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Abstract

A relatively large number of studies have investigated the power of structural magnetic reso-

nance imaging (sMRI) data to discriminate patients with schizophrenia from healthy con-

trols. However, very few of them have also included patients with bipolar disorder, allowing

the clinically relevant discrimination between both psychotic diagnostics. To assess the effi-

cacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the dis-

criminative power of a wide range of commonly used machine learning algorithms (ridge,

lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier,

regularized discriminant analysis, random forests and a Gaussian process classifier) on

main sMRI features including grey and white matter voxel-based morphometry (VBM), ver-

tex-based cortical thickness and volume, region of interest volumetric measures and wave-

let-based morphometry (WBM) maps. All possible combinations of algorithms and data

features were considered in pairwise classifications of matched samples of healthy controls

(N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128).

Results show that the selection of feature type is important, with grey matter VBM (without

data reduction) delivering the best diagnostic prediction rates (averaging over classifiers:

schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipo-

lar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those

grey matter VBM accuracy rates were not even improved by combining all feature types in a

single prediction model. Further multi-class classifications considering the three groups

simultaneously made evident a lack of predictive power for the bipolar group, probably due

to its intermediate anatomical features, located between those observed in healthy controls
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and those found in patients with schizophrenia. Finally, we provide MRIPredict (https://www.

nitrc.org/projects/mripredict/), a free tool for SPM, FSL and R, to easily carry out voxelwise

predictions based on VBM images.

Introduction

Although the role of statistical methods in medical research has been historically dominated

by inference, its use for prediction has become more relevant in recent years. In part, this shift

in objectives has been allowed by the availability of large amounts of data together with the

development of new computational tools that can deal with these large datasets [1]. Among

other sources, structural magnetic resonance imaging (sMRI) data has been proposed as an

input for clinical diagnosis and outcome prediction in different clinical areas [2].

Initially, due to the large extent of MRI datasets, intermediate steps aimed at reducing the

number of predictor variables were required for computational feasibility. Such reduction

could either involve a supervised step, where the researcher selected specific voxels or brain

regions based on a priori information (i.e. feature selection), or an unsupervised procedure

like a principal or independent component analysis [3]. In both cases, though, the risk of dis-

carding relevant information was present. In recent years, however, optimized versions of

commonly used classifiers which can be readily applied to MRI datasets without needing

dimensionality reduction have been developed [4].

Studies evaluating the predictive power of sMRI images are particularly numerous in Alz-

heimer’s disease prediction [5], psychiatric diagnosis [6, 7] and in the assessment of brain

tumor characteristics [8]. Still, it is difficult to extract reliable conclusions on optimal predic-

tion procedures from individual studies as they usually evaluate the performance of specific

algorithms on image sets that have been acquired and processed in particular ways, with only a

small subset of studies systematically comparing the prediction capacity of available algo-

rithms. While this comparison has been recently made for several pathologies including multi-

ple sclerosis [9], fibromyalgia [10] and Alzheimer’s disease [11, 12] some other relevant

clinical areas such as psychosis still lack a systematic evaluation.

Specifically, in the area of psychosis, where studies have traditionally focused on reporting

statistically significant differences involving patients with schizophrenia and patients with

bipolar disorder, there is a current interest in predicting the final diagnostic for patients under-

going a psychotic episode by means of these classifying algorithms. Most of the sMRI studies

carried out so far, though, have mainly assessed the classification accuracy between patients

with schizophrenia and controls [7], with only few evaluating the discriminative power of

sMRI to separate patients with bipolar disorder from healthy subjects [13–16] and only one of

them performing the most clinically relevant classification between bipolar and schizophrenic

subjects [14].

Here, in order to objectively assess the utility of sMRI images in diagnostic prediction in

psychosis, we systematically evaluate the performance of a large set of available machine learn-

ing algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support

vector classifier, regularized discriminant analysis, random forests and a Gaussian process clas-

sifier) on some of the most commonly used sMRI data formats (grey and white matter voxel-

based morphometry, vertex-based cortical thickness and volume, region of interest volumetric

measures and wavelet-based morphometry maps). All possible combinations of algorithms

and data formats are used to estimate the discriminability between well matched samples of

Optimal MRI-based diagnostic prediction in psychosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0175683 April 20, 2017 2 / 24

the Instituto de Salud Carlos III and co-funded by

European Union (ERDF/ESF, “Investing in your

future”): Miguel Servet Research Contracts

(CPII13/00018 to RS, MS14/00041 to JR, CES12/

024 to BA and MS10/00596 to EP-C,) and

Research Project Grants ( PI14/01151 to RS, PI14/

01148 to EP-C, PI14/00292 and CP14/00041 to

JR, PI14/01691 to P.M. and PI15/00277 to EC-R).

Competing interests: The authors have declared

that no competing interests exist.

https://www.nitrc.org/projects/mripredict/
https://www.nitrc.org/projects/mripredict/
https://doi.org/10.1371/journal.pone.0175683


healthy controls (N = 127), of patients with schizophrenia (N = 128) and of patients with bipo-

lar disorder (N = 128). Furthermore, to maximize the predictive power of sMRI images, all dif-

ferent feature types are also combined in a single prediction model. Finally, several multi-class

approaches are considered in order to evaluate the accuracy rates to be found in a simulta-

neous classification of the three groups. As detailed later, we provide as well MRIPredict, a free

tool for SPM, FSL and R that allows an easy specification, validation and fitting of voxelwise

models that can be later applied to new MRI datasets, even if they have different voxel dimen-

sions (software available at https://www.nitrc.org/projects/mripredict/).

