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Abstract

Using precomputed near neighbor or proximal distribution functions (pDFs) that approximate 

solvent density about atoms in a chemically bonded context one can estimate the solvation 

structures around complex solutes and the corresponding solute–solvent energetics. In this 

contribution, we extend this technique to calculate the solvation free energies (ΔG) of a variety of 

solutes. In particular we use pDFs computed for small peptide molecules to estimate ΔG for larger 

peptide systems. We separately compute the non polar (ΔGvdW) and electrostatic (ΔGelec) 

components of the underlying potential model. Here we show how the former can be estimated by 

thermodynamic integration using pDF-reconstructed solute–solvent interaction energy. The 

electrostatic component can be approximated with Linear Response theory as half of the 

electrostatic solute–solvent interaction energy. We test the method by calculating the solvation free 

energies of butane, propanol, polyalanine, and polyglycine and by comparing with traditional free 

energy simulations. Results indicate that the pDF-reconstruction algorithm approximately 

reproduces ΔGvdW calculated by benchmark free energy simulations to within ~ kcal/mol 
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accuracy. The use of transferable pDFs for each solute atom allows for a rapid estimation of ΔG 
for arbitrary molecular systems.

INTRODUCTION

The accurate calculation of solvation free energies is critical to computational drug design 

and structure optimization as well as understanding important biophysical processes like 

aggregation and protein folding. Two central issues in computational free energy 

calculations include ensuring sufficient sampling of phase space and the accuracy of the 

force field used to model molecular interactions. The sampling issue remains a bottleneck in 

applications of free energy approaches to ever more complex systems; that is, in order to 

investigate thermodynamic behavior of a system, sampling of a representative number of 

configurations within the given ensemble is required, which often requires expensive 

simulations.1–3Force fields continue advancing in accuracy often at the expense of added 

complexity.4–6

Due to the transferable nature of atomic level force fields for a given chemical context, 

molecular mechanics force fields provide an extensible architecture to study the 

thermodynamic properties of a wide range of solutes.7 Free energies of solvation (ΔG) 

depend on the solute–solvent potential,8 and the distribution of solvent around a solute. 

Here, we seek a set of transferable functions to approximate solvent density distributions 

which will allow for rapid estimation of ΔG and its differences due to chemical processes in 

solution.

In assessing free energy differences it is common to consider a thermodynamic cycle for a 

given reaction process. For example, the relative change in free energy associated with the 

change or mutation of molecule A to B is given by the difference in solvation free energy 

(ΔΔG) of the two molecules.9–14 In computational free energy methods, the solvation 

process in which a solute is transferred from the gas phase to the aqueous phase is often 

decomposed into two stages or contributions. First an uncharged, solute cavity is created in 

the solution and the free energy required to insert this cavity is defined as ΔGvdW. This 

cavity is then gradually charged and the change in free energy associated with this process is 

defined as ΔGelec.15 This process, though nonphysical, does allow us to calculate each 

component of the potential function with explicit simulations16 or individual functional 

theories with less computational costs.17,18 While ΔG is a state function and path 

independent, the components ΔGelec and ΔGvdW are well-known to be defined only by a 

process and therefore path-dependent.19

Many approximate techniques have been developed to rapidly estimate ΔG. ΔGelec is often 

estimated using dielectric continuum theory based techniques,15,20 such as the generalized 

Born model,21,22 Poisson–Boltzmann equation,23,24 or Linear Response theory (LRT).25–27 

The nonpolar cavity contribution, ΔGvdW, has been approximated as a linear function of the 

solvent accessible surface area (SASA).28–30 However, the correlation between ΔGvdW 

calculated by SASA and explicit solvent models using rigorous thermodynamic integration 

or free energy perturbation is far from exact for organic molecules, especially at the level of 

small nonpolar molecules.16,31–33 Further decomposition of ΔGvdW into the solute–solvent 
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repulsive and attractive interactions has been proposed with an additional estimator 

accounting for solvent accessible volume.18 The use of implicit solvation models to estimate 

ΔGvdW remains a challenge due to nonadditive, multibody correlations with neighboring 

atoms,33–35 and the complex geometry of the solute–solvent interface.36–39 An approach 

that yields estimates of solvation free energies rapidly but retains the accuracy associated 

with explicit solvent models would be highly desirable. Methods relying on precomputed 

quantities from explicit simulations of small solutes to estimate ΔGvdW of large solutes are 

therefore being developed. For example, the Semi-Explicit Assembly (SEA) approach40–42 

precomputes the modified nonbonded van der Waals interactions between a series of 

nonpolar solute spheres and water, then assembles the total interactions based on the given 

configurations of large solutes.

