditions, the minimal electric field midway between the electrodes is calculated to be

about 240 V/cm and the temperature midway between the electrodes is well below 40 ◦C.

Figure 4 illustrates the histology of liver, from a treatment in which two voltage

exponential decay waveforms with similar parameters as those that produced Fig. 3,

were delivered at an interval of 30 s. The macroscopic image taken from a plane between

the center of the two electrodes (Fig. 4A) shows that the partial electrode pathway (tunnel)

is filled with coagulated blood. This is confirmed by the deep red linear region in the

histological slides stained with Masson’s trichrome staining in Figs. 4B–4D. The dark blue

zone around that region (Figs. 4B–4D) represents the more severely ablated hepatocytes, by

virtue of being closest to the point of energy release. Figure 4E shows the calculated electric

field for an exponential decay waveform with an initial voltage of 1,000 V and Fig. 4F

shows the calculated temperature distribution at the onset of the second pulse. There

are two aspects to notice in Figs. 4E and 4F. Figure 4E is a copy of Fig. 4E. It is obvious

because we have used the electrical parameters of normal liver. However, it is known that
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Figure 3 Study with one EDWwith initial voltage difference between electrodes of 1,000 V and time
constant of 70 ms. (A) Histological slide with Masson’s trichrome staining. (B) 10× magnification of the
right lesion, which is the anode. We see severe acute hepatocellular necrosis with coagulated blood (hem-
orrhage) in the sinusoids. (C) 10× magnification between the electrodes. The cells do not appear to be af-
fected. (D) 10× magnification at the margin of the left lesion, which is the cathode. Here we see the bor-
derline between the necrotic tissue on the left and partially affected cells on the right. (E) Electric field
strength distribution. (F) Temperature distribution after 30 s (scale bar 100 µm).
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the electrical conductivity of electroporated tissue changes after electroporation (Sel et

al., 2005; Ivorra & Rubinsky, 2007), and therefore this panel may not be correct. We also

anticipate that electrolysis will affect the electrical and thermal parameters in a way that

is not fully known. The second aspect relates to the temperature distribution. Figure 4E

shows that the calculated temperature distribution, when the second pulse is delivered is

substantially elevated over the initial temperature when the first pulse is delivered, and

thermal damage may be induced near the electrodes.

Figure 5 shows 10× magnified images of the histological slide from Fig. 4. Figure 5A

shows the space between the electrodes. Fig. 4B gives a 10× magnification of that area,

showing a full ablation zone, with affected cells throughout the area. Hepatocytes both at

the cathode (Fig. 5C) and anode (Fig. 5D) show condensed nuclei, with hemorrhage in the

spaces between, however with intact vessels (Fig. 5C).

Figure 6 shows the histological results of exponential voltage profile in which the initial

voltage between electrodes was 1,500 V, the distance between electrodes was 15 mm, the

exposed length was 20 mm and the depth of penetration was 30 mm. It is important to

notice that the shown top 10 mm of the electrode was insulated. The slides were prepared

with Masson’s trichrome staining. Figure 6A shows the cells on the center line between

the electrodes at the level of the top 10 mm insulated part of the electrodes. Here we see

that the cells are not affected by the treatment. Figure 6B, however, shows the lesion which

was caused by the treatment in the uninsulated part of the tissue between the electrodes.

The lesion is continuous between electrodes at this level. Figure 6C displays the calculated

electric field for a voltage of 1,500 V, and Fig. 6D shows the calculated temperature

distribution. The electric field midway between the electrodes is about 550 V/cm. The

midway between electrodes temperature is about 40 ◦C and way above 50 ◦C in proximity

of the electrodes.

Figure 7 displays a 10×magnification of the pathological slide shown in Fig. 6. Figure 7A

is amagnification of the cathode, showing swollen and necrotic hepatocytes and a disrupted

sinusoidal pattern. Between the electrodes (Fig. 7B) a bridged ablation with affected cells

was observed, with a complete loss of cellular structure. At the anode (Fig. 7C) there is an

affected cellular architecture with hemorrhage. Figures 7A–7C show open and undamaged

large blood vessels within the treatment field.