Material and methods

Sample

A sample of N = 128 individuals with a diagnosis of schizophrenia according to DSM-IV crite-

ria were recruited from Benito Menni CASM and Mare de Déu de la Mercè hospitals (Spain).

All individuals were right handed, in the 18 to 65 age interval, with no history of brain trauma

or neurological disease, and not having shown alcohol/substance abuse in the last 12 months.

All patients but one were taking antipsychotic medication (atypical N = 82, typical N = 9, both

N = 30, unknown N = 6, equivalents of Chlorpromazine: 824.0 mg (mean), 642.8 mg (sd)).

Considering the same exclusion criteria, a second sample of N = 128 patients with a diagnose

of type I bipolar disorder matched for age, gender and pre-morbid IQ, as estimated with the

Word Accentuation Test [17] were recruited from the Benito Menni CASM and the Hospital

Clı́nic de Barcelona (Spain). When scanned, 77 were in euthymia while 28 were undergoing a

manic phase and 23 were under depression. 75 where taking antipsychotic medication (atypi-

cal N = 64, typical N = 4, both N = 7, equivalents of Chlorpromazine: 399.4 mg (mean), 388.0

mg (sd)), 105 where taking mood stabilizers and 33 antidepressants. Finally, a third sample of

N = 127 healthy control individuals, matched by the same criteria was recruited from non-

medical hospital staff, their relatives and acquaintances, plus independent sources in the com-

munity. Apart from previous exclusion criteria, controls reporting a history of mental illness

and/or treatment with psychotropic medication were discarded. Table 1 gives further demo-

graphic and clinical information on the three samples. All participants gave written informed

consent and the study was approved by the Clinical Research Ethics Committee of the Sisters

Hospitallers (Comité de Ética de Investigación Clı́nica de las Hermanas Hospitalarias).

sMRI data features

For each subject, a structural brain image was acquired with a 1.5-T GE Signa scanner (Gen-

eral Electric Medical Systems, Milwaukee, WI, USA) using the following acquisition parame-

ters: T1-weighted sequence, 180 axial slices, 1mm slice thickness with no gap, 512×512 matrix

size, 0.5×0.5×1mm3 voxel resolution, 4ms echo time, 2000ms repetition time, 15˚ flip angle.

Once acquired, information contained in the T1 images was summarized in the following data

features (see also Fig 1):

1. Cortical thickness of left and right hemispheres: sMRI data were analyzed with the FreeSur-

fer image analysis suite (http://surfer.nmr.mgh.harvard.edu/). Briefly, the pre-processing

included removal of non-brain tissue, automated Talairach transformation, tessellation of

the grey and white matter boundaries and surface deformation [18]. A number of deforma-

tion procedures were performed in the data analysis pipeline, including surface inflation

and registration to a spherical atlas. Intensity and continuity information from the entire

three dimensional images in the segmentation and deformation procedures were used to
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produce vertex-wise representations of cortical thickness (CT) in each vertex across the cor-

tical mantle.

2. Cortical volume of left and right hemispheres: In addition to CT, the FreeSurfer also com-

putes vertex-wise cortical surface area (SA). Both CT and SA are multiplied to obtain a ver-

tex-wise representation of cortical volume (CV). All individual CT and CV maps were

smoothed using a Gaussian kernel with full width at half maximum (FWHM) of 30 mm

[19].

3. Grey and White matter voxel based morphometry (VBM) images: Structural images were

segmented into grey and white matter partial volume images in the native space using the

unified segmentation algorithm included in SPM12 [20]. Then, the original structural

images were brain-extracted [21] and aligned to the Montreal Neurological Institute

MNI152 2mm standard template using FSL registration tools [22]. The resulting deforma-

tion fields were applied to the initially segmented images to obtain grey and white matter

normalized images. To reduce computational cost, those images were subsampled to a 4 x 4

x 4 mm resolution.

4. Grey and White matter wavelet based morphometry (WBM) images: Taking the grey and

white matter normalized VBM images as inputs, we applied the methodology explained in

[23] and implemented in the WBM toolbox (http://www.wbmorphometry.com/). Initially,

input images were smoothed with a Gaussian kernel (FWHM�7 mm) and were

Table 1. Demographic and clinical characteristics of samples of both patient groups and of healthy controls.

Schizophrenia

N = 128

Bipolar disorder

N = 128

Controls

N = 127

Statistical significance

Age 41.5 (10.3)

Range: 18–65

41.4 (10.4)

Range: 20–64

39.8 (10.3)

Range: 20–64

p(sch, bip) = 0.94

p(sch, cnt) = 0.18

p(bip, cnt) = 0.21

Gender (F/M) 54/74 54/74 54/73 p(sch, bip) = 1.0

p(sch, cnt) = 0.96

p(bip, cnt) = 0.96

Illness duration 18.4 (11.0)

Range: 0–43

14.7 (10.6)

Range: 0–42

p(sch, bip) = 0.0084

aTAP 22.09 (4.85) 22.72 (4.31) 23.0 (4.41) p(sch, bip) = 0.29

p(sch, cnt) = 0.14

p(bip, cnt) = 0.64
bWAIS-III 91.9 (17.6) 93.4 (15.6) 107.2 (15.5) p(sch, bip) = 0.51

p(sch, cnt)< 0.0001

p(bip, cnt)< 0.0001
cPANSS 72.6 (17.5) 46.0 (16.1) p(sch,bip)< 0.0001

PANSS positive 16.9 (5.7) 10.4 (5.5) p(sch,bip)< 0.0001

PANSS negative 21.4 (7.0) 10.7 (5.3) p(sch,bip)< 0.0001

PANSS Gen. Psych. 34.3 (8.4) 24.9 (9.9) p(sch,bip)< 0.0001
dYMRS 5.95 (9.72)
eHDRS 7.43 (9.34)

aTAP: Word Accentuation Test (Test de Acentuación de Palabras);
bWAIS-III: Wechsler Adult Intelligence Scale III;
cPANSS: Positive and Negative Syndrome Scale;
dYMRS: Young Manic Rating Scale;
eHDRS: Hamilton Depression Rating Scale.