Here, using precomputed near neighbor or proximal distribution functions (pDFs) of 

solvation about atoms in chemically bonded (small molecule) context we estimate the 

solvation structures around larger and more complex solutes. We then use these 

approximately transferable distributions to calculate ΔG. pDFs approximate solute–solvent 

pair correlation functions at the near neighbor level to describe the local solvent structure 

around a solute.43–47 They have been shown to be a near universal and transferable 

descriptor between different globular proteins.48 That is, pDFs constructed for small 

molecules can be used to predict the solvent structures around complex biological 

macromolecules that are composed of chemically similar components.49–51 Average solute–

solvent interaction energies, and subsequently solvation free energies, can then be calculated 

from these reconstructed solvent structures.

Electrostatic interaction energies estimated using pDFs in combination with LRT have been 

shown to approximate ΔGelec well for a variety of solutes compared to simulation.52–54 We 

have recently shown that van der Waals solute–solvent interaction energies can be 

approximated with good accuracy using precomputed pDFs, but requires a finer spatial 

resolution than what is used to estimate the more smoothly varying electrostatic 

interactions.55 Here, we extend the pDF-approach to calculate ΔGvdW of a variety of solutes 

and assess the accuracy of this approach by a comparison with the more expensive explicit 

solvent thermodynamic integration.

Below we review the generation of pDFs from small solutes and how they can be used to 

reconstruct the distribution of solvent density around an arbitrary solute to estimate average 

solute–solvent interaction energies. Then we show how to calculate ΔGvdW by constructing 

a set of pDFs as a function of a coupling parameter that gradually scales the van der Waals 

interactions between a small solute and solvent (i.e., we define a pathway along which to 

calculate ΔGvdW). To benchmark this approach, we calculate ΔGvdW of butane, and propanol 

and compare with more rigorous estimates obtained from alternative approaches. We then 

generate transferable pDFs from monomers of alanine and glycine and use those to calculate 

ΔGvdW for various triglycine and deca-alanine systems. We study the effects of flexibility, or 

disorder, on ΔGvdW by comparing ΔGvdW of a fixed, extended conformation of triglycine to 

that obtained for a large ensemble of triglycine conformers generated from a molecular 

dynamics (MD) simulation. For completeness, we include linear response estimates of 

ΔGelec and thus construct an approximate total solvation free energy.
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THEORY

In this section, we briefly review nearest neighbor proximal distribution functions (pDFs) 

and how they are used to reconstruct solute–solvent density distributions and subsequently 

estimate solute–solvent energetics. Then we discuss how the pDF formalism can be 

modified to estimate ΔGvdW using a thermodynamic integration scheme.

Distribution Functions and Solute–Solvent Energetics

Proximal distribution functions (pDFs, or g⊥(r)) are average density distributions calculated 

from solvent molecules to their nearest solute atom.43,56,57 The solvent probability 

distribution most nearly perpendicular to the kth solute atom  can be written as

(1)

where  represents the position vector from the ith solute atom to the jth solvent atom at 

time t, m is the number of solute atoms and n is the total number of solvent molecules in the 

system.  returns the distance between a particular solvent atom and the 

nearest solute atom k, i.e., k is the assigned solute atom with the closest distance to the jth 

solvent atom. In this way, the solvent space is effectively divided into Voronoi polyhedra58 

and the resulting distribution functions are defined essentially perpendicularly to the exposed 

surface of the respective solute atoms52 (illustrated in Supporting Information). 

is the volume element around the jth solvent molecule, which is defined by all  vectors, 

where . A graphical illustration for this process can be found in the 

Supporting Information. In practice, a pDF can be computed from a MD simulation mapped 

to a three-dimensional grid where each individual grid point along with its corresponding 

time-averaged solvent density is assigned to the closest solute atom for  calculations. 