DISCUSSION

Our main criteria for evaluating the exponential decay voltage waveform ability to ablate

tissue in a clinically significant manner was the ability to induce the ablation throughout the

gap between the electrodes. Therefore, the histological andmathematical analysis is focused

on the tissue found midway between the electrodes. This is the part of the treated tissue

in which the lowest electric fields and lowest temperatures occur. Figures 2 and 3 show

that there are parameters of initial voltage and time constant for which the tissue midway

between the electrodes is not ablated. Figure 2A shows that for an initial voltage of 750 V

and a distance of 1.5 cm between the electrodes (500 V/cm distance between electrodes), the

electric field strength midway between the electrodes is lower than 200 V/cm. This value is
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Figure 4 Study with 2 EDW separated by 30 s with time constants of 79 and 92ms, the first and sec-
ond pulse respectively, 1,000 V difference between electrodes placed at a distance of 15 mm between
them, 10 mm exposed length, 100µF capacitor. Liver was extracted 18.5 h after treatment. (A) Macro-
scopic histological slide (cathode left electrode, anode right electrode). (B) Masson’s trichrome staining
reveals blood coagulation (red) and ablation both around and in between electrodes. (C) Close-up of the
cathode, which is the left electrode. (D) Close-up of the right electrode, which is the anode (scale bar 500
µm). (E) Electric field strength distribution. (F) Temperature distribution prior to the delivery of the sec-
ond waveform at 1 and 30 s.
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Figure 5 Details from Fig. 4. (A) Space between the electrodes in Fig. 4. Bar indicates 500 µm.
(B) 10× magnification of cells between the electrodes, showing the details of the ablated area. (C)
10× magnification of the cathode, showing edema and cellular ablation injury. (D) 10× magnification of
the area by the anode, showing the margin of affected and non-affected cells. All images show Masson’s
trichrome staining. Bars in B–D indicate 100 µm.

substantially below the reversible electroporation threshold for the rabbit liver, which was

measured to be 362 +/21 V/cm (Miklavčič et al., 2000). Since the calculated temperature

midway between electrodes is below 40 ◦C, there is no mechanism to induce damage

between the electrodes. The conditions in the region between the electrodes are below

the levels required for irreversible electroporation ablation, reversible electroporation or

thermal ablation.

Our experiment was designed to be performed without a muscle relaxant, however, in

such a way as to allow for an immediate use of a muscle relaxant as soon as an undesirable

level of muscle contraction is noted. From among the 23 experiments with the exponential

decay voltage waveform done in this pig liver study, a muscle contraction requiring the use

of a muscle relaxant (pancuronium) was detected in none. Two of our researchers (MS

and PM) have experience with several hundred animal and human IRE procedures. On a

scale from 1 to 5, for IRE muscle contraction without muscle relaxants, they evaluate the

contractions we observed as less than one. In comparison with muscle contractions when a

muscle relaxant is used, they evaluated the contractions as similar. In fact, the muscle

contraction was negligible, and at times unnoticeable. It should be emphasized that the
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Figure 6 Study with a EDWwith a time constant of 69 ms, 1,500 V difference between electrodes
placed at a distance of 15 mm between them, 200 mm exposed length, 100µF capacitor. (A)
Macroscopic cross section in a plane through the axis of the electrodes. Image taken between electrodes
at the part where the electrodes were insulated, showing that the cells are not affected. (B) Image taken
between electrodes where the electrodes were not insulated showing that the lesion was bridged (500 µm
bar). (C) Electric field strength distribution. (D) Temperature distribution after 30 s.

reduction inmuscle contraction is an expected benefit from the use of a single pulse. Reduc-

ing muscle contractions in IRE is an important area of current research. In particular, the

HFIRE technology developed by Davalos and his group (Siddiqui et al., 2016) and nanosec-

ond pulses technology (Schoenbach et al., 2007). We believe that the effect we observed

is related to the electrical discharge across electrolytically produced layer of gas around the

electrodes. We have shown in (Guenther et al., 2015) that the electrical discharge across this

layer of gas plays a major contribution to the observed violent motion of the electroporated

object. We have also shown that this motion occurs primarily during the later pulses in a

series of pulse experiments, when the electrolytically produced gas layer becomes substan-

tial. Our single exponential decay pulse, while generating product of electrolysis, eliminates

the violent electrical discharge across that gas layer. The violent discharge is eliminated,

because by the time a large layer of gas has formed near the electrode, the potential at the

electrode is below the value that can induce electrical breakdown.Obviously this observation

is relevant only to the parameters used in this study, in which the maximal voltage was
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Figure 7 10×magnification of the pathological slides shown in Fig. 6. (A) Image taken at the right
electrode, which was the cathode, showing necrotic, swollen hepatocytes and a disrupted sinusoidal pat-
tern. (B) Image taken between the electrodes, illustrating a complete loss of cellular structure with swollen
hepatocytes. (C) Left electrode, which was the anode, showing an affected cellular architecture and hemor-
rhage. Note that the large blood vessels are open and unaffected. Scale bar 100 µm.
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1,500 V (1,000 V/cm voltage over distance) and the maximal time constant 148 ms.

Figure 3 shows that increasing the initial voltage of the exponential decay waveform

to 1,000 V will also increase the extent of the damage near the electrodes. The distance

between the electrodes is 1.5 cm and therefore the initial voltage to distance ratio is

750 V/cm. Figure 3E shows that the electric field midway between electrodes is calculated

to be below 300 V/cm. This value is below the 362 ± 21 V/cm reversible electroporation

threshold (Miklavčič et al., 2000). Tissue damage by heat can be also excluded, since the

temperature between electrodes does not exceed 40 ◦C (Figs. 2B and 3F). In this case,

the conditions in the middle between the electrodes are also below the levels required for

irreversible electroporation ablation, reversible electroporation or thermal ablation.