Values given for single groups are mean and standard deviations.

https://doi.org/10.1371/journal.pone.0175683.t001
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transformed to the wavelet-domain using a 3D discrete orthogonal wavelet transform based

on symmetric spline wavelets with degree n = 3 and resolution level J = 2. By means of the

minimum description length procedure, coefficients that best represented grey and white

matter anatomy on all subjects were retained for the classifications.

5. Region of interest (ROI) based brain volumes and their interactions: The FreeSurfer was

used to parcellate the brain parenchyma in cortical and subcortical ROIs [24]. Mean volume

values for these ROIs were extracted and used together with cerebellum, white matter and

ventricle volumes as independent variables for classification. In addition, after standardiz-

ing their values, we calculated the pairwise products between all volumes as modelers of

pairwise interaction. This extended set of variables was also supplied to the classifiers

together with the original regional volumes.

6. Joint dataset combining all previous data features: We evaluated the potential improvement

in classification accuracy achieved by merging data from all feature types in a single matrix.

The amount of independent variables involved, however, made the direct implementation

Fig 1. Data features generated from the individual structural T1 magnetic resonance images. Each

type was used as input data to evaluate the prediction capacity of the different classifiers. Grey and white

matter was considered separately when using voxel based features. Left and right hemispheres were

considered separately when vertex based cortical information was applied.

https://doi.org/10.1371/journal.pone.0175683.g001
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of algorithms computationally unfeasible. To reduce the number of variables in a meaning-

ful way we implemented two different strategies: (a) following Wang et al. [25], we applied

a previous dimensionality reduction through a principal component analysis (PCA), and

(b) by considering a similar approach than in Dai et al. [26], we calculated the univariate t-

values from pairwise group comparisons, selecting only the 1% of variables with highest t-

scores (in absolute value).

Learning algorithms

Eight classifiers, selected for their habitual usage and their computational efficiency, were

applied to the different data features described in the previous section. Prediction capability of

each data feature—classifier pair on the three possible classifications involving the two groups

of patients and controls was quantified. Specifically, the algorithms evaluated were: (I) ridge

and (II) lasso logistic regressions [27], (III) elastic net regularization [28], (IV) L0-norm regu-

larization [29], (V) a support vector classifier (SVC) [4], (VI) regularized discriminant func-

tion analysis (RDA) [30], (VII) a Gaussian process classifier (GPC) [31], and (VIII) Random

forests (RF). A theoretical overview of these algorithms together with technical details on their

implementation can be found in the S1 Appendix (Description of learning algorithms).

General procedure and cross validation scheme

To have a non-biased assessment of the performance we applied the classifiers, which had

been previously built on training samples, on a completely independent group of individuals

(i.e. a test sample). A 10-fold cross validation scheme was followed to divide the original sam-

ple (made of all individuals belonging to the two groups) in 10 non-overlapping partitions [4].

For each partition individuals included were considered as the test sample, and the remaining

individuals as the training sample. A graphical representation of the general procedure for

evaluating classification accuracy is given in Fig 2.

For all classifiers but RF and GPC cross-validation is used at two levels: at an outer level the

complete sample is divided in 10 parts for training and testing, but within each training sample

a second internal cross-validation is usually carried out to select the optimal values for the reg-

ularization parameters. From a range of parameter values, those minimizing the classification

error in this internal cross-validation are used to build de classifier, which later is applied to

the test data to have an objective assessment of classification accuracy. This procedure is

repeated 10 times (for each of the 10-fold partitions) generating 10 accuracy estimates.

To avoid over-optimistic results the effect of nuisance covariates on test data should be

regressed out by using those coefficients fitted in the training data (i.e. test data should not be

used in the fitting of nuisance covariates) (see Fig 2). Individual performances of each algo-

rithm—feature combination are given as frequencies of test individuals successfully classified

(assuming a p(X)> 0.5 threshold) and by other quantities such as the area under the (receiver

operating) curve (AUC) [4]. The receiver operating curve (ROC), which is based on the rela-

tive performances considering the whole range of possible probability thresholds (from 0 to 1)

has an area that ranges from 0.5 for classifiers without any prediction capability to 1 for per-

fectly classifying algorithms.

Multi-class classifiers

Although many of the learning algorithms used here were initially designed for two group clas-

sifications, extensions have been built to deal with more than two groups simultaneously. Here

we have applied three different approaches for simultaneous classification of the three groups.
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On the one hand, after performing the three possible pairwise classifications (among our three

groups) we have assigned each test individual to the class with highest mean probability (i.e. a

one-versus-one classification approach [4]). Alternatively, we have carried out classifications

between each class and a merged class containing subjects from the two remaining classes,

assigning test individuals to the non-merged class with highest probability (i.e. a one-versus-all

approach [4]) and, finally, for those classifiers with inbuilt multiclass functionality (all but the

L0-norm and SVC) we have used the methods available. These involved the regularized

Fig 2. General cross validation scheme applied to evaluate the classification accuracy in all

combinations of algorithms and data features. For most classifiers, cross-validation is used at two levels:

at an outer level for training and testing and within each training sample to select the optimal values for the

regularization parameters (delta). The effect of nuisance covariates on test data should be regressed out by

using coefficients fitted in the training data. Individual performances are given as frequencies of test

individuals successfully classified.

https://doi.org/10.1371/journal.pone.0175683.g002
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multinomial regression (for the ridge, lasso and elastic net), the multi-class regularized dis-

criminant analysis, and the multi-class versions of the GPC and RF. It should be noted that in

all three-class classifications we had a 0.333 probability of assigning, by chance, the individual

to the correct class.