The detailed theory and computational procedure can be found elsewhere.43,45

A variety of solute atom sets or groupings can be used to define the pDFs. For example, at 

one extreme one could take each atom of a molecule as having a unique g⊥(r). Alternatively, 

pDFs can be constructed for each force field atom type or, using an even coarser grouping, 

by chemical identity or similarity.49 In general, we refer to a particular grouping or atom set 

by χ and refer to a particular pDF defined by this grouping with χk. Previous work shows 

that the pDFs classified using force field atom types for proteins and nucleic acids yields 

nearly universal functions which are thus transferable to chemically similar solute 

molecules.45,48,50

We can reconstruct the solvation density around a given solute configuration with a three-

dimensional grid and assign solvent density to the grid point (x, y, z) with the precomputed 

:
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(2)

where  is the minimum distance between the grid point and all solute 

atoms i, χk is the assigned atom set type of the closest solute atom and (x, y, z) denotes the 

center of the grid volume. In this framework, the solvent density at grid point (x, y, z) is 

therefore

(3)

where ρ is the bulk solvent number density. In our pDF calculations (both pDF-collections 

and solvent density reconstructions), we used 0.2 and 0.01 Å as the reconstruction grid space 

resolution and g⊥(r) collection resolution, respectively. The selection of g⊥(r) resolution is 

more important in the van der Waals reconstruction process and a resolution of 0.01 Å is 

suggested based on previous work.55

Any solute atom may exclude solvent from any grid point when there is overlap or volume 

exclusion. In solvent density reconstruction, a grid point is assigned zero solvent density if 

any . As an example we consider a grid point density assignment near a 

hydrogen covalently bonded to a heavy atom whose van der Waals radius effectively eclipses 

that of the hydrogen’s. While the hydrogen atom is the nearest grid point and , the 

pDF of the bonded heavy atom (i.e., next nearest neighbor) could dictate that solvent should 

be excluded at the grid point with the given distance, r′. This becomes increasingly 

important at small distances when using a soft-core van der Waals potential as is common in 

free energy calculations (addressed in next section, Supporting Information, and ref 55).

We use a two step process to ensure that grid points are assigned the appropriate solvent 

density during reconstruction. First we eliminate grid points at distances in which the pDFs 

of heavy atoms in the set χ predict essentially zero solvent occupation (referred to as the 

cavity rule). Conceptually, solvent space is divided into Vornoi polyhedra with heavy atoms 

at this step. Then, we exclude or zero out any grid points in a similar manner using  of the 

remaining atoms (referred to as the exclusion rule). The whole reconstruction process 

including the cavity and exclusion rules can therefore be formulated as

(4)

Here mH is the number of solute heavy atoms, and m is the number of all solute atoms. The 

cavity factor  is defined as
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(5)

and notice that i loops over solute heavy atoms only. Similarly, the exclusion factor  is 

written as

(6)

where j loops over the remaining atoms in the set χ.

Once the solvent density is reconstructed around the solute, the average solute–solvent 

interaction energy can then be written as

(7)

where  is the solute–solvent interaction energy for solute atom i, Δv is the 

unit volume which depends on the spatial resolution and the outer sum is taken over all grid 

points. Depending on the potential energy function, U may be decomposed into the sum of 

electrostatic and van der Waals interaction energies. The average electrostatic and van der 

Waals solute–solvent interaction energies can then be calculated using eq 7.

We have previously shown that the solute–solvent electrostatic interaction energy and 

electrostatic solvation free energy can be reasonably approximated from the pDF-

reconstructed solvent density. Here, we extend the pDF approach to estimate the change in 

free energy (ΔGvdW) upon inserting uncharged solutes in solution using a soft-core van der 

Waals potential and a thermodynamic integration scheme.

Thermodynamic Integration with Soft-Core Potentials

To calculate the solvation free energy of cavity formation (ΔGvdW) we use a thermodynamic 

integration (TI) approach. We construct a pathway between the initial gas phase and final 

solvated state by means of a coupling parameter, λ, which varies between 0 and 1 such that 

when λ = 0 the interaction energy (Uij) between solute atom i and solvent atom j is zero and 

when λ = 1, , or the typical van der Waals potential energy function. To avoid 

singularities and numerical instabilities at the λ = 0 end-point, a soft-core potential is 

commonly used to scale  along the pathway:59,60
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(8)

where rij is the distance between solute and solvent atoms, ϵ is the van der Waals well depth, 

and σ is the contact distance. δ is a radius-shifting coefficient of λ and here is taken to be 

5.0 throughout the simulations and pDF-reconstructions. Trivially at λ = 1 this is the usual 

Lennard-Jones form. We note that the effective σij is reduced as λ decreases, which leads to 

water residing at closer distances to the solute atoms.

