
© 2016 Moskowitz et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Eye and Brain 2016:8 103–111

Eye and Brain Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
103

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/EB.S95021

Retinal, visual, and refractive development  
in retinopathy of prematurity

Anne Moskowitz
Ronald M Hansen 
Anne B Fulton
Department of Ophthalmology, 
Boston Children’s Hospital and 
Harvard Medical School, Boston,  
MA, USA

Correspondence: Anne Moskowitz 
Department of Ophthalmology, Boston 
Children’s Hospital, 300 Longwood 
Avenue, Boston, MA 02115, USA 
Tel +1 617 355 5122 
Fax +1 617 507 7999 
Email anne.moskowitz@childrens.
harvard.edu

Abstract: The pivotal role of the neurosensory retina in retinopathy of prematurity (ROP) 

disease processes has been amply demonstrated in rat models. We have hypothesized that 

analogous cellular processes are operative in human ROP and have evaluated these presumptions 

in a series on non-invasive investigations of the photoreceptor and post-receptor peripheral and 

central retina in infants and children. Key results are slowed kinetics of phototransduction and 

deficits in photoreceptor sensitivity that persist years after ROP has completely resolved based 

on clinical criteria. On the other hand, deficits in post-receptor sensitivity are present in infancy 

regardless of the severity of the ROP but are not present in older children if the ROP was so 

mild that it never required treatment and resolved without a clinical trace. Accompanying the 

persistent deficits in photoreceptor sensitivity, there is increased receptive field size and thick-

ening of the post-receptor retinal laminae in the peripheral retina of ROP subjects. In the late 

maturing central retina, which mediates visual acuity, attenuation of multifocal electroretinogram 

activity in the post-receptor retina led us to the discovery of a shallow foveal pit and significant 

thickening of the post-receptor retinal laminae in the macular region; this is most likely due to 

failure of the normal centrifugal movement of the post-receptor cells during foveal development. 

As for refractive development, myopia, at times high, is more common in ROP subjects than 

in control subjects, in accord with refractive findings in other populations of former preterms. 

This information about the neurosensory retina enhances understanding of vision in patients 

with a history of ROP, and taken as a whole, raises the possibility that the neurosensory retina 

is a target for therapeutic intervention.

Keywords: electroretinogram, psychophysics, retinal imaging, photoreceptors, neural retina, 

refraction

Introduction
Retinopathy of prematurity (ROP) is among the common retinal neovascular conditions 

that include diabetic retinopathy, age-related macular degeneration, and central vein 

occlusion.1 ROP is distinguished from these conditions because it occurs in immature 

retina. Although the disease is mild and resolves spontaneously in the majority of cases, 

ROP remains a leading cause of avoidable blindness worldwide.2,3

ROP has its onset at preterm ages4 when the retinal vasculature5–8 and the neuro-

sensory retina9 are immature (Figure 1). The rod photoreceptors, which are ∼20 times 

more numerous than the cones, are the last retinal cells to mature, with the exception 

of the relatively small number of foveal cones.10,11 Even the small vessels in the inter-

plexiform layers normally mature earlier than the rods.6

As shown in Figure 1, the onset of ROP4 is coincident with the rapid increase 

in the rhodopsin content of the developing retina. ROP resolves in early post-term 
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weeks12,13 when rod outer segment development tails off. 

Thus, although we are all well aware that the accepted clinical 

hallmark of ROP is abnormal retinal vasculature, we can-

not ignore the involvement of the neural retina in the ROP 

disease process and the burgeoning metabolic demands of 

the rapidly developing rods.