Results

Estimated classification accuracies for all possible combinations of algorithms and data fea-

tures are shown in Fig 3 (healthy vs. schizophrenia), Fig 4 (healthy vs. bipolar) and Fig 5 (bipo-

lar vs. schizophrenia). As a general trend, accuracies achieved in the healthy vs. schizophrenia

classifications are higher than those observed in the healthy vs. bipolar and bipolar vs. schizo-

phrenia classifications. On the other hand, although results vary depending on the algorithm

and data feature, grey matter (GM) VBM (without data reduction) and WBM feature types

show classification accuracies which equal or exceed those achieved by the other features.

Indeed, when accuracy rates are averaged over classifiers GM-WBM, and in a higher degree

GM-VBM, significantly outperform most of the other feature types in the healthy vs. schizo-

phrenia and in the healthy vs. bipolar classifications (Fig 6). However, for the bipolar vs.

schizophrenia classification this trend is less clear. In contrast, when classification rates are

averaged over features and algorithms are compared, no single classifier outperforms the oth-

ers (Fig 7), and a poor performance of the L0-norm classifier is the only distinctive and

Fig 3. Classification accuracies for each combination of algorithm and feature type applied to the

healthy vs. schizophrenia classification. Mean accuracy for the 10 test samples (in green), approximate

95% confidence interval for the mean accuracy (in blue) and highest and lowest accuracy values (in red) are

shown for each combination. Rid: Ridge regression, Las: Lasso regression, Ela: Elastic net regularization, L0:

L0-norm regularization, SVC: Support vector classifier, RDA: Regularized discriminant analysis, GPC:

Gaussian process classifier, RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.g003
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significant pattern. In Figs 6 and 7 the better performance of healthy vs. schizophrenia classifi-

cations is even more evident. Indeed, when Wilcoxon tests were run on the average-over-fea-

ture accuracies of Fig 7, accuracies were significantly higher for all algorithms in the healthy

vs. schizophrenia pair (See S2 Appendix).

Classification levels achieved by the different algorithms when applied to grey matter VBM

(the best performing feature type) are shown in Table 2. Best rates were attained in the healthy

vs. schizophrenia classifications, with accuracies as high as 0.77 for the SVC, although no clas-

sifier significantly outperformed any other (Wilcoxon paired test at p< 0.05) (average accu-

racy over all classifiers equaled 0.75) while misclassification between healthy individuals and

individuals with bipolar disorder was higher (averaged accuracy declined to 0.63) but again no

single classifier outperformed any other classifier. Finally, the classification between both psy-

chiatric disorders reported similar classification levels with a mean accuracy of 0.62, although

here the ridge regression algorithm (with mean accuracy of 0.66) significantly outperformed

the L0-norm classifier (mean accuracy of 0.58); Wilcoxon paired test p = 0.035. However, no

other comparison was significant.

Fig 8 portrays receiver operating curves (ROC) for classifiers in the three different pairwise

classifications (for all classifiers except the RDA, for which we did not have reliable estimates

of individual probabilities). As expected by the similar classification rates previously reported,

plotted curves had similar trajectories. Highest AUC levels were achieved in the healthy vs.

schizophrenia classification with an average AUC of 0.83 (values for each classifier are given in

Fig 4. Classification accuracies for each combination of algorithm and feature type applied to the

healthy vs. bipolar disorder classification. Mean accuracy for the 10 test samples (in green), approximate

95% confidence interval for the mean accuracy (in blue) and highest and lowest accuracy values (in red) are

shown for each combination. Rid: Ridge regression, Las: Lasso regression, Ela: Elastic net regularization, L0:

L0-norm regularization, SVC: Support vector classifier, RDA: Regularized discriminant analysis, GPC:

Gaussian process classifier, RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.g004
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Table 2) which declined to 0.69 for the healthy vs. bipolar disorder classification and to 0.68 in

the classification between both disorders. A bootstrap based statistical test comparing the

AUC between classifiers reported very few significant differences between algorithm perfor-

mances. These only included a higher AUC for the SVC versus the elastic net regression

(p = 0.005) and versus the GPC (p = 0.009) in the healthy vs. schizophrenia classification.

To gain some insight on the inner functioning of algorithms applied to grey matter VBM

data, maps of fitted coefficients and weights were obtained for most of the classifiers (see Fig

9). In Fig 9 coefficient maps are drawn together with maps of effect sizes, which were derived

from standard univariate t-tests applied to each voxel (i.e. the standard method for generating

maps of differences in group comparisons). Although the aspect of coefficient maps clearly dif-

fered among classifiers, there was a broad agreement between most prominent patterns and

features in the effect size maps. A more quantitative view of such agreement is provided by

plots of Fig 10 where, in most cases, a monotonic increasing relationship is shown between

effect size and coefficient value. In those cases where this relationship was not clear (the lasso

in controls vs. schizophrenia and all RF classifications) largest coefficients were still linked to

voxels with largest effect sizes. Values of RF though, are not model coefficients but variable

importance measures derived from the Gini index [4]. This agreement between coefficients

and effect sizes links classifiers with likely anatomical group divergences.