The total solute–solvent van der Waals interaction energy (UvdW) is the sum of  over 

all solute–solvent atom pairs. The van der Waals solvation free energy is calculated as the 

integral of the average derivative of UvdW with respect to λ:

(9)

One can approximately calculate ΔGvdW using numerical integration methods with the 

ensemble averages of ∂UvdW/∂λ at various values of λ. The derivative of UvdW with respect 

to λ is readily obtained from the analytical expression:

(10)

In our pDF approach, we first construct  for the atom type set of a small representative 

chemical group (e.g., an alkane or peptide substituent) from MD simulations performed at 

regularly spaced values of λ. For each λ, we obtain unique . Then using these 

precomputed pDFs, we reconstruct the average, λ-dependent solvent density distributions on 

a 3D grid around a given solute configuration (e.g., a long alkane or polypeptide) for each λ 
value. We directly estimate ⟨∂UvdW/∂λ⟩λ using a form like eq 7 but with Uij replaced with 

. Finally, numerically integrating ⟨∂UvdW/∂λ⟩λ along λ yields ΔGvdW. Note that 

the λ-dependent pDFs only need to be constructed once but may be used to predict ΔGvdW 

of more complex solutes that are composed of similar atom type sets for which the pDFs 

were generated.
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METHODS

Simulation

The solutes butane, propanol, ala1, ala10, gly1, gly3 were chosen for this study. Molecular 

dynamics simulations were performed with NAMD 2.9 and 2.1061,62 with the CHARMM36 

force field parameters63 to generate the pDFs and calculate free energy benchmarks. pDFs 

were generated for butane and propanol as a control to compare with more rigorous free 

energy calculations. The pDFs generated for ala1 and gly1 were used in the analysis of 

longer peptides. Each solute was solvated with TIP3P water64 in a volume with at least 10 Å 

from each boundary to the solute atoms. Peptides were capped with neutral acetyl (ACE) 

and N-methyl amide (NME) chemical groups. The initial conformations of decaalanines and 

triglycine peptides are from previous studies33,52,55,65 and presented in the Supporting 

Information. Three-dimensional periodic boundary conditions were applied. A rigid water 

geometry is enforced using SHAKE.66 Particle Mesh Ewald (PME)67 was used to treat 

electrostatic interactions using a grid of 1.0 Å resolution. The Lennard-Jones (L-J) 

interactions were gradually switched off over the range 10 Å to 11 Å. The temperature was 

fixed at 300 K via a Langevin thermostat with damping coefficient of 5 ps−1. A time step of 

2.0 fs was used to integrate the equations of motion.

The pDFs for this free energy study were generated in 11 windows with a λ-spacing of 0.1 

between 0 and 1. Solvent reconstruction and calculation of ΔGvdW were performed with 

these λ values. In general, it is necessary to sample more extensively at certain λ-windows 

depending on the chosen soft-core potential function (near end points in our case) to 

accurately depict the repulsive van der Waals forces when inserting the solute into the 

system.11 More detail on the analysis can be found in the Results Section below. In this 

article we show how to use pDFs to reproduce ⟨∂UvdW/∂λ⟩ at all λ-windows with our pDF-

reconstruction algorithm, which is subsequently integrated to estimate ΔGvdW.

Throughout the simulations, the solute molecules were rigid except as noted below for gly3. 

The pDF sampling simulations were initially equilibrated in the NVT ensemble for 1 ns. The 

simulations were then switched to NPT at 1 atm pressure, with the first 1 ns excluded as 

equilibration. The pDFs and ⟨∂UvdW/∂λ⟩ were calculated from production simulations that 

ranged between 4 and 10 ns at each λ. Trajectory snapshots were saved every 0.2 ps for 

analyses. The convergence of ⟨∂UvdW/∂λ⟩ at each λ window is discussed in the Supporting 

Information. For each λ window, the uncertainty of ⟨∂UvdW/∂λ⟩ is estimated as the block 

standard error.68 The final uncertainty of ΔGvdW is calculated by the propagation of errors 

across all λ.

In addition to the fixed solute conformations, we also examined ΔGvdW of gly3 without 

positional constraints (i.e., allowed to be completely flexible during simulations). The 

simulation parameters and λ-windows are identical to those of simulations with gly3 fixed in 

an extended conformation. We used 10000 solute configurations from a typical 50 ns MD 

simulation (λ = 1) of flexible gly3 for calculating ΔGvdW from pDF-reconstructions.

