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ABSTRACT
The broadly expressed volume-sensitive outwardly rectifying anion channel (VSOR, also called VRAC)
plays essential roles in cell survival and death. Recent findings have suggested that LRRC8A is a core
component of VSOR in human cells. In the present study, VSOR currents were found to be largely
reduced by siRNA against LRRC8A in mouse C127 cells as well. In contrast, LRRC8A knockdown
never affected activities of 4 other types of anion channel activated by acid, Ca2C, patch excision or
cAMP. While cisplatin-resistant KCP-4 cells poorly expressed endogenous VSOR activity, molecular
expression levels of LRRC8A, LRRC8D and LRRC8E were indistinguishable between VSOR-deficient
KCP-4 cells and the parental VSOR-rich KB cells. Furthermore, overexpression of LRRC8A alone or
together with LRRC8D or LRRC8E in KCP-4 cells failed to restore VSOR activity. These results show
that deficiency of VSOR currents in KCP-4 cells is not due to insufficient expression of the LRRC8A/D/
E gene, suggesting an essential involvement of some other factor(s), and indicate that further study
is required to better understand the complexities of the molecular determinants of VSOR, including
the precise role of LRRC8 proteins.
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Introduction

Volume-sensitive outwardly rectifying anion channel
(VSOR) is one of the volume-regulated anion chan-
nels (VRACs) and functionally expressed in almost all
cell types.1 The roles of VSOR in cell volume regula-
tion, proliferation, migration and cell death are well
established, but its molecular identity has not fully
been clarified until recently.1,2

In the 1990s, several proteins, including P-glycopro-
tein, pIcln, and ClC-3, were proposed as molecular identi-
ties of VSOR,3-5 but none of them has survived
scrutiny.6-12 In 2014, 2 research groups independently
reported that the leucine-rich repeat containing 8A
(LRRC8A), which has 4 transmembrane domains and a
leucine-rich repeat (LRR) domain at the C-terminus, is a
core factor of VSOR in human cells.13,14 They reported in
common that knockdown of LRRC8A diminished
endogenous VSOR currents in human cells, and such
reduced currents could be rescued by introduction of

exogenous LRRC8A, but overexpression of LRRC8A
alone in normal cells paradoxically reduced endogenous
VSOR currents.13,14 Also, VSOR was shown to be a het-
eromeric channel containing not only LRRC8A but also
other LRRC8 family members.13 Indeed, a multimeric
complex mainly of these members with a molecular mass
of »800 kDa was found to be sufficient to form the
osmo- and ionic strength-sensitive anion channels in
lipid bilayers.15 More recently, Jentsch’s group has dis-
covered the roles of LRRC8D in cisplatin and taurine
transport and in cisplatin resistance acquirement in
humanKBM7 cells.16

LRRC8s may exhibit diverse functions through LRR
domain-mediated protein-protein interactions. It has
been reported that truncation of LRRD in LRRC8A
causes deficiency of B cell development.17,18 Such trun-
cated LRRC8A mutants may not exhibit normal func-
tions due to lack of normal protein-protein interactions
or may exert a dominant-negative action. LRRC8A has
also been suspected to have a ‘ligand’, and LRRC8A
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ligation activates the PI3K-AKT pathway in T cell devel-
opment and function.19 Therefore, it is feasible that
LRRC8A is involved in regulation of a variety of func-
tional proteins, presumably including anion channel
molecules, via protein-protein interactions and/or via the
PI3K-AKT pathway. However, there has not been any
study about a possible interaction between LRRC8A and
distinct anion channel types other than VSOR: acid-sen-
sitive outwardly rectifying anion channel (ASOR), Ca2C-
activated Cl¡ channel (CaCC), maxi-conductance Cl¡

channel (Maxi-Cl) and cAMP-activated anion channel
(CFTR).

In our most recent study, we have confirmed an
involvement of LRRC8A in VSOR activity in human
HeLa cells and suggested independence of LRRC8A in
ASOR activity therein.20,21 In the present study, we
focused on the following 3 questions: whether
LRRC8A is essentially involved in VSOR activity in

mouse cells as well, whether LRRC8A is involved in
activities of other distinct types of anion channel, and
whether LRRC8A, LRRC8D or LRRC8E represents a
missing factor in human cisplatin-resistant, VSOR-
deficient KCP-4 cells that are derived from the paren-
tal cisplatin-sensitive, VSOR-rich KB cells.