When all information from the different data features was combined together, and after

applying PCA for dimensionality reduction, classifiers reported accuracies clearly lower than

Fig 5. Classification accuracies for each combination of algorithm and feature type applied to the

bipolar disorder vs. schizophrenia classification. Mean accuracy for the 10 test samples (in green),

approximate 95% confidence interval for the mean accuracy (in blue) and highest and lowest accuracy values

(in red) are shown for each combination. Rid: Ridge regression, Las: Lasso regression, Ela: Elastic net

regularization, L0: L0-norm regularization, SVC: Support vector classifier, RDA: Regularized discriminant

analysis, GPC: Gaussian process classifier, RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.g005
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those achieved only with grey matter VBM (without dimensionality reduction) (Fig 11A). And

although most mean accuracies were higher than 0.5, bootstrap intervals revealed that for the

two classifications involving bipolar subjects many of these were not significantly different

from 0.5 (see Table 3). In contrast, when the top 1% of variables with largest t-values were con-

sidered, accuracies achieved levels very similar to those provided by grey matter VBM (see Fig

11B), and in all cases they were considered significantly larger than 0.5 (see bootstrap intervals

in Table 3). In any case, however, performances were higher than those provided by grey mat-

ter VBM.

Accuracies from one-versus-one multi-class classifications on grey matter VBM were, in

general, lower than those delivered by pairwise classifications (see Fig 12). Furthermore,

although significant predictive power was still found for controls (with an average accuracy of

60%) and for schizophrenia (with an average accuracy of 57%) classification rates for bipolar

patients (with an average accuracy of 37%) were quite close to the 33% expected by chance.

Fig 6. Accuracy rates averaged over all classifiers for the different feature types. Pairs of features

showing significant differences from paired Wilcoxon tests (with p < 0.05) are signaled. Most of the significant

differences involve a higher accuracy rate for grey matter VBM and WBM. a: significantly different from

VBM_GM, b: significantly different from WBM_GM, c: significantly different from VolumeR.

https://doi.org/10.1371/journal.pone.0175683.g006
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Indeed, most classifiers included the 33% inside the bootstrap confidence intervals (see

Table 4) suggesting that multi-class algorithms do not classify bipolar patients reliably. Results

from the other two multi-class schemes (one-versus-all and inbuilt multiclass) delivered simi-

lar levels of accuracy than those of the one-versus-one design (see Tables 4 and 5). While mean

overall accuracy was 51% for the one-versus-one approach a value of 52% was attained for

both one-versus-all and inbuilt approaches. Again, all classifiers showed a significant predic-

tive power for the control group (average of 64% for both schemes) and schizophrenia group

(63% and 60%) but no reliable prediction power was found for the bipolar group (average

accuracy of 30% and 32% respectively).

Discussion and conclusions

After applying the eight classifiers on the different feature types we can outline some general

conclusions. First, it seems that while the election of the feature type may be of relevance to

Fig 7. Accuracy rates averaged over all feature types for the eight classifiers. Pairs of classifiers

showing significant differences from paired Wilcoxon tests (with p < 0.05) are marked. None of the classifiers

clearly outperforms the others. a: significantly different from L0, b: significantly different from GPC, c:

significantly different from Elastic.

https://doi.org/10.1371/journal.pone.0175683.g007
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achieve an optimal classification, the choice of classifier is not important. Most classifiers pro-

vide similar levels of accuracy when an adequate feature type is selected. Specifically, for the

three pairwise classifications carried out here with patients with psychosis, grey matter VBM

and, to a minor extent, grey matter WBM are the feature types leading to highest accuracies.

For them no single classifier clearly outperforms the others. This is rather surprising since,

although it has been recently proven that some of the applied classifiers have clear mathemati-

cal similarities [4] it is also clear that some of them are unmistakably different. The most obvi-

ous case being the Random forest classifier, which binarizes continuous variables by

partitioning the feature space, and is not constrained by the additivity found in logistic regres-

sions and support vector classifiers. This same result, though, has been previously reported by

Khondoker et al. [32] whom, in a classification involving patients with Alzheimer and controls,

Table 2. Mean accuracy rate and area under the receiver operating curve (AUC) for the eight classifiers on VBM grey matter.

Algorithm Mean accuracy 5%limit 95%limit AUC 5%limit 95%limit

Healthy vs. Schizophrenia aridge 0.756 0.701 0.806 0.836 0.788 0.885
blasso 0.741 0.683 0.792 0.82 0.769 0.872
celastic 0.76 0.703 0.812 0.815 0.762 0.869
dL0 norm 0.752 0.712 0.795 0.835 0.785 0.884
eSVC 0.772 0.731 0.812 0.85 0.804 0.896
fRDA 0.745 0.683 0.804 - - - - - - - - -
gGPC 0.756 0.699 0.805 0.828 0.778 0.878
hRF 0.752 0.69 0.805 0.837 0.788 0.885

Healthy vs. Bipolar dis. ridge 0.623 0.586 0.664 0.686 0.621 0.75

lasso 0.655 0.616 0.7 0.702 0.639 0.766

elastic 0.635 0.592 0.681 0.691 0.627 0.756

L0 norm 0.651 0.613 0.69 0.706 0.643 0.769

SVC 0.647 0.599 0.694 0.698 0.634 0.762

RDA 0.616 0.557 0.668 - - - - - - - - -

GPC 0.608 0.565 0.658 0.671 0.605 0.737

RF 0.62 0.571 0.67 0.688 0.624 0.753

Bipolar dis. vs. Schizophrenia ridge 0.66 0.605 0.716 0.692 0.627 0.756

lasso 0.609 0.555 0.659 0.646 0.579 0.713

elastic 0.616 0.562 0.676 0.689 0.624 0.753

L0 norm 0.581 0.507 0.643 0.659 0.593 0.726

SVC 0.652 0.593 0.712 0.696 0.632 0.761

RDA 0.605 0.545 0.657 - - - - - - - - -

GPC 0.621 0.583 0.661 0.696 0.632 0.76

RF 0.613 0.581 0.646 0.685 0.621 0.75

Lower and upper limits for the 95% confidence intervals generated by bootstrap are also reported for these two quantities.
aridge: Ridge regression,
blasso: Lasso regression,
celastic: Elastic net regularization,
dL0-norm: L0-norm regularization,
eSVC: Support vector classifier,
fRDA: Regularized discriminant analysis,
gGPC: Gaussian process classifier,
hRF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t002
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showed that as effect size (i.e. the real discriminative power of data) increased different classifi-

ers tended to achieve similar levels of classification accuracy, making the choice of algorithm

less relevant. A distribution of observations in the multidimensional feature space largely fol-

lowing an unstructured pattern could be a plausible explanation for our results. Such a distri-

bution with unstructured noise would not be better classified by any complex function than a

hyperplane, which is a geometrical feature that all classifiers are to a large extent able to gener-

ate, and this would eventually lead to similar classification accuracies. We have also seen in Fig

9 that, in spite of working differently, classifiers give largest weights to voxels located in the

same or similar areas, extracting and using similar information from the VBM images. As well,

there are reasonable explanations for the best classifying performance of grey matter VBM.

First, while substantial white matter abnormalities have been described in both schizophrenic

and bipolar patients through diffusion MRI [33, 34], such patterns have not been as clear in

the few VBM studies analyzing white matter, at least in schizophrenia [35]. On the other hand,

lower accuracies delivered by region of interest measures are attributable to the intrinsic loss

of information caused by spatial averaging of high resolution data. Finally, the poorer perfor-

mance of both vertex based cortical features may be related to their restricted spatial extent,

which excludes all subcortical structures. In addition, major structural abnormalities in schizo-

phrenia and bipolar disorder have been described in the medial frontal cortex and the insulas

[35, 36] which are regions with high topological complexity.

It should also be noted that the primary objective of this study was the comparison of com-

monly used classifiers and feature types for classification in psychosis, intentionally leaving

Fig 8. Receiver Operating Curves (ROCs) for the different classifiers applied to grey matter VBM. Best

classification performances are observed in the healthy vs. schizophrenia classification. The overlap between

curves in each plot points to similar classification levels attained by the different algorithms. AUC: Area under

the receiver operating curve. There are no ROCs for the Regularized discriminant analysis because no

reliable individual probabilities were available for this algorithm.

https://doi.org/10.1371/journal.pone.0175683.g008
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Fig 9. Brain maps of coefficients from fitted classifiers on grey matter VBM images together with

effect size maps as given by standard univariate t-tests. Values for the random forest classifier are

variable importance measures derived from the Gini index. Functions for the Gaussian process classifier and

the regularized discriminant analysis did not provide fitted coefficients and maps were not available.

https://doi.org/10.1371/journal.pone.0175683.g009
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Fig 10. Plots of t-test based effect sizes (x-axis) versus (non-zero) coefficients from the different

classifiers (y-axis) applied to grey matter VBM data. Non parametric local regression (lowess) lines are

shown in blue. Random forest values are variable importances derived from the Gini index. No coefficients

were available for the Gaussian process classifier and the regularized discriminant analysis.

https://doi.org/10.1371/journal.pone.0175683.g010
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many other existing classifiers, subtypes and variants untested. Neither it was of interest to

attain particularly high accuracies. Indeed, when performances in our study are compared to

those found in other schizophrenia vs. healthy classifications reported in the recent revision by

Wolfers et al. [7], they are average. The mean accuracy rate found for the bipolar vs. control

classification based on the VBM data (63%) is also similar to values reported by the few studies

analyzing the same classification on sMRI: 60% [14], 66% [15], 73% [16] with the exception of

Bansal et al. [13] that achieved a surprisingly high classification accuracy of 98%. Finally, the

only study directly classifying bipolar vs. schizophrenic patients [14] reported a classification

accuracy of 88%, which is clearly higher than ours (62%). However, when they applied the fit-

ted classifiers to an external sample, their classification accuracy descended to 65%.

Yet, most previous studies used smaller sample sizes, sometimes significantly smaller than

ours, making their results less reliable. In our study, we have used large and well balanced sam-

ples and we have paid special attention in keeping the independence between test and training

sets throughout all the image processing steps in order to avoid unintended biases and overop-

timistic classification estimates. Also, when running the different classifiers we have noticed

the relevance of carefully choosing the range of possible parameter values in the training phase

which, if ignored, would lead to clearly suboptimal classification rates. Since our training sam-

ples had (nearly) equal number of individuals, classification rates assumed equal prior proba-

bilities (of 0.5) for all classes. In real situations, though, this equality will sometimes not be

met, and when using other priors, accuracy rates will be different from those reported here.

Similarities observed between effect sizes and classifier coefficients relate the later with

apparent anatomical divergences, bringing some insight on the way classifiers use information

from the images. However, such relation will hold true only if effect sizes contain patterns of

real abnormality. Indeed, for both group pairs involving controls and patients we have found

the highest effect sizes in areas, like the insulas and the medial frontal cortex, which have con-

sistently reported as having grey matter reductions in VBM meta-analyses of both psychotic

Fig 11. Estimated classification accuracies obtained by considering all feature types together as

predictors. In (A) a principal component analysis was previously applied to the merged data to reduce

computational burden and dimensionality, in (B) only the 1% of variables with largest t values as given by

univariate two group comparisons was considered. Green line: mean accuracy for the 10 test samples; blue

lines: approximate 95% confidence intervals for the mean accuracy; red line: highest and lowest accuracy

values. ridge: Ridge regression, lasso: Lasso regression, elastic: Elastic net regularization, L0: L0-norm

regularization, SVC: Support vector classifier, RDA: Regularized discriminant analysis, GPC: Gaussian

process classifier, RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.g011
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disorders [35, 36]. Still, a close agreement between effect sizes and fitted coefficients should

not be expected as the former simply report univariate between group dissimilarities while the

later are weights from multivariate predictive models that, in some cases (e.g. Random Forests)

have a very complex nature. Also, in settings with many more features than cases and with

high levels of spatial autocorrelation (as it occurs in sMRI images), sparse classifiers like the

Lasso or the L0-norm may lead to an extremely large number of competing models having

optimized prediction capabilities [4].

The decrease in classification accuracies observed when using combined features and PCA

reduction was unexpected. In contrast to results in [25], merging information from different

feature types did not bring any improvement. But unlike Wang et al. [25] which combined

Table 3. Mean classification accuracies obtained by combining all data features together, after dimensionality reduction based on Principal Com-

ponent Analysis (PCA Based combination), and after selecting only the 1% of variables with largest t values (t-thresholded combination).

Algorithm PCA based combination t-thresholded combination

Mean accuracy 5%limit 95%limit Mean accuracy 5%limit 95%limit

Healthy vs.

schizophrenia

aridge 0.6 0.516 0.673 0.733 0.686 0.776
blasso 0.638 0.584 0.698 0.781 0.747 0.816
celastic 0.662 0.598 0.728 0.752 0.711 0.791
dL0 norm 0.713 0.655 0.771 0.761 0.717 0.798
eSVC 0.582 0.495 0.675 0.737 0.693 0.781
fRDA 0.658 0.593 0.725 0.792 0.758 0.823
gGPC 0.619 0.561 0.688 0.717 0.657 0.776
hRF 0.674 0.624 0.725 0.729 0.657 0.792

Healthy vs.

bipolar dis.

ridge 0.526 0.455 0.598 0.619 0.562 0.662

lasso 0.553 0.5 0.612 0.596 0.561 0.639

elastic 0.549 0.484 0.626 0.619 0.586 0.646

L0 norm 0.557 0.495 0.62 0.564 0.518 0.618

SVC 0.518 0.461 0.574 0.608 0.583 0.632

RDA 0.529 0.464 0.603 0.608 0.563 0.663

GPC 0.522 0.459 0.585 0.623 0.561 0.677

RF 0.491 0.405 0.576 0.627 0.575 0.67

Bipolar dis. vs.

schizophrenia

ridge 0.492 0.446 0.537 0.641 0.601 0.678

lasso 0.56 0.506 0.614 0.594 0.557 0.637

elastic 0.556 0.493 0.614 0.613 0.572 0.651

L0 norm 0.579 0.507 0.65 0.609 0.564 0.657

SVC 0.516 0.456 0.573 0.563 0.518 0.607

RDA 0.571 0.513 0.628 0.613 0.564 0.661

GPC 0.521 0.457 0.586 0.676 0.627 0.718

RF 0.529 0.453 0.599 0.637 0.583 0.686

Limits for 95% confidence intervals are based on bootstrap.
aridge: Ridge regression,
blasso: Lasso regression,
celastic: Elastic net regularization,
dL0-norm: L0-norm regularization,
eSVC: Support vector classifier,
fRDA: Regularized discriminant analysis,
gGPC: Gaussian process classifier,
hRF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t003
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different MRI modalities (sMRI and resting state functional MRI), we have derived all features

from the same T1 images (expecting higher levels of redundancy between data features). Fur-

thermore, dimensionality reduction through principal components does not seem to have

retained the most relevant information, as grey mater VBM clearly provided better classifying

accuracies. In contrast, feature selection based on the t statistic has clearly been more success-

ful in retaining the relevant information from the combined features, although grey mater

VBM classification rates have not been surpassed by this approach.

Reductions found in multi-class classifications are easily explained by the presence of a

third competing class in each classification. Here, the feature space should be divided in three

excluding areas by the algorithm, thus increasing the probability of misclassification. Such

effect is particularly noticeable in the bipolar disorder group, where classification levels do not

depart significantly from what would be expected by chance (33%). This is likely due to the

fact that, as made evident by the effect size maps of Fig 9, VBM intensities in bipolar patients

tend to be located between those observed in controls and in patients with schizophrenia (i.e.

patterns of abnormality in bipolar disorder are similar to those in schizophrenia but less

intense). Such intermediate position between two competing classes has probably led to the

higher misclassification rates observed in this clinical group. This result seems to be quite

Fig 12. Classification accuracies generated by multi-class classifiers on grey matter VBM using the

one-vs-one approach. All algorithms were used (except the regularized discriminant function analysis, which

did not report reliable class probabilites). Overall accuracies are plotted together with accuracies for the three

groups separately. Green line: mean accuracy for the 10 test samples; blue lines: approximate 95%

confidence intervals for the mean accuracy; red line: highest and lowest accuracy values. ridge: Ridge

regression, lasso: Lasso regression, elastic: Elastic net regularization, L0-norm: L0-norm regularization, SVC:

Support vector classifier, GPC: Gaussian process classifier, RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.g012
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consistent as it has been replicated by the three multi-class schemes applied (the one-vs-one,

the one-vs-all and the inbuilt multi-class approach) which have delivered similar correct classi-

fication rates. In any case, the lower accuracies observed in bipolar patients have practical

implications for sMRI based classification in psychosis. Further lines of research include the

optimal combination of the different classifiers to increase the currently reported accuracies.

The inclusion of data features derived from other MRI modalities such as functional connec-

tivity maps or diffusion based measures including fractional anisotropy and mean diffusivity

may also allow achieving higher classification accuracies.

Table 4. Mean accuracies obtained by all classifiers (apart from the regularized discriminant function analysis) using a one-vs-one and a one-vs-

all multi-class approach on grey matter VBM images. Lower and upper limits for the 95% bootstrap confidence intervals are also reported. 0.333 is the

expected accuracy when no real predictive power is present.

Algorithm One-versus-one One-versus-all

Mean accuracy 5%limit 95%limit Mean accuracy 5%limit 95%limit

Overall aridge 0.522 0.479 0.562 0.514 0.475 0.551
blasso 0.509 0.462 0.554 0.527 0.483 0.566
celastic 0.517 0.478 0.557 0.527 0.493 0.559
dL0 norm 0.527 0.464 0.588 0.566 0.525 0.602
eSVC 0.509 0.481 0.537 0.491 0.443 0.538
fGPC 0.501 0.452 0.547 0.515 0.463 0.563
gRF 0.496 0.452 0.538 0.483 0.436 0.525

Controls ridge 0.592 0.512 0.657 0.632 0.562 0.694

lasso 0.613 0.514 0.698 0.584 0.507 0.656

elastic 0.571 0.494 0.647 0.639 0.558 0.707

L0 norm 0.607 0.535 0.688 0.632 0.56 0.709

SVC 0.531 0.463 0.608 0.66 0.537 0.772

GPC 0.633 0.543 0.72 0.656 0.564 0.741

RF 0.621 0.548 0.688 0.68 0.591 0.764

Schizophrenia ridge 0.635 0.544 0.738 0.631 0.544 0.74

lasso 0.481 0.409 0.556 0.588 0.524 0.654

elastic 0.614 0.542 0.694 0.621 0.545 0.704

L0 norm 0.547 0.451 0.648 0.636 0.555 0.715

SVC 0.551 0.48 0.617 0.629 0.531 0.723

GPC 0.607 0.55 0.668 0.66 0.589 0.735

RF 0.602 0.539 0.666 0.631 0.564 0.696

Bipolar dis. ridge 0.372 0.285 0.448 0.282 0.185 0.363

lasso 0.415 0.301 0.516 0.423 0.316 0.516

elastic 0.391 0.315 0.475 0.319 0.254 0.387

L0 norm 0.414 0.336 0.492 0.428 0.372 0.492

SVC 0.426 0.369 0.487 0.204 0.128 0.286

GPC 0.287 0.236 0.344 0.255 0.209 0.303

RF 0.291 0.218 0.367 0.164 0.103 0.221

aridge: Ridge regression,
blasso: Lasso regression,
celastic: Elastic net regularization,
dL0-norm: L0-norm regularization,
eSVC: Support vector classifier,
fGPC: Gaussian process classifier,
gRF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t004
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Finally, as an added feature of this study we also provide MRIPredict, a free tool for SPM,

FSL and R that allows an easy specification of the MRI datasets, of confounds and covariates,

of cross-validation parameters and of voxelwise models to be fit (this software is available at

https://www.nitrc.org/projects/mripredict/). MRIPredict applies regularized logistic regression

from the Glmnet library [37] and saves the models in MNI space, thus allowing a later applica-

tion to new scans from other sites, even if they have different voxel dimensions. It must be

noted, then, that the accuracy of the new predictions may be limited if the new scans show

important methodological differences with the scans used to fit the model.

In summary, from our exhaustive analysis of algorithms and data features we conclude that

while grey matter VBM is the feature of choice for sMRI based classification in psychosis, the

selection of classifier is not relevant (most have similar performance levels). We also conclude

that the combination of different features types (derived from the same T1 images) do not

seem to increase classification accuracies over classification rates achieved by grey matter

Table 5. Mean accuracies obtained by classifiers that provide inbuilt multiclass functionality (all but the L0-norm and the support vector classifi-

ers). Lower and upper limits for the 95% bootstrap confidence intervals are also reported. 0.333 is the expected accuracy when no real predictive power is

present.

Algorithm Mean accuracy 5%limit 95%limit

Overall aridge 0.533 0.48 0.58
blasso 0.54 0.511 0.576
celastic 0.538 0.506 0.575
dRDA 0.475 0.434 0.517
eGPC 0.504 0.456 0.551
fRF 0.507 0.458 0.557

Controls ridge 0.612 0.535 0.683

lasso 0.662 0.559 0.753

elastic 0.65 0.563 0.749

RDA 0.606 0.515 0.698

GPC 0.643 0.55 0.731

RF 0.646 0.568 0.719

Schizophrenia ridge 0.629 0.542 0.718

lasso 0.623 0.522 0.743

elastic 0.627 0.585 0.676

RDA 0.555 0.471 0.647

GPC 0.619 0.553 0.692

RF 0.602 0.538 0.67

Bipolar dis. ridge 0.358 0.274 0.449

lasso 0.359 0.305 0.417

elastic 0.34 0.286 0.384

RDA 0.287 0.2 0.368

GPC 0.279 0.224 0.324

RF 0.306 0.239 0.379

aridge: Ridge regression,
blasso: Lasso regression,
celastic: Elastic net regularization,
dRDA: Regularized discriminant function analysis,
eGPC: Gaussian process classifier,
fRF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t005
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VBM. Finally, multi-class classifications considering the three groups simultaneously have

made evident a lack of predictive power for the bipolar group. This is probably due to its inter-

mediate anatomical features, located between those observed in healthy controls and those

found in patients with schizophrenia. We provide a new software tool that we hope will help

many researchers conduct optimized voxelwise predictions.
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