In the following sections, we also provide estimates of ΔGelec based on LRT. That is, ΔGelec 

can be approximated as half of the solute–solvent electrostatic interaction energy instead of 
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integrating the average derivative of Uelec with respect to a coupling parameter that 

gradually scales solute–solvent electrostatic interactions. Thus, a set of simulations with 

charged solutes is employed to achieve full electrostatic solute–solvent interactions. In our 

previous work, we have reported the averaged solute–solvent electrostatic interaction 

energies for configurations of butane, propanol, and ala10,55 along with the corresponding 

pDFs used for solvent density reconstruction. In this contribution, with a goal of calculating 

total solvation free energy, we further include estimates of ΔGelec for fixed ala1, gly1, and 

flexible gly3 from free energy simulations to compare with pDF-reconstructions. The 

simulation details are the same as the above free energy simulations except for having 

charges on solute atoms and the total sampling time for each system is 100 ns with a 2 ps 

save frequency.

RESULTS AND DISCUSSIONS

Butane and Propanol

We compare the ⟨∂UvdW/∂λ⟩ of a single butane/propanol molecule obtained from TI 

simulations and pDF-reconstruction using the same solute configuration and same number 

of λ points. In general, the more extensive the set of atom types we include, the higher the 

accuracy in solvent structure and solute–solvent energetics we can expect during the 

reconstructions,51,55 especially for the nonpolar contributions. Here, we consider all six 

force field atom types (i.e., the set χ) for butane and propanol: methylene carbon (CT2), 

methyl carbon (CT3), methylene hydrogen (HA2), methyl hydrogen (HA3), the hydroxyl 

oxygen (O1), and the bonded polar hydrogen (HO1). The pDFs of each atom type with 

respect to water oxygen atom (OT) at selected λ windows are shown in Figure 1. The pDFs 

of each atom type with water hydrogen atoms (HT) are included in the Supporting 

Information.

Ideally, the pDFs at λ = 0 should be 1 (i.e., bulk solvent density) at all interatomic distances. 

Therefore, we set the pDFs at λ = 0 to 1 for all distances. Essentially, all atom types are 

uncharged and considered as pure covalently bonded L-J spheres, and thus show similar 

behaviors; as λ increases, the position of the peaks are shifted to larger distances with 

stronger magnitudes in the first peak.

The simulated and pDF-reconstructed estimates ⟨∂UvdW/∂λ⟩ for each λ are presented in 

Figure 2. Differences between ⟨∂UvdW/∂λ⟩ calculated by TI simulations and pDF 

reconstruction at each λ are shown in the insets. Overall ⟨∂UvdW/∂λ⟩ calculated by pDF 

reconstruction for both solutes are consistent with the simulations with deviations for most 

windows less than 1 kcal/mol. The largest deviation (~2 kcal/mol) of ⟨∂UvdW/∂λ⟩ between 

both methods occurs at λ = 0.1. The deviations are diluted upon integration when computing 

ΔGvdW. ΔGvdW calculated for both solutes and methods are listed in Table 1. Differences in 

simulated and pDF-reconstructed ΔGvdW for butane and propanol are −0.33 and 0.18 kcal/

mol, respectively. The uncertainty for each λ window is estimated using block standard 

errors,68 and the final uncertainty of ΔGvdW is computed using error propagation. We 

include the estimated ΔGelec for butane and propanol from TI simulations and pDF-

reconstructions in Table 1. These values are obtained as half of solute-water electrostatic 

interaction energies based on standard LRT48,52 and are adapted from our previous work.55 
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Essentially all free energy components are in good accord with those obtained from TI 

simulations.

To demonstrate the utility of using this pDF approach to estimate solvation free energies, we 

consider a free energy cycle of mutating the methyl group in butane to a hydroxyl group to 

form propanol (illustrated in Figure 2). Since free energy is a state function, ΔΔG = ΔG4 – 

ΔG3 = ΔG2 – ΔG1. ΔG3 and ΔG4 are the free energies of mutating butane to propanol in 

vacuum and solution, respectively, and their difference can be calculated by the difference in 

solvation free energies of butane and propanol. Using the values reported in Table 1, we 

obtain the pDF-reconstructed ΔΔG = −6.56 kcal/mol, which is within 1 kcal/mol of the 

simulated ΔΔG = −7.50 kcal/mol.