Results

LRRC8A is involved in VSOR current generation
in a murine cell line

To examine whether species specificity exists in the role
of LRRC8A in VSOR current generation, we performed
siRNA-mediated knockdown experiments in a mouse
cell line of mammary gland origin, C127. Transfection of
siRNA againstmouse LRRC8A gene (Lrrc8a) successfully
reduced expression level of mRNA in C127 cells (by
»77%: Fig. 1A).Whole-cell patch-clamp analysis showed

Figure 1. Suppressive effects of siRNA for LRRC8A on VSOR currents in murine C127 cells. (A) RT-PCR data confirming a knockdown
effect of siRNA for LRRC8A. Data represent duplicate experiments. GAPDH was used as an internal control. (B) Whole-cell VSOR current
responses to voltage steps in mock-transfected control cells after maximal activation by hypoosmotic stimulation (244 mosmol/kg-H2O).
The holding potential was 0 mV. After a pre-pulse to ¡100 mV (500 ms), currents were elicited by application of step pulses (1000 ms)
from ¡100 to +100 mV in 20-mV increments followed by 500 ms at ¡100 mV. (C) Instantaneous current-to-voltage relationships of
VSOR in cells treated with non-targeting siRNA (Mock control; open circles) and in cells treated with siRNA against LRRC8A (filled circles).
The current density (normalized by cell capacitance) was measured at the beginning of test pulses from current recordings similar to
those shown in (B). �Significantly different from the mock control at P < 0.05. (D) Mean values of current density recorded at +40 mV in
mock-transfected and LRRC8A-siRNA-transfected cells.
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that VSOR currents were robustly evoked by hypotonic
stimulation in control C127 cells (Fig. 1B), and knock-
down of Lrrc8a significantly reduced VSOR currents
when compared to control siRNA transfection (Fig. 1C,
D). These results indicate that LRRC8A is a key compo-
nent for VSOR in murine cells, as is the case in human
cells.13,14,20

LRRC8A is not involved in current generation of
other distinct types of anion channels

Since it is not known whether LRRC8A contributes to
generation only of swelling-activated VSOR currents, we

examined the knockdown effect of Lrrc8a on 4 other dif-
ferent types of Cl¡ channel currents functionally
expressed in murine C127/CFTR cells: ASOR, CaCC,
Maxi-Cl and CFTR currents activated by acid, Ca2C,
patch excision and cAMP, respectively. All four types of
anion channel currents recorded in the cells exhibited
their phenotypical current profiles (Fig. 2) similar to
those reported previously.22-25 siRNA-mediated knock-
down of LRRC8A failed to suppress any of these Cl¡ cur-
rents (Fig. 2). Thus, it is concluded that the LRRC8A is
specific to VSOR and is not involved in the generation
and regulation of activities of 4 other Cl¡ channels.

Figure 2. No significant effects of siRNA for LRRC8A on 4 other Cl¡ channel currents in C127/CFTR cells. (A) Effects of siRNA for LRRC8A
on the acid-sensitive outwardly rectifying (ASOR) anion channel currents. Left panel: Representative whole-cell ASOR current responses
to voltage steps. ASOR currents were evoked by a low-pH stimulation (pH 4.5). Whole–cell currents were elicited by a pulse-protocol
same as in Figure 1B. Right panel: Current-to-voltage relationships in cells treated with non-targeting siRNA (Mock control; open circles)
and in cells treated with siRNA against LRRC8A (filled circles). Currents were measured at the end of test pulses from current recordings
similar to those shown on the left panel. (B) Effects of siRNA for LRRC8A on the maxi-conductance Cl¡ channel (Maxi-Cl) currents. Left
panel: Representative Maxi-Cl current responses to voltage steps recorded after full activation upon patch excision (inside-out mode)
from the cells transfected with non-targeting siRNA (Mock control). The holding potential was 0 mV. Currents were elicited by applica-
tion of step pulses (500 ms) from ¡50 to +50 mV in 10-mV increments. Right panel: Mean values of macropatch Maxi-Cl current mea-
sured at +25 mV after full activation upon patch excision from mock-transfected (open column) and LRRC8A-siRNA transfected cells
(hatched column). (C) Effects of siRNA for LRRC8A on the Ca2C-activated Cl¡ channel (CaCC) currents. Left panel: Representative whole-
cell CaCC current responses to voltage steps (a pulse-protocol same as in Figure 1B) in non-transfected control cells. Right panel: Cur-
rent-to-voltage relationships in cells treated with non-targeting siRNA (Mock control: open circles) and with siRNA against LRRC8A (filled
circles). Currents were measured at the end of test pulses from current recordings similar to those shown on left panel. (D) Effects of
siRNA for LRRC8A on the cAMP-activated anion channel (CFTR) currents. Left panel: Representative whole-cell CFTR current responses
to voltage steps in the cells transfected with non-targeting (Mock control) siRNA. The holding potential was 0 mV. Currents were elicited
by application of step pulses (1000 ms) from ¡100 to +100 mV in 20-mV increments. CFTR currents were activated by bath-application
of a cocktail containing forskolin (5 mM) + dibutyryl-cAMP (dbcAMP: 1 mM) in standard isotonic Ringer solution. Right panel: Mean
values of CFTR current density recorded at +40 mV in mock-transfected (open column) and LRRC8A-siRNA-transfected cells (hatched
column). No statistically significant difference was observed between anion channel currents elicited from mock-transfected and
LRRC8A-siRNA-transfected cells.
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LRRC8A/D/E is abundantly expressed in a
VSOR-deficient cell line

A human cisplatin-resistant cell line, KCP-4, is known
to poorly express VSOR activity when compared to its
parental cisplatin-sensitive cell line, KB.26,27 Recently,
cisplatin resistance in other cell lines has been shown
to be associated with loss of LRRC8D16 and with
reduced expression of LRRC8A.28,29 Here, we exam-
ined whether deficiency of VSOR current generation
in KCP-4 cells is related to a lack of or insufficient
expression of LRRC8A or LRRC8D. When expression
of human LRRC8A mRNA (LRRC8A) was compared
between KCP-4 and KB cells by RT-PCR, it was nearly
equal (KCP-4/KB D 94.2 §0 .9%: Fig. 3A). The RT-
PCR results were supported by microarray analysis
with using isolated mRNAs from VSOR-deficient
KCP-4 cells and 4 VSOR-rich human cell lines,
including the parental KB cells as well as HeLa,
HEK293T and Intestine 407 cells. Expression levels of
LRRC8A were not significantly different among 5
human cell lines (Table 1). When expression of
LRRC8A protein was monitored by western blotting,
its expression level was nearly equal in KCP-4 and KB
cells and was not significantly different among 4
human cell lines tested (Fig. 3B). Microarray data
indicated that the expression levels of mRNAs of
LRRC8D and LRRC8E in KCP-4 cells were not distin-
guishable from those of parental KB cells as well as of
HEK293, HeLa and Intestine 407 cells (Table 1).
Taken together, it is concluded that insufficiency of
the LRRC8A/D/E gene is not a causal factor for defi-
ciency of VSOR currents in cisplatin-resistant KCP-4
cells.

Exogenous expression of LRRC8 proteins failed to
restore VSOR activity in a VSOR-deficient cell line

Next, we examined the subcellular localization of
LRRC8A by transfecting GFP-tagged LRRC8A. Con-
focal microscopic observations revealed that a sub-
stantial part of LRRC8A-GFP protein located in the
cell periphery in both KB and KCP-4 cells (Fig. 4A:
green). When the plasma membrane was visualized by
counterstaining with the Cell MaskTM Orange Plasma
Membrane Stain (Fig. 4A: red), LRRC8A-GFP pro-
teins look largely localized at the plasma membrane
(Fig. 4A: merged yellowish).

Consistent with our previous observations,26,27 endog-
enous VSOR currents in mock transfected KCP-4 cells
were markedly smaller compared to those in parental KB
cells (Fig. 4B, C). We then transfected pCMV-LRRC8A-
ires-EGFP vector to KCP-4 cells and recorded their
VSOR currents by whole-cell patch-clamp recordings.
Overexpression of LRRC8A failed to rescue, but instead
significantly reduced the swelling-activated Cl¡ currents
in VSOR-deficient KCP-4 cells (Fig. 4B, C). The latter
result appears paradoxical but is consistent with the pre-
vious observations that overexpression of LRRC8A rather
suppressed endogenous VSOR currents in VSOR-rich
human cells.13,14,20,30

LRRC8 family consists of 5 members denoted as
A, B, C, D and E. LRRC8E was found to be one of
the essential VSOR components necessary for its
rapid inactivation at high depolarizing positive
potentials in human colonic tumor HCT116
cells.13,31 In our experiments, coexpression of
LRRC8A with LRRC8E or overexpression of
LRRC8E alone did not affect significantly the

Figure 3. Expression profiles of LRRC8A in KB, KCP-4, HEK293T and HeLa cells. (A) RT-PCR data. The expression level of mRNA of LRRC8A
was almost identical between the VSOR-deficient KCP-4 cell line and its parental VSOR-rich KB cell line. Data represent triplicate experi-
ments. GAPDH was used as an internal control. MM: molecular marker. (B) Western blotting data. Expression of LRRC8A protein in KCP-4
was almost identical when compared with 3 other human cell lines, KB, HEK293T (HEK) and HeLa. We used protein samples isolated
from LRRC8A-transfected HEK293T cells as a positive control where LRRC8A was overexpressed (HEK/LRRC8A-OE). Data represent dupli-
cate experiments.
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amplitude of VSOR currents in KCP-4 cells
(Fig. 4D). Similar results were obtained also with
LRRC8D (Fig. 4E), which has recently been identi-
fied as a necessary component of the VSOR-related
transport system for blasticidin32 and Pt-derived

anti-cancer drugs, cisplatin and carboplatin.16 Thus,
it is concluded that deficiency of VSOR activity in
cisplatin-resistant KCP-4 cells is caused by an as-
yet-unidentified factor other than LRRC8A/D/E
genes.

Table 1. Expression levels of mRNA of LRRC8A, LRRC8D and LRRC8E monitored by microarray assays in KCP-4 cells and 4 other human
cell lines.

Gene_Symbol Gene_Description KCP-4_signal KB_signal HEK293T_signal HeLa_signal Intestine 407_signal

LRRC8A leucine rich repeat containing 8 family, member A 554.73 443.51 304.35 523.4 517.19
(Ratio) (1) (0. 80) (0.55) (0.94) (0.93)

LRRC8D leucine rich repeat containing 8 family, member D 1157.35 1241.54 1294.62 1325.61 1595.98
(Ratio) (1) (1.07) (1.12) (1.15) (1.38)

LRRC8E leucine rich repeat containing 8 family, member E 99.046 111.85 77.82 97.86 151.35
(Ratio) (1) (1.13) (0.79) (0.99) (1.53)

Figure 4. Expression of exogenous LRRC8A and its suppressing, but not augmenting, effect on VSOR currents in KCP-4 cells. (A) GFP-
tagged LRRC8A overexpressed in KB cells (upper row) and KCP-4 cells (lower row) was observed under a confocal microscope at 1 day
after transfection. The plasma membrane was stained by Cell MaskTM Orange Plasma Membrane Stain (red) and nuclei by Hoechst stain
(blue). (B) Current-to-voltage relationships of VSOR in KB cells (triangles) and KCP-4 cells (circles) transfected with mock (open circles)
and with LRRC8A-IRES-EGFP vector (filled circles). Current recordings were performed as described in Figure 1B. (C) Mean values of
VSOR current density recorded at +40 mV in KB cells (open column), mock-transfected KCP-4 cells (hatched column) and LRRC8A-IRES-
EGFP vector-transfected KCP-4 cells (filled column). Effective transfection of LRRC8A was confirmed by GFP fluorescence (Inset). (D)
Mean values of VSOR current density recorded at +40 mV in mock-transfected KCP-4 cells (open column) and in KCP-4 cells transfected
with a combination of LRRC8A-IRES-EGFP and LRRC8E-IRES-DsRed2 vectors (hatched column) or in KCP-4 cells with LRRC8E-IRES-DsRed2
vector alone (filled column). No significant difference was observed compared to Mock control, while effective transfections of LRRC8A
and LRRC8E were confirmed by GFP and DsRed2 fluorescence (Inset). (E) Mean values of VSOR current density recorded at +40 mV in
KCP-4 cells transfected with mock (open column) and with a combination of LRRC8A-IRES-DsRed2 and LRRC8D-IRES-EGFP vectors
(hatched column) or with LRRC8D-IRES-EGFP vector alone (filled column). No significant difference was observed as compared with
mock control, while effective transfections of LRRC8A and LRRC8D were confirmed by DsRed2 and GFP fluorescence (Inset).
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Discussion

The molecular identity of VSOR has been debated
over the past 25 y. Although several candidates,
including P-glycoprotein, pICln and ClC-3, have been
suggested, all of them were eventually dismissed.
LRRC8A is a recently proposed molecule for the core
component of VSOR in human cell lines (see for
reviews refs.2,35-37). In a mouse mammary cell line
C127, in the present study, we observed that swelling-
activated VSOR currents were significantly reduced by
siRNA-mediated knockdown of LRRC8A (Fig. 1).
This result shows that LRRC8A is actually important
for VSOR currents in mouse cells, as was previously
reported for human cells.13,14 VSOR activity is known
to be involved in swelling-induced release of several
organic compounds.33,37-40 Recently, siRNA-mediated
knockdown of LRRC8A was found to reduce the
swelling-induced release of glutamate and taurine
from rat astrocytes presumably mediated via VSORs,41

suggesting an involvement of LRRC8A in VSOR activ-
ity in rodent cells. In fact, here, we have provided
direct evidence for the LRRC8A role in VSOR activity
in murine cells.

Because the molecular entities corresponding to
ASOR and Maxi-Cl are still unidentified,22,42 we were
especially interested in a possible molecular relation-
ship between LRRC8A and ASOR or Maxi-Cl. How-
ever, here, no significant effect of its knockdown on
the currents of ASOR or Maxi-Cl was observed in
mouse C127/CFTR cells (Fig. 2A, B). Studies hitherto
performed have excluded a number of molecules
including ClC-3a,22 ClC-3d,12 ClC-7,43 and
TMEM16A/D/F/H/K44 from the ASOR candidates.
Also, from the Maxi-Cl candidates, we have ruled out
VDAC,45 the human TTYH1 gene homolog to a Dro-
sophila gene called tweety,1 and pannexin 1/2.46 The
present study provided clear evidence that LRRC8A is
not related to the candidate molecules for ASOR and
Maxi-Cl. The currents of CFTR and CaCC, the molec-
ular entities of which are well established,47-49 were
also unaffected by knockdown of Lrrc8a in C127/
CFTR cells (Fig. 2C, D). Therefore, it is likely that
LRRC8A is not involved in regulation of CFTR and
CaCC activities.

mRNAs of LRRC8A are expressed in the VSOR-
deficient, cisplatin-resistant human cell line, KCP-4, at
a level nearly equivalent with that in a parental
VSOR-rich, cisplatin-sensitive cell line, KB (Fig. 3A

and Table 1). The LRRC8A protein expression level in
KCP-4 was also similar to those in other VSOR-rich
cell lines (Fig. 3B). Thus, clear correlation does not
exist between expression levels of LRRC8A and VSOR
current in KCP-4 cells. In addition, observations of
subcellular localization suggested that transfer of
LRRC8A protein to plasma membrane may be normal
in KCP-4 cells (Fig. 4A). Furthermore, mRNA levels
of LRRC8D and LRRC8E in KCP-4 cells were also
nearly the same as that in KB cells and comparable to
those in VSOR-rich HEK293T, HeLa and Intestine
407 cells (Table 1). Thus, it appears that VSOR current
deficiency in KCP-4 cells is due to some differences in
posttranscriptional modifications such as glycosyla-
tion and phosphorylation of LRRC8A/D/E proteins or
due to aberrations in some essential factor(s) other
than LRRC8A/D/E.

Exogenous LRRC8A did not rescue VSOR currents
in a cell line with disruption of all 5 LRRC8 genes
(LRRC8¡/¡),13 suggesting that LRRC8A alone cannot
compose the functional channel. Previous reports also
showed the possibility that LRRC8A forms a hetero-
mer with other LRRC8 family member(s).13,15 Actu-
ally, co-transfection of LRRC8A together with other
LRRC8 family members rescued VSOR currents in
LRRC8¡/¡ cells,13 indicating that generation of VSOR
currents requires combinatorial expression of
LRRC8A and its paralogs. Also, a multimeric complex
of LRRC8A with its paralogs was found to form swell-
ing-activated anion channels, when reconstituted in
lipid bilayers.15 However, it must be noted that several
fundamental properties of this channel, including lack
of intracellular ATP dependence and of inactivation
kinetics at large positive potentials, are distinct from
those of VSOR. Moreover, combinatory overexpres-
sion of LRRC8A with any other isoform was reported
to fail to increase VSOR activity above wild-type val-
ues in HEK293 cells.13 Furthermore, in the present
study, combinatory overexpression of LRRC8A with
LRRC8D or LRRC8E could not restore VSOR activity
in cisplatin-resistant KCP-4 cells (Fig. 4D, E). These
facts may indicate that, in addition to LRRC8A and its
paralogs, some as-yet-unidentified component, X, is
required for VSOR activity. Figure 5A schematically
depicts a hypothetical model of the VSOR pore
domain, which is formed by LRRC8A (A), LRRC8B/
C/D/E (non-A) and an as-yet-unidentified essential
component (X), by assuming a hexameric structure of
LRRC8A-containing pore.50
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Whereas LRRC8A is irrefutably linked to VSOR cur-
rent generation, overexpression of LRRC8A has been
found to surprisingly diminish native VSOR currents in
VSOR-rich human cells,13,14,20,30 apparently in an LRR
domain-independent manner.30 In the present study,
overexpression of LRRC8A similarly reduced natively
small VSOR currents in KCP-4 cells (Fig. 4B, C). This
paradoxical effect may be explained by a U-shaped con-
centration dependence of transfected LRRC8A. It is,
however, noted that LRRC8D or LRRC8E coexpressed
with LRRC8A abolished the suppressive effect of trans-
fection of LRRC8A alone (Fig. 4D, E: cf. Fig. 4C). A possi-
ble explanation could be that the interaction of LRRC8A
with LRRC8E or LRRC8D prevents redundant LRRC8A
proteins from suppressing the endogenous VSOR activity
by some mechanisms mediated by protein-protein inter-
actions between LRRC8A and LRRC8D/E and presum-
ably X as well. When repletion of LRRC8A was induced
by overexpression, protein-protein interactions between
LRRC8A, LRRC8A and X would predominate over those
between LRRC8A, LRRC8D/E and X, thereby somehow
inducing destruction of the VSOR pore which is nor-
mally maintained by protein-protein interactions
between LRRC8A, LRRC8B/C/D/E and X (Fig. 5A).
Figures 5B and 5C depict 2 possible examples of such
mechanisms by assuming that the LRRC8A-X-LRRC8A
complex exerts a pore-closing or -disrupting action.

The molecular mechanisms by which LRRC8 family
members contribute to VSOR currents must be studied
in further details. In any case, the present study clearly
shows that VSOR activity essentially depends not only
on LRRC8 family members but also on some other
additional component(s), and that deficiency of VSOR

activity in cisplatin-resistant KCP-4 cells is independent
of expression of the LRRC8A/D/E genes.

Materials and methods

Cell culture

For patch clamp experiments, cells were grown on
glass coverslips and were transferred to the chamber
immediately before experiments. Murine mammary
C127 cells and the cells stably transfected with the
cDNA for human cystic fibrosis transmembrane con-
ductance regulator (CFTR) protein (C127/CFTR
cells)25 as well as human adenocarcinoma cell lines,
KB and KCP-4, were used. Those were cultured in
DMEM (Nissui, Tokyo, Japan) supplemented with
100 U/ml penicillin plus 100 mg/ml streptomycin as
well as with 10% fetal calf serum or fetal bovine serum
at 37�C with 5% CO2. In the case of KCP-4 cells, cis-
platin (23 mM) was added in the culture medium. For
RT-PCR, western blot, microarray analysis and histo-
chemical observations, KB and KCP-4 cells were pro-
vided. Human HeLa, HEK293T and Intestine 407 cells
were also cultured in the same medium and provided
for microarray analysis. In double/single LRRC8 pro-
tein expression experiments, only GFP- and/or
DsRed2-posotive cells (green and/or red fluorescence)
were selected under a microscope for patch-clamp. In
these experiments, we employed a bi-cistronic vector
expression system where both LRRC8 gene products
and fluorescent reporter gene products are translated
from a single mRNA ensuring identification of target
protein-expressing cells with 100% efficiency.51

Figure 5. Hypothetical model of the VSOR pore domain depicted by presuming a heteromeric hexamer structure before (A) and after (B,
C) repletion of LRRC8A. A and non-A represent LRRC8A and LRRC8B/C/D/E, respectively, and X represents an as-yet-unidentified essential
component. Here, we assume that incorporation of the A-X-A complex into the VSOR pore domain results in closure (B) or disruption of
the VSOR pore (C).
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siRNA transfection

C127 and C127/CFTR cells sparsely seeded on 12-well
plates were transfected with siRNA against mouse
Lrrc8A (#MSS280623, Invitrogen/Thermo Fisher Scien-
tific, Carlsbad, CA) at a concentration of 50 nM using
HiPerFect transfection reagent (Qiagen, Hilden, Ger-
many). One day after transfection, the cells were
washed with culture medium and grown in the same
medium for 2 d at 37�C before use for RNA isolation
or patch-clamp experiments. Stealth RNAiTM siRNA
Negative Control (Invitrogen/Thermo Fisher Scientific)
was also transfected into C127 cells as a mock control.

Validation of knockdown efficiency

The effect of siRNA-mediated knockdown on Lrrc8a
expression was assessed by RT-PCR at 2 d after trans-
fection. Total RNA was isolated from control or gene-
specific siRNA-transfected cells using Sepasol RNA I
reagent (Nacalai Tesque, Kyoto, Japan). Contamina-
tion of genomic DNA in total RNA was removed by
DNase1 treatment (RT-grade: Nippongene, Tokyo,
Japan). The cDNA was synthesized using Prim-
scriptTMII 1st strand cDNA synthesis kit (Takara Bio,
Shiga, Japan). Semi-quantitative RT-PCR was carried
out using KOD+ DNA polymerase (TOYOBO, Tokyo,
Japan) with a following primer set for Lrrc8a: 50-
gagcgcctctacctgaacc-30 (forward primer) and 50-
ggagttctgggagaagctaggc-30 (reverse primer). Gapdh
was also amplified as an internal control using a fol-
lowing primer set: 50-gcacagtcaaggccgagaat-30 (for-
ward) and 50-ttcaccaccatggagaaggc-30 (reverse).

Cloning and vector construction

To clone the full-coding sequence of LRRC8A gene, we
performed nested PCR using the following PCR primer
set with the sequences of 50-atagcagagccatccttgg-30 (1st,
forward), 50-agttctgggagaagctagg-30 (1st, reverse) and
50-cacaaccatgattccggtgacagagc-30 (2nd, forward), and 50-
tcaggcctgctccttgtcagc-30 (2nd, reverse). The cDNA was
prepared from KB cells as mentioned above. PCR
products were cloned into the pGEM�-T Easy vector
(Promega, Madison, WI) and sequenced. To generate
expression vector for electrophysiological studies in sev-
eral cell lines, the cDNA of LRRC8A was subcloned
into the Sal1-Sac2 site of CMV-pIRES2-EGFP vector
or CMV-pIRES-DsRed2 vector (Clontech/Takara,
Mountain View, CA). To observe subcellular

distribution of LRRC8A, we tagged GFP to the C ter-
minus of LRRC8A. The Sac1 site was added to 50 end
of coding sequence of LRRC8A by PCR using a primer
set: 50-cacaaccatgattccggtgacagagc-30 (forward) and 50-
ccgcggggcctgctccttgtcagc-30 (reverse). Then it was subcl-
oned into the Sal1-Sac2 site of pEGFP-N1 vector
(Clontech/Takara). We also cloned LRRC8E and
LRRC8D using following primer sets: for LRRC8E,
50-cacaaccatgatcccagtggccgagttc-30 (forward) and
50-tcattcctcctccatcttgtcc-30 (reverse); and for LRRC8D,
50-ttggtccaggaatgtttacc-30 (1st, forward), 50-gttcctgcacat-
cactgtgc-30 (1st, reverse), 50-cacaaccatgtttacccttgcggaag-
30 (2nd, forward), and 50-tgcatatattatcttagtttaaatcc-30

(2nd, reverse). Then, LRRC8D and LRRC8E were
subcloned into CMV-pIRES2-EGFP vector or CMV-
pIRES-DsRed2 vector, respectively.

Comparison of LRRC8 expression

Expression levels of mRNA of LRRC8 family members
in human cell lines were analyzed by semi-quantitative
RT-PCR and gene microarray. For RT-PCR analysis,
cDNAs of KB and KCP-4 cells were prepared as
described in Validation of knockdown efficiency.
Semi-quantitative RT-PCR was carried out using a
following primer set for LRRC8A; 50-ttgtgtaccgcctcta-
catgc-30 (forward primer) and 50-agtgtcttcaggctata-
gatcc-30 (reverse primer). GAPDH was also amplified
as an internal control using a following primer set:
50-gtcatccctgagctgaacgg-30 (forward) and 50-
gggtcttactccttggaggc-30 (reverse).

For microarray analysis, the total RNA samples
were isolated from 5 human cell lines (HeLa, KB,
KCP-4, HEK293T, and Intestine 407) by Sepasol RNA
I reagent (Nacalai Tesque) and purified by RNeasyR
Minikit (Qiagen), and the gene expression analysis
was performed using Affymetrix GeneChipR Mouse
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA).
Microarray analysis was supported by Cell Innovator,
Ltd (Fukuoka, Japan).

The expression level of LRRC8A protein in human cell
lines was analyzed by western blotting. Cells were lysed
using RIPA buffer (Chromo Tec, Hauppauge, NY) and
incubated on ice for 30 min. The cell lysates were passed
several times through a 23-gauge needle with syringe and
further fractured by brief sonication. Then lysates were
incubated on ice for 30 min and centrifuged at 10,000g
for 10 min. The supernatants were boiled in Tris-glycine
SDS sample buffer (2x) (Invitrogen/Thermo Fisher
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Scientific) at 95�C for 5 min. 5-15 ml of samples were
loaded on 12% precast gel (Mini-protean� TGXTM: BIO-
RAD, Hercules, CA) and transferred to blotting mem-
brane using iBLOT Blotting system (Invitrogen/Thermo
Fisher Scientific). LRRC8A proteins were detected using
anti-LRRC8A monoclonal antibody (1/1,000, Sigma-
Aldlich, St. Louis, MO) with ECLTM western Blotting
Analysis System (AmershamTM/GE Healthcare, Buck-
inghamshire, UK).

Observations of LRRC8A subcellular localization

Subcellular localization of GFP-tagged LRRC8A was
observed in living KCP-4 and KB cells using a confocal
laser microscope (A1Rs: Nikon, Tokyo, Japan). pEGFP-
N1-LRRC8A vector was transfected to the cells using
Lipofectamine 3000 (Invitrogen/Thermo Fisher Scien-
tific) according to manufacturer’s instructions. To visu-
alize plasma membrane, cells were counterstained with
Cell MaskTM Orange Plasma Membrane Stain (1:1000
in culture medium; Molecular Probes/Thermo Fisher
Scientific, Eugene, OR) for 30 min and washed twice
with culture medium before observations.

Electrophysiology

Standard Ringer solution contained (in mM): 135
NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 5 Na-HEPES, 6
HEPES, and 5 glucose (pH 7.4, 290 mosmol/kg-H2O).
For measurements of VSOR currents, hypotonic solu-
tion was prepared by reducing the NaCl concentration
to 110 mM (244 mosmol/kg-H2O, 84% hypotonic).
For measurements of whole-cell ASOR currents, stan-
dard isotonic Ringer solution was supplemented with
6 mM MES, and the pH value was adjusted at 7.4 with
NaOH or at 4.5 with HCl. For measurements of
whole-cell CFTR currents, the standard Ringer solution
was supplemented with 5 mM forskolin and 1 mM
dibutyryl-cAMP. The standard pipette solution for
whole-cell experiments contained (in mM): 125 CsCl, 2
CaCl2, 1 MgCl2, 3 Na2ATP, 5 HEPES (pH 7.4 adjusted
with CsOH), and 10 EGTA (pCa 7.65; 275 mosmol/
kg-H2O). For measurements of whole-cell CaCC cur-
rents, the free Ca2C concentration of the pipette solu-
tion was adjusted at 1 mM by adding 4.62 mM CaCl2.
For measurements of Maxi-Cl currents in excised
inside-out patches, patch pipettes were filled with stan-
dard Ringer solution. Osmolality of experimental solu-
tions was measured with a vapor pressure osmometer
VAPOR 5600 (WESCOR, South Logan, UT).

Patch electrodes were fabricated from borosilicate
glass capillaries (outer diameter 1.4 mm, inner diame-
ter 1.0 mm) with a micropipette puller (model P-97;
Sutter Instruments, Novato, CA) and had a tip resis-
tance of 2–4 MV when filled with pipette solution.
Fast and slow capacitative transients were routinely
compensated for. For whole-cell recordings, the access
resistance did not exceed 10 MV and was always com-
pensated for by 70–80%. Membrane currents were
measured with an EPC-9 patch-clamp system (Heka-
Electronics, Lambrecht/Pfalz, Germany) or with an
Axopatch 200A patch-clamp amplifier coupled to a
Digidata 1320 interface (Axon Instruments, Union
City, CA). Data acquisition and analysis were done
using Pulse+PulseFit (Heka-Electronics) or with
pClamp software (version 9.0.2; Axon Instruments)
and WinASCD software (kindly provided by Dr. G.
Droogmans, KU Leuven, Belgium). The membrane
potential was controlled by shifting the pipette poten-
tial (Vp) and is reported as Vp for whole-cell record-
ings. Currents were filtered at 1 kHz and sampled at
5–10 kHz. When appropriate, off-line correction was
made for a shift in bath electrode potential upon
applying hypotonic solution (calculated from Nernst
equation) as well as for changes in liquid junction
potentials calculated using pCLAMP 8.1 (Axon
Instruments, Foster, CA) algorithms. All experiments
were performed at room temperature (23¡25�C).

Data analysis

Data were analyzed by OriginPro 7-8 (MicroCal Soft-
ware, Northampton, MA). Pooled data are given as
means § SEM of n observations. Statistical differences
of the data were evaluated by ANOVA and the paired
or unpaired Student’s t test where appropriate, and
considered significant at P < 0.05.
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