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Abstract

The atomistic associative memory, water mediated, structure and energy model (AAWSEM) is an 

efficient coarse-grained force field with transferable tertiary interactions that incorporates local in 

sequence energetic biases using structural information derived from all-atom simulations of long 

segments of the protein. For α helical proteins, the accuracy of structure prediction using 

AAWSEM has been established previously. In this article, we examine the capability of AAWSEM 

to predict the structure of α/β proteins. We also elaborate on an iterative approach that uses the 

structures from a first round of AAWSEM simulation as fragment memories. This iterative scheme 

improves the quality of the structure prediction and makes the free energy profile more funneled 

toward native configurations. We explore the use of clustering analyses as a way of evaluating the 

confidence in various structure prediction models. Clustering using a local relative order parameter 

(mutual Q) of the predicted structural ensemble turns out to be optimal. The tightest cluster 

according to mutual Q generally has the most correctly folded structure. Since there is no 

bioinformatic input, AAWSEM amounts to an ab initio protein structure prediction method that 

combines the efficiency of coarse-grained simulations with the local structural accuracy that can 

be achieved from all-atom simulations.
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Introduction

Determining the structure of proteins has advanced through an extensive collaboration 

between theorists and experimentalists. Experimental efforts now routinely resolve protein 

structures with high resolution, enlarging the Protein Data Bank (PDB) by thousands each 

year.1 Nevertheless, an overwhelming number of biologically interesting systems remain 

untouched due to experimental limitations and the vastness of sequence space. To address 

these systems, computational efforts must be largely relied upon to predict protein 

structures.

Over the past few decades, structure prediction methods using either a top-down (Homology 

modeling) or a ground-up viewpoint (ab initio methods including coarse-grained models and 

explicit atomistic simulations) approaches have been developed. Among these, homology 

modeling has the most power, achieving its accuracy by employing the evolutionary 

database.2 The evolutionary approach doesn’t always work well because of the still 

somewhat spotty coverage of structures. Atomistic simulations in principle avoid this 

bioinformatic limitation. In fact, detailed atomistic simulations with a well-optimized force 

field have already been shown capable of folding many small to medium size protein from 

the ground up.3 As protein size increases, however, an exhaustive search of conformational 

space with these force fields becomes prohibitively expensive computationally. The 

evolutionary conservation of structures, the basis of homology modeling, is the result of the 

funneled nature of evolved protein energy landscapes and this gives hope for being able to 

sample even large systems efficiently.4–7 Energy landscape theory quantifies the funneled 

nature of a landscape, and has led to the development of an optimized family of coarse-

grained force fields that can be used to sample the configurations of even a large protein 

efficiently.4,7–11

Energy landscape analysis suggests that local signals (interactions along the backbone 

involving residues close in sequence) contribute a large fraction of the specificity of 

folding.12 Studying fragments of a protein thus provides a shortcut to predicting the 

structure of the protein in its entirety. The associative memory Hamiltonian (AMH) 

incorporated such local signals using information from the PDB database of solved 

structures. Using this bioinformatic input along with a coarse-grained force field optimized 

by energy landscape theory, AMH is efficient in structure prediction and protein docking.4,8 

When the sequence of the target has closely related homologs of known structures, AMH 

amounts to an efficient homology modeling tool but it can also be used when no homologues 

are available and only local patches of sequence can be found in the structural database. We 
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have shown an augmented version of AMH with water-mediated interactions, known as the 

associative memory, water mediated, structure and energy model (AWSEM), can go further 

than homology modeling and allows moderate resolution structure predictions even without 

there being any homologues whose structures are known.9,10,13 The AWSEM force field has 

been used to predict structures of both globular and membrane proteins,11,14 and to study 

protein-protein association15 and the early phases of protein aggregation.16 The AWSEM 

force field employs structural information about protein fragments, which we call memories. 

In its standard use, the memories that are chosen are bioinformatically derived from the PDB 

by local sequence similarity (rather than global homology).12 Again the database can be 

spotty in its coverage even at the local in sequence level. To overcome this limitation, we 

have explored how to incorporate fragment memories that are selected from atomistic 

simulations rather than from solved crystal structures. We call the resulting force field the 

atomistic associative memory, water mediated, structure and energy model (AAWSEM).17 

AAWSEM combines the efficiency of coarse-grained simulations on the full protein level 

with the local structural accuracy from all-atom simulations of shorter protein segments. 