Deca-alanine

We next estimate ΔGvdW from precomputed pDFs for a deca-peptide. pDFs were 

constructed from a single alanine monomer (ala1) and used to compute ΔGvdW of four 

different conformers of deca-alanine, ala10 (referred to as d, d1, d2, d3 in Supporting 

Information). The set of atoms chosen for pDF generation and solvent density reconstruction 

include {CT3, C, O, NH1, CT1, HA3, HN, HB1}, where C and O represent the carbon and 

oxygen atoms of the carbonyl group, NH1 is the peptide nitrogen, HN is the polar hydrogen 

bonded to the nitrogen, CT1 is the backbone carbon, and HB1 is the backbone hydrogen. We 

use the pDFs for CT3 and HA3 from our analysis of butane and propanol (Figure 1). The 

pDFs for the rest of the atom types at several values of λ are presented in Figure 3.

We start with comparing the simulated and pDF-reconstructed estimates of ⟨∂UvdW/∂λ⟩ for 

ala1, as shown in Figure 4a, using the same solute configuration. From the inset we observe 

that the deviations of ⟨∂UvdW/∂λ⟩ between both methods are slightly larger than those 

observed for butane and propanol for all λ windows, but still within 2 kcal/mol. The 

simulated and the pDF-reconstructed ΔGvdW and ΔGelec are listed in Table 2. The difference 

in ΔGvdW between simulation and pDF-reconstruction is 0.60 kcal/mol, while the difference 

in ΔGelec is −0.51 kcal/mol. These differences cancel and yield a pDF reconstructed ΔG 
within the uncertainty of ΔG obtained by TI simulations. We note ΔGelec is generally the 

dominating term in ΔG. Estimated uncertainties of ΔGelec are smaller than the uncertainties 

of ΔGvdW in most of our studies.

We use the pDFs calculated from ala1 to estimate the ΔGvdW of ala10. The results of 

simulated and pDF-reconstructed ⟨∂UvdW/∂λ⟩ at each λ for conformer d are shown in 

Figure 4b. The results for the other three conformers are similar and included in the 

Supporting Information. The inset shows the deviations of ⟨∂UvdW/∂λ⟩ between simulations 

and pDF-reconstructions at each λ for all four conformers. While the deviations are large 

(10–15 kcal/mol/window) and increase with system size, they are suppressed upon 

integration when calculating ΔGvdw in a manner similar to what we observed for butane and 

propanol. The pDF reconstructed estimates of ΔGvdW of all ala10 conformers are consistent 

with those obtained from TI simulations (Table 2). The differences between simulated and 

reconstructed ΔGvdW for the different conformers in order are 0.17, 2.88, 0.84, and −0.05 

kcal/mol. Differences of ΔGelec between methods (adapted from our previous work55) are 

larger than those observed for ΔGvdW. Owing to the extremely twisted configuration of 
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conformer d1, we find the largest deviation between simulation and reconstruction for both 

ΔGvdW and ΔGelec. We note that Poisson–Boltzmann calculations fared worse in 

reproducing the ΔGelec of d1.52 This highly twisted conformation is a low probability 

structure with peculiar internal interatomic correlations. Thus, we consider this conformer to 

be a most challenging case for this theory based on pairwise near neighbor solvent 

correlations for the estimation of ΔG.

Flexible and Fixed Triglycine

Finally, we extend our approach to the calculation of ΔGvdW for a large, diverse ensemble of 

gly3 conformations and assess the effects of flexibility, or disorder, on these calculations by 

comparing to a single fixed/extended conformation of gly3. We chose to calculate the pDFs 

from a single fixed glycine (gly1) to evaluate the ΔGvdW of fixed and flexible triglycines 

(gly3). The configuration of fixed gly3 is in the Supporting Information. The atom set used 

to generate the pDFs used here include {CT3, C, O, NH1, CT2, HA3, HN, HB2}. pDFs for 

these atom types have been presented in the previous sections except for HB2, which 

represents the aliphatic backbone hydrogen atoms bonded to the CT2 atoms. Results of 

simulated and pDF-reconstructed ΔGvdW and ΔGelec for fixed gly1 are presented in Table 3. 

Differences of both components between methods are 0.06 kcal/mol. We next use these 

precomputed pDFs to estimate ΔGvdW of fixed and flexible gly3.

Consider the ΔGvdW term. The comparisons of simulated and pDF-reconstructed ⟨∂UvdW/

∂λ⟩, along with the deviations (in the insets) at each λ for flexible and fixed gly3 are 

presented in Figure 5a,b. The deviations are all within 2 kcal/mol. The values of ΔGvdW are 

listed in Table 3. To estimate ΔGvdW of flexible gly3, we extracted 10000 solute 

configurations from a molecular dynamics simulation and, for each one, calculated ⟨∂UvdW/

∂λ⟩ at all λ values. The ⟨∂UvdW/∂λ⟩ values are then configurationally averaged. We show 

the distribution over all conformations of ⟨∂UvdW/∂λ⟩ at λ = 0 from simulation in Figure 5c. 

This shows the deviation among the solute configurations. We expect the distribution of 

⟨∂UvdW/∂λ⟩ to be different depending on the force field used given that we have previously 

shown that CHARMM36 and Amber ff12SB generate different ensembles of structures.69 It 

would be an interesting comparison to test the distributions of ΔGvdW using different force 

fields as they can display different distributions of solute configurations and flexibility.

The differences between simulated and pDF-reconstructed ΔGvdW for flexible and fixed gly3 

are within 0.2 kcal/mol. In addition to the 11 λ windows used for thermodynamic 

integration, we include the results using the free energy perturbation (FEP) method with 50 

equally spaced λ windows between 0 and 1 from recently published work.65 Due to the 

nature of the soft-core potential used in this contribution, the integrand is changing more 

rapidly (as shown in all ⟨∂UvdW/∂λ⟩ figures) at small λ. This is a likely source of error in 

the ΔGvdW reported here. The comparison of using different numbers of λ windows for 

calculating the ΔGvdW of the same solute can be found in Supporting Information. We 

observe that  calculated from the current free energy 

simulations, pDF-reconstructions, and FEP are 0.88, 0.77, and 0.81, respectively. The fact 

that the ΔGvdW for flexible gly3 is less favorable (or more repulsive) than the fixed gly3 is 

not surprising. With solute flexibility, gly3 can form configurations that prevent water from 
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accessing parts of the solute, consequently increasing ΔGvdW. The striking part is that all 

three methods eventually lead to a consistent ΔΔGvdW, which is not trivial. More extensive 

tests of our approximate ΔΔGvdW are certainly warranted.

To complete the estimation of the total solvation free energy, results for ΔGelec are presented 

in Table 3. Here we do not include the ΔGelec of flexible gly3 calculated by TI simulations 

since the noise of ΔGelec computed from the ensemble of solute and solvent configurations 

instead of from only the ensemble of solute configurations (like in continuum models or the 

current concept using pDF-reconstruction) is much larger.70–72 For the fixed gly3, the 

differences of ΔGelec between these three methods are within 4 kcal/mol. For flexible gly3, 

the difference of ΔGelec between pDF-reconstruction and FEP increases slightly and is 

within 5 kcal/mol considering a 0.5 kcal/mol uncertainty for FEP reported ΔGelec. Figure 5 d 

shows the distribution of pDF-reconstructed ΔGelec using 10000 solute configurations 

generated from simulation. This distribution has a standard deviation of 7.42 and is larger 

than the distribution from pDF-reconstructed ΔGvdW. 

calculated from pDF-reconstruction and FEP are 4.62 and 1.93 kcal/mol, respectively.

DISCUSSION AND CONCLUSION

In this contribution, we used precomputed solvent density distributions at multiple 

alchemical windows with free energy methods to estimate the van der Waals and 

electrostatic solvation free energies for a variety of solutes. By computing solute–solvent 

pDFs from small molecules, we can reconstruct the solvent densities around arbitrary solutes 

with similar chemical composition and, subsequently, estimate solvation free energies 

without performing lengthy simulations. Using this framework, we have shown that ΔGvdW 

can be reproduced to within useful accuracy. In the future, we will extend our work to the 

calculation of solvation free energies of complex macromolecules.

The examples of calculating ΔΔG encourage applications to different biological systems. 

Combinations of solvation free energies with appropriate free energy cycles may allow rapid 

estimations for molecular associations,10 alanine scanning,73 and the predictions of pKa 

values of proteins and amino acid side chains.74

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
pDF of the butane/propanol atoms to water oxygen atoms at different λ. Numbers above 

each pDF indicate the corresponding λ of this atom type.
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Figure 2. 
Simulated and pDF-reconstructed ⟨∂UvdW/∂λ⟩ at each λ window for (a) butane (b) 

propanol. The inset of each panel shows the difference between the simulated and pDF-

reconstructed ⟨∂UvdW/∂λ⟩. Panel (c) illustrates the thermodynamic cycle of mutating a 

methyl group of a butane into hydroxyl group to form a propanol.
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Figure 3. 
pDF of alanine/glycine atoms to water oxygen atoms at different λ. Numbers above each 

pDF indicate the corresponding λ.
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Figure 4. 
Simulated and pDF-reconstructed ⟨∂UvdW/∂λ⟩ at each λ window for (a) ala1 (b) ala10 (the 

configuration referred to as d in Supporting Information). The inset of each panel shows the 

difference between the simulated and pDF-reconstructed ⟨∂UvdW/∂λ⟩.
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Figure 5. 
Simulated and pDF-reconstructed ⟨∂UvdW/∂λ⟩ at each λ window for (a) flexible gly3 and 