We have found evidence that the neurosensory retina is 

very much involved in the ROP disease process by studying 

children and rat models of ROP. The escalating metabolic 

needs of the oxygen-greedy rods are poised to be an insti-

gating factor for ROP. In rat models, rod photoreceptor dys-

function is detectable before retinal vascular abnormalities 

manifest.14 Our longitudinal study of rat models shows that 

early rod dysfunction predicts the vascular outcome, and not 

vice versa.15–18 We have shown that 1) recovery of the ROP 

rat’s post-receptor retinal sensitivity and retinal vasculature 

is under the cooperative control of growth factors, which in 

other neural tissues mediate neural–vascular crosstalk19 and 

2) pharmacological lessening of the developing rod’s meta-

bolic needs improves the vascular outcome.20 In children, 

there are significant effects on retinal and visual function 

and eye growth long after the clinical resolution of ROP; 

key results are presented below. In short, rods are involved 

before, during, and after active ROP.

The subjects in our studies met the criteria for ROP 

screening21 and underwent serial examinations in the neonatal 

intensive care unit, the frequency of which was based on 

the program of examinations in the multicenter ROP trials 

(CRYO-ROP and ETROP).22,23 We categorized the subjects 

as having had severe ROP, mild ROP, or no ROP, as shown 

in Table 1. This categorization was based on the International 

Committee for the Classification of Retinopathy of Prema-

turity (ICROP) system24 whereby the site of the disease is 

specified by zone (I–III from central to peripheral), the extent 

within the zone by number of affected clock hours (1–12), 

and disease severity by stage (1–5 from mild to complete 

retinal detachment).

Through a series of non-invasive studies of the neuro-

sensory retina in human ROP subjects, we have found per-

sistent effects on rod photoreceptor function and evidence 

of intralaminar re-organization of post-receptor retina. 

These studies have employed electroretinogram (ERG),25 

psychophysical,26,27 and retinal imaging procedures.28,29 We 

have also found significant departures from normal in eye 

growth30 and refractive development.31,32

Peripheral retina in ROP
In our ERG studies, we recorded and analyzed rod photore-

ceptor activity represented in the a-wave and the rod-driven 

post-receptor activity represented in the b-wave (Figure 2) 

using procedures described previously.33–36 In infants with 

a history of ROP (median age 10 weeks post-term), both 

rod and rod-driven post-receptor sensitivity were low.25 In 

children (median age 10 years), post-receptor sensitivity 

normalizes but the deficits in rod photoreceptor sensitivity 

persist even if the ROP had been mild.25 These ERG data are 

evidence that after clinical healing (judged by inspection of 

the retinal vasculature), the post-receptor neural circuitry 

undergoes intralaminar reorganization.37–42 This is accom-

panied by effects on rod-mediated visual sensitivity that are 

demonstrated by our psychophysical studies.26,27

We tested rod-mediated vision to evaluate spatial and 

temporal summation in older children with a history of ROP 

and in control subjects.26,27 The underlying concept of spatial 
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Figure 1 The developmental increase in rhodopsin content of the retina and 
temporal retinal coverage by large vessels.
Notes: As rod photoreceptor development proceeds, the rod outer segments 
elongate and rhodopsin content increases. These measures of rhodopsin extracted 
from whole retinae are companions for the full-field electroretinography that is used 
to evaluate rod activity. The red arrow indicates the onset of prethreshold ROP as 
described by Palmer et al.4 Copyright © 1999. Association for Research in Vision and 
Ophthalmology. Adapted from Fulton AB, Dodge J, Hansen RM, Williams TP. The 
rhodopsin content of human eyes. Invest Ophthalmol Vis Sci. 1999;40(8):1878–1883.74 
Data for vessel coverage values from Provis JM. Development of the primate retinal 
vasculature. Prog Retin Eye Res. 2001;20:799–821.6 
Abbreviation: ROP, retinopathy of prematurity.

Table 1 Classification of subjects in our ROP studies

Category Clinical features

Severe ROP Zone III, stage 3; treated by laser
Mild ROP Zone II or III, stage 1 or 2; resolved 

spontaneously without requiring treatment
No ROP ROP never detected

Abbreviation: ROP, retinopathy of prematurity.
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Figure 2 Sample rod-mediated ERG responses to full-field stimuli.
Notes: (A) Responses from an infant with a history of mild ROP and a healthy term-born 10-week-old infant, both tested at 10 weeks post-term, and from an adult. For all 
three sets of records, the vertical axis indicates the strength of the stimulus flash in log scotopic trolands and the horizontal axis indicates time in milliseconds. For both infant 
and adult, the amplitude of the response increases with increasing stimulus strength. At lower intensities, b-waves, but no a-waves, are seen. At higher strengths, the downward 
going a-wave appears. In these test conditions, the a-wave represents the molecular events involved in the activation of phototransduction in the rod outer segments. The 
b-wave represents post-receptor activity, including that in the rod-driven bipolar cells. (B) A-wave model fits. An expanded view of the a-waves of term-born infant and adult 
subject is shown. The solid lines are the ERG traces. The dashed lines show the fit of the mathematical Lamb and Pugh model of rod phototransduction, as modified by Hood 
and Birch, to the a-waves.75–77 The model parameters obtained by this calculation are shown on each panel. Rod sensitivity, SROD, is lower in the infant than in the adult. In the 
normally developing eye, SROD is scaled by the rhodopsin content of the retina. (C) Log–log plot of b-wave stimulus/response functions of term-born infant (circles) and adult 
(triangles). The b-wave amplitude is shown as a function of stimulus strength. The smooth curve fit to the data of each subject represents the function V/VMAX = I/(I+σ).78 The 
saturated amplitude, VMAX, and the stimulus (I) that produces a half maximum amplitude response, log σ, are indicated for the adult subject. Log σ is an index of rod-mediated 
post-receptor retinal sensitivity.
Abbreviations: ERG, electroretinogram; ROP, retinopathy of prematurity.

summation is that a large number of rods in a given retinal 

region connect to a neuron; the receptive field is the restricted 

post-receptor region onto which this group of photoreceptors 

converge. In our spatial summation test,27 the diameter of 

a test spot was varied; the dark adapted threshold for the 

detection of the test spot was measured for eight different spot 

diameters, ranging from 0.4° (tiny) to 10° (big – about the 

diameter of a soft ball at arm’s length). The results (Figure 3) 

show that the critical diameter is larger in subjects with 

a history of ROP than in preterm subjects who never had 
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Figure 3 Rod-mediated spatial summation.
Notes: (A) DCRIT values in severe ROP, mild ROP, no ROP, and term-born control groups are plotted. Each point represents an individual subject; the number of subjects in 
each group is indicated. The horizontal bars indicate the mean DCRIT value for each group. (B) The log–log plot demonstrates that reciprocity held. In every subject group, for 
the smaller spots, threshold became lower (more sensitive) with increasing stimulus area. For larger diameter spots, the threshold did not change; summation was complete. 
(A) Copyright © 2014. Association for Research in Vision and Ophthalmology. Adapted from Hansen RM, Tavormina JL, Moskowitz A, Fulton AB. Effect of retinopathy of 
prematurity on scotopic spatial summation. Invest Ophthalmol Vis Sci. 2014;55(5):3311–3313.27

Abbreviations: DCRIT, critical diameter; ROP, retinopathy of prematurity.
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Figure 4 Rod-mediated temporal summation.
Notes: (A) tCRIT values in former preterm subjects with a history of severe ROP, mild ROP, and no ROP and in term-born controls are plotted. Each point represents individual 
subjects; the number of subjects in each group is indicated. The horizontal bars indicate the mean tCRIT value for each group. (B) As shown in the log–log plot, reciprocity held. 
In every subject group, for the brief duration stimuli, threshold became lower (more sensitive) with increasing stimulus duration. For longer duration stimuli, the threshold did 
not change; summation was complete. (A) Copyright © 2015. Association for Research in Vision and Ophthalmology. Adapted from Hansen RM, Moskowitz A, Tavormina JL, 
Bush JN, Soni G, Fulton AB. Temporal summation in children with a history of retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2015;56(2):914–917.26

Abbreviations: tCRIT, critical duration; ROP, retinopathy of prematurity.

ROP and term-born controls. In other words, visual signals 

are integrated over a larger area (larger receptive field) 

in ROP subjects; the larger receptive field benefits visual 

sensitivity. This is further evidence of intralaminar re-orga-

nization of the post-receptor ROP retina.

Temporal summation is an indicator of the kinetics of 

phototransduction in the photoreceptors. In our rod-mediated 

temporal summation test,26 the duration of a constant diameter 

test spot (10°) was varied and the dark adapted threshold for 

the detection of the test spot was measured for eight different 

durations, ranging from brief (10 ms) to long (640 ms). The 

results (Figure 4) show that the critical duration is longer in 

subjects with a history of ROP than in preterm subjects who 

never had ROP and term-born controls. This is a consequence 

of the slow kinetics of activation of rod phototransduction in 

ROP, in accord with the ERG a-wave results.5

For both spatial and temporal summation, reciprocity 

prevailed.26,27 That is, as indicated by the diagonal lines 

with slope −1 on the log–log plots shown in the right panels 

in Figures 3 and 4, the subjects could detect a light ten 

times dimmer if the stimulus was ten times bigger or ten 

times longer. Once a critical large size or long duration 

was reached, the threshold remained about the same as the 

stimulus size or duration increased.

In an adaptive optical coherence tomography (OCT) study 

of the retinal laminae at 18 degrees temporal eccentricity, we 

found a higher ratio of post-receptor to photoreceptor thick-

ness in ROP subjects than in term-born control subjects.43 In 
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retinal degenerative disorders, thickened inner retinal laminae 

are reported in those retinal regions where the photoreceptors 

are disturbed or lost44 and are postulated to be the retina’s 

compensation for altered photoreceptor inputs to the post-

receptor retina.

Central retina in ROP
This region includes the fovea and the macula. Both cones 

and rods are found in ROP zone 1 (Figure 5).24 The most com-

monly measured visual function, visual acuity, is mediated by 

the foveal cones. Acuity deficits in ROP patients are common, 

even if the ROP had been successfully treated or was mild and, 

by clinical criteria, resolved completely. Most of the 15-year 

alumni of the CRYO-ROP study45 and two-thirds of the 6-year 

alumni of the ETROP study46 had acuity poorer than 20/40.

The central retina matures relatively late. For instance, the 

outer segments of the rods central to the ring undergo later 

developmental elongation than those peripheral to the ring. 

There is a functional parallel. In healthy infants, dark adapted 

visual thresholds central to the ring mature more slowly than 

those peripheral to the ring.47,48

We hypothesized that this late maturing central region is 

particularly vulnerable to ROP. Through a series of non-invasive 

studies of the central retina in subjects with a history of mild 

ROP, we found 1) delayed maturation of rod-mediated retinal 

sensitivity using psychophysical procedures,49 2) deficits in 

cone-driven post-receptor activity using the multifocal ERG 

(mfERG),50 and 3) persistent abnormalities of the intraretinal 

vasculature using adaptive optics retinal imaging.28

Zone 2

Zone 1

Zone 3
Fovea

Disc

Rod
ring

Figure 5 Diagram of the International Classification of Retinopathy of Prematurity 
zones24 with a superimposed fundus photograph on which the optic disc and fovea 
are indicated.
Notes: The green circle indicates the region of retina viewed through a 28 diopter 
lens used with the indirect ophthalmoscope. The band delineated by the yellow lines 
represents the location of the anatomical “rod ring”,9 which is an annular region in 
which there is a high density of rods. The ring is concentric with the fovea and passes 
just nasal to the optic disc and approximately 18° temporal to the fovea.

In our longitudinal psychophysical study of infants with a 

history of mild ROP,49 we found that, even though the clinical 

disease had resolved spontaneously and completely by term, 

dark adapted visual thresholds showed a protracted course 

of development that continued until 18 months post-term, 

whereas in term-born controls, the thresholds were mature 

by age 6 months.

The mfERG provides topographical information about 

the central retina.51 Cone-driven bipolar cells (post-receptor 

retina) are the main contributors to mfERG responses.52 

We found that mfERG responses were significantly smaller 

in subjects with a history of mild ROP than in control 

subjects (Figure 6, color 3-D plots).50 This result led us to 

hypothesize that bipolar cell density differs between ROP 

and control subjects. Using adaptive optics retinal imaging 

(Figure 6),28 we found that the foveal pit in mild ROP eyes 

was significantly shallower than in control eyes and that the 

inner retinal laminae of foveal and extrafoveal regions were 

significantly thicker in ROP eyes than in control eyes. This 

is evidence of failure of centrifugal movement of the bipolar 

cells during foveal development in ROP, as others have also 

concluded.53

What leads to abnormal foveal structure28 and function50 

in ROP? What goes wrong in the neurovascular development 

of the central retina in prematurely born subjects? These 

important issues remain under investigation. The absence of 

foveal avascular zone and hypoperfusion of this important 

retinal region during development have been discussed as 

contributing factors54 There is also OCT evidence of cystoid 

macular edema in ROP infants.55

Refractive development
Numerous studies have shown a high incidence of refractive 

errors, particularly myopia, in infants born prematurely.31,56–62 

Although these findings suggest a disturbance in the normal 

regulation of ocular growth, the mechanisms have yet to be 

specified. It seems unlikely that the mechanisms that are 

operational in experimental myopia63–65 are applicable to 

ROP. Interestingly, we have noted that in ROP infants, low 

rod photoreceptor sensitivity, as determined by analysis of 

the scotopic ERG a-wave, predicted later myopia.32 Deficits 

in cone ERG responses have been reported in chicks with 

form deprivation myopia.66

We have developed a model of normal eye growth and 

applied it to the growth of ROP eyes.30 Through analysis of 

extant magnetic resonance images (MRI), we found that the 

growth of the ROP eye is slow and results in eyes that are 

shorter and have steeper corneas and thicker lenses compared 
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with those in preterm eyes without a history of ROP and in 

term-born eyes. Refractive development has also been studied 

in a rat model of ROP;67,68 more work is needed to translate 

these findings to the human ROP eye.

Figure 7 shows the results of refractions performed on 

279 of our ROP subjects. These data are in reasonable accord 

with refractions in other populations of former preterms. 

Compared with the prediction limits for normal refractive 

development,69,70 myopia was more frequent in subjects with 

ROP than in preterm born subjects who never developed ROP 

and term-born control subjects. In the preterm subjects who 

never had ROP, myopia seldom occurred, whereas hyperopia 

was quite common. Previously reported data showed that, in 

ROP subjects with myopia, the magnitude of myopia typically 

increased with age.31 We are attempting to unravel the mecha-

nisms that underlie refractive development in ROP by analyz-

ing animal models of ROP,67,68 and have developed a human 

model eye to facilitate studies in infants and children.30

Conclusion
Non-invasive investigation of former preterms, conceived 

within a framework of molecular and cellular processes 

known to occur in normal developing human retina and 

rat models of ROP,6,19,71–73 yields a numeric description of 

retinal, visual and refractive development in these infants 

and children. Taken as a whole, these data derived from 

electroretinographic, psychophysical and retinal imaging 

studies link the children’s results to the molecular and cellular 

processes. From a practical perspective, this body of informa-

tion contributes to the understanding of vision in children 

with a history of ROP. Recognition that the neurosensory 

retina has a role in ROP opens the possibility of future novel 

therapeutic approaches to ROP.
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