Figures 4 and 5 show that it is possible to ablate the entire zone between electrodes by

using two consecutively delivered exponential decay waveforms with the same electrical

parameters, distance between the electrodes and waveform shape as those used to produce

the results in Fig. 3. The initial voltage of the exponential decay waveform was 1,000 V,

and as the distance between the electrodes is 1.5 cm, the initial voltage to distance ratio is

750 V/cm. Figure 3 shows that cells between the two electrodes survive the delivery of a

single exponential decay waveform. The difference is that the results in Fig. 3 were obtained

with one exponential decay waveform and those in Figs. 4 and 5 were obtained with two

exponential decay waveforms. This suggests that the delivery of the second waveform is

responsible for the cell death in the zone between the electrodes. Figures 3E and 4E show

the theoretical calculated electric field. It is seen that in the zone between the electrodes the

electric field is typical of reversible electroporation. This may explain why cells survive in

the middle zone in Fig. 3. There are a few possible explanations for the mechanism of cell

death in the central zone between the electrodes after the delivery of two exponential decay

waveforms. One explanation may be the change in electrical and biophysical properties

as a consequence of the delivery of the first waveform and the attendant change in the

electrical field that was actually delivered during the second waveform. Figure 4F shows

that the calculated temperature prior to the delivery of the second exponential waveform is

elevated relative to that prior to the delivery of the first waveform. Elevated temperatures

favor electroporation and may reduce its threshold (Polak et al., 2014). Furthermore, it

is known that electroporation changes the electrical conductivity of tissue. While Fig. 4E

was obtained for the electrical conductivity of the normal liver, the second waveform may

generate a somewhat modified electric fields, which may favor the cell death seen in the

middle zone in Figs. 4 and 5. An additional or another possible mechanism responsible for

the difference in cell ablation between the cases depicted in Figs. 3 and 4 may be related to

the effect of electrolytic products. The second waveform, which is responsible for the cell

ablation in the central zone in Fig. 4, has delivered twice the level of electrolytic compounds

than that delivered in the single waveform treatment whose results are depicted in Fig. 3. It

is possible that the enhanced cell death may be related to the increased amount of products

of electrolysis, due to the second waveform and their synergistic effect with reversible

electroporation. A combination of the effects of changes in properties and products of

electrolysis may be also responsible for the difference in extent of cell ablation between the

results depicted in Figs. 2 and 3. Obviously a more thorough study is needed to elucidate
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this mechanism. An important aspect of this study would be a detailed mathematical model

that combines calculation of electric fields, temperature and effects of electrolysis.

The results displayed in Figs. 6 and 7 produce stronger evidence of the E2 mechanism

of tissue ablation. Here, an increase of the exponential decay waveform initial voltage

to 1,500 V has produce ablated tissue between the electrodes. Calculations show that the

electric fieldmidway between the electrodes is about 550 V/cm (Fig. 6E). This value is below

the irreversible electroporation threshold for the rat liver (637 V/cm ± 43 V/cm)(Miklavčič

et al., 2000), keeping in mind that this threshold depends on several parameters such as

pulse shape, number of pulses, pulse duration and configuration (Qin et al., 2013). The

temperature midway between electrodes is about 40 ◦C, (Fig. 6F), which is below the

threshold of thermal damage. The mechanism of tissue ablation at the midpoint between

electrodes is neither irreversible electroporation nor thermal. The most likely possible

mechanism is the synergistic effect of electrolysis and reversible electroporation.

The E2 protocol requires a special waveform comprised of an exponential decay shape

with a steep decrease in voltage to values that will not induce an electrical discharge across

the electrolytically product near the electrodes and a longer low voltage tail, that can generate

sufficient products of electrolysis for the E2 ablation. To the best of our knowledge currently

available electroporation systems cannot deliver exponential decay waveforms with the de-

sired, electrolytic products generating time constants. To this end we havemodified existing

commercial designs (e.g., Gene Pulser XcellTM Electroporation System; BioRad, Hercules,

CA, USA), as described in the methods and materials section. The key difference is the use

of larger capacitance, in essentially the same circuit.

This is a first large animal study on the use of the synergy between electrolysis and

reversible electroporation to enhance tissue ablation by electroporation. However, the E2

combination seems promising. It has the ability to create comparable clinically relevant

areas of tissue ablation, in a much shorter period of time than irreversible electroporation,

with lower voltages and single waveforms, without the need to inject drugs and without

the need for paralyzing anesthesia.
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