(b) fixed gly3. The inset of each panel shows the difference between the simulated and pDF-

reconstruced ⟨∂UvdW/∂λ⟩. Panel (c) shows the distribution of ⟨∂UvdW/∂λ⟩ for flexible gly3 

at λ = 0. The average of pDF-reconstructed ⟨∂UvdW/∂λ⟩ corresponds closely with the 

average of the simulated ⟨∂UvdW/∂λ⟩. Panel (d) shows the distribution of pDF-reconstructed 

ΔGelec using the solute configurations from flexible gly3 simulations, with the red dashed 

line representing the ensemble average.
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Table 1

Comparison of Solvation Free Energies of Butane and Propanol Using Thermodynamic Integration with 

Simulations and pDF-Reconstructionsa

Δ G simulated T.I. pDF T.I.

butane

Δ G vdW 2.67 (0.14) 2.34

Δ G elec −0.13 (0.01) −0.14

Δ G total 2.54 (0.14) 2.20

propanol

Δ G vdW 1.88 (0.28) 2.06

Δ G elec −6.84 (0.03) −6.42

Δ G total −4.96 (0.28) −4.36

a
ΔGvdW is obtained using eq 9. ΔGelec is approximated as half of electrostatic solute–solvent interaction energy using LRT and is adapted from 

ref 55. Uncertainties obtained as the block standard errors68 are denoted in parentheses. Uncertainties for ΔGvdW and ΔGtotal are calculated 

using error propagation. The units are all in kcal/mol.
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Table 2

Comparison of Solvation Free Energies of Single Alanine and Different Conformers of Deca-alanines Using 

Thermodynamic Integration with Simulations and pDF-Reconstructionsa

Δ G simulated T.I. pDF T.I.

ala1

Δ G vdW 1.08 (0.36) 1.78

Δ G elec −20.21 (0.02) −20.72

Δ G total −19.13 (0.36) −18.94

d

Δ G vdW 5.75 (1.77) 5.92

Δ G elec −78.19 (0.08) −74.26

Δ G total −72.44 (1.77) −68.34

d1

Δ G vdW 5.83 (2.20) 8.70

Δ G elec −67.75 (0.08) −60.70

Δ G total −61.92 (2.20) −52.00

d2

Δ G vdW 5.42 (1.81) 6.27

Δ G elec −89.97 (0.10) −89.00

Δ G total −84.55 (1.81) −82.73

d3

Δ G vdW 5.72 (1.69) 5.67

Δ G elec −86.88 (0.08) −85.86

Δ G total −81.16 (1.69) −80.19

a
ΔGvdW is obtained using eq 9. ΔGelec is approximated as half of electrostatic solute–solvent interaction energy using LRT and is adapted from 

ref 55. The units are all in kcal/mol.
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Table 3

Comparison of Solvation Free Energies of Glycine and Tri-glycine Using Thermodynamic Integration with 

Simulations, pDF-Reconstructions, and Benchmark Free Energy Perturbation Calculationsa

Δ G simulated TI pDF TI FEPb

gly1

Δ G vdW 0.39 (0.34) 0.45

Δ G elec −16.31 (0.12) −16.25

Δ G total −15.92 (0.36) −15.80

gly3, flexible

ΔGvdW
flex

−0.41 (0.32) −0.33 −0.03 (0.05)

ΔGelec
flex

−28.75 −24.01 (0.50)

ΔGtotal
flex

−29.08 −24.04 (0.50)

gly3, fixed

ΔGvdW
fix

−1.29 (0.38) −1.10 −0.84 (0.04)

ΔGelec
fix

−25.62 (0.12) −24.13 −22.08 (0.03)

ΔGtotal
fix

−26.91 (0.40) −25.23 −22.16 (0.05)

a
ΔGvdW is obtained using eq 9. For fixed configurations, ΔGelec are approximated as half of electrostatic solute–solvent interaction energies 

using LRT. An average is taken over configurations for flexible solutes. The units are all in kcal/mol.

b
Free energy perturbation results are adapted from ref 65.
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