Owing to the smaller size of the segments, simulating them atomistically is much easier than 

simulating the protein as a whole. We have already shown that AAWSEM can predict the 

structures of six α-helical proteins without any bioinformatic input.17

Of course, coarse-grained force fields based on fragment information can only be as good as 

their input. Some atomistic force fields have been criticized for their improper local bias.18 

In addition, while the forces stabilizing helices and stabilizing the turns in a helical protein 

are local, this locality of interaction is far less clear for proteins with β strands that 

unavoidably involve the pairing of more distant parts of the sequence in sheets. The previous 

AAWSEM calculation used as input atomistic calibration on segments containing roughly 20 

to 30 amino acids. This should be long enough to capture many elements of simple β strand 

architectures but perhaps not all.

Thus in this paper we turn our attention to α/β proteins and examine ways around both the 

questions of improper local bias in the atomistic simulations and the nonlocality of structure 

in β strands. For the former issue we explore the use of the CHARMM36 force field19 which 

has been tuned to avoid too strong a bias to α helices. To address the nonlocality issue we 

employ an iterative scheme that uses the first round of predictions from AAWSEM to 

account for nonlocal effects on local fragment structure.

Here we develop an advanced version of AAWSEM model using the CHARMM36 force 

field for fragment input19 and explore a scheme of iteration: The predicted structures with 

lowest potential energy from a first round of predictions are used by a second round of 

prediction as improved fragment memories, a strategy previously used by us.20 We examine 

the prediction power of AAWSEM in this form for five α/β proteins (1UBQ, TOP7, T089, 

T120 and T251). Even in the laboratory, the folding of α/β proteins can be a challenge, due 

to the high cooperativity of hydrogen bonding and the possible thermodynamic traps coming 

from energetically similar but structurally different β-strand topologies.21 Among the five 

proteins, the folding mechanisms of 1UBQ22,23 and TOP724 have been extensively studied 

by us previously. The examples of T089, T120 and T251 were also studied by us in a 

previous paper using AWSEM with bioinformatic but non-homologous input, i.e., in a de 

Chen et al. Page 3

J Phys Chem B. Author manuscript; available in PMC 2017 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



novo structure predition mode.10 We find that the iterative prediction with AAWSEM 

improves the quality of the results from the initial round of AAWSEM. The correctly 

predicted structures are also found in a very tight cluster after one performs hierarchical 

clustering of the predicted structures using their relative Q as the measure of structural 

similarity. This clustering demonstrates the well funneled nature of the AAWSEM force 

field for α/β proteins.

Methods

Detailed protocol of AAWSEM

The protocol of AAWSEM has been detailed earlier by us in Chen et al.17 In this paper (Fig. 

1), we use a different atomistic force field and we improve the performance by carrying out 

an iterative scheme. This scheme employs a second round of prediction that is guided by the 

fragment memories generated from the first prediction run. These fragments are extracted 

from those snapshots of the first round that have the lowest potential energy in the original 

AAWSEM force field. We study the five α/β proteins shown in Fig. 2.

The AAWSEM Force Field

AAWSEM is a version of the AWSEM force field most of whose details are those described 

in Davtyan et al, which should be consulted for further detailed information.11,17 We briefly 

summarize the common features here. AAWSEM is a predictive coarse-grained protein 

folding force field that employs 3 sites per amino acid whose parameters have been 

optimized based on the energy landscape theory. The AAWSEM hamiltonian consists of a 

backbone term Vbackbone, a many body burial term Vburial, a contact term Vcontact and a 

hydrogen bonding term VHB. The hydrogen bonding term, VHB, is associated with the 

secondary structural weight. In AAWSEM this term encodes one bias for the α-helix 

conformation and another bias term for predicting β-strand hydrogen bond formation. The 

strengths for these two terms are based on the secondary structural prediction using Jpred.25

(1)

Apart from these biases, VFM, a fragment based associative memory term, in the form

(2)

guides local interactions during protein folding. rij defines the distance between Cα atoms in 

a certain configuration, while  defines the distance in the memory structures and 

 defines a width dependent on sequence separation. In our simulation, the 

memory structures referenced by VFM come from two different sources. In the 

“bioinformatic mode”, an exhaustive search of structures with locally similar sequence from 
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the PDB is used in the simulation. In the implementation with the AAWSEM force field, the 

fragments are obtained from a detailed explicit solvent simulation of protein segments.

In the atomistic input simulation, the full sequence is first segmented in a overlapping 

fashion according to the knowledge-based secondary structure prediction using Jpred. The 

atomistic simulations of these segments are initialized in random structures. The Continuous 

Simulated Tempering (CST) method,26,27 an enhanced sampling technique, is used to obtain 

a thermodynamic ensemble for each segment. The temperature range implemented in CST is 

between 290K and 350K. After that, a “single linkage” algorithm is used to cluster 

structures obtained at low temperature (T < 330K). λFM is a scaling weight assigned to each 

fragment memory that is determined by the size of each cluster from atomistic simulations.

Details for the All-Atom input simulations

The atomistic simulations were performed with the CHARMM36 force field using 0.15 M 

NaCl ions and the TIP3P model for water in a dodecahedral box containing approximately 

20000 to 40000 water molecules depending on the initially chosen structure of the 

polypeptide segment. In our previous paper on AAWSEM studying six α-helical proteins, 

we used CHARMM27.28 The latter atomistic force field has a stronger helical bias than 

CHARMM36, but that did not seem to influence the prediction power for helical proteins. 

For α/β proteins, the better balanced CHARMM36 should be a better choice (A comparison 

for TOP7 using these two force fields shows the prediction using CHARMM36 is better, 

details in Supporting Information Fig. S7). Each protein segment was simulated for 300ns 

with the GROMACS software package.29

Order Parameters for Structure Analysis and Umbrella Sampling

To survey energy landscapes quantitatively, one can use order parameters to classify 

structures. The structural similarity between two different protein configurations can be 

quantified globally by Qαβ (mutual Q).

(3)

where N is the total number of residues. To evaluate the quality of predictions in comparison 

with a known (or postulated) native structure, this metric can be used with a reference 

structure considered to be native. We write this quality measure simply as Q in that case.

To characterize free energy landscapes, we use umbrella sampling employing a harmonic 

potential in Q to restrain constant temperature molecular dynamics simulations within 

windows based on reference values:

(4)
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with kQ–bias =200 kcal/mol. The reference values for Q0 are chosen to be equally spaced 

from 0 to 0.98 with a step size 0.02. The data from different windows are combined using 

the weighted histogram analysis method (WHAM) to construct full free-energy profiles.

Simulation Details using AAWSEM

All prediction simulations using AAWSEM were performed using the software of the Large-

Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).30 All the umbrella 

sampling simulations were carried out for 10 million steps at 350K. All the annealing 

simulations were started with extended conformations and simulated for 10 million steps 

starting from 600K cooling to 300K.

Hierarchical Clustering Analysis of Predicted Structures

A hierarchical algorithm in MATLAB, with “centroid” linkage, is used to cluster the 

predicted structures from AAWSEM simulations. We obtain clusters using several specific 

order parameters (mutual Q, RMSD and score of CE-alignment) to build the linkage matrix. 

Specific clusters are recognized with a cutoff. The central structure of any cluster is 

calculated for further visualization. The mean value of the mutual-Q inside the cluster is 

used as the metric to describe the tightness of this cluster. The mean value of the mutual-Q 

however is not the only metric that can be employed.

Visualization of Structural Ensembles

In order to describe an ensemble of predicted structures, we superimpose all the predicted 

structures in the ensemble and represent them as a shadow. The central structure of the 

cluster is highlighted in color and shown as opaque.31 All structures are aligned together 

using CE alignment to show the structural variance of the predicted ensemble.

Results

Prediction Results for Five α/β Proteins

The prediction results are summarized in Fig. 2. The results indicate the prediction power of 

AAWSEM using five typical proteins all having composite α/β structures. The maximum 

predicted Q values with reference to its native structure of each protein are presented for 

predictions employing both the homolog-excluded model using bioinformatically chosen 

fragment input (AWSEM-HE) and the AAWSEM model. By excluding homologues, the 

AWSEM-HE result can still essentially be viewed as an ab initio prediction, although not a 

“bottom-up” one. Generally speaking, the best predictions with the database having 

homologues excluded shows a slightly better performance than the strictly bottom up 

predictions obtained purely from the AAWSEM approach for our test cases in the first 

round. 1UBQ and T120 have comparable best predictions for both schemes.

Iterative optimization schemes have been adopted successfully in other protein structure 

refinement and structure prediction protocols.32,33 We explore here an iterative method that 

uses the predictions from the previous round as the fragment memories for a final round of 

predictions. Since the water-mediated non-local interactions have been optimized in both 

AWSEM and AAWSEM, iterative refinement of the fragments locally might be expected to 
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improve the predictions. AAWSEM with iteration indeed successfully improves the 

prediction results for most cases (except for 1UBQ, which will be discussed later). Iteration, 

however, typically did not improve the predictions from the AWSEM-HE model.

The failure of iterative prediction for AWSEM-HE to improve quality suggests that 

iterations, not surprisingly, can sometimes amplify input errors as much as correct them. 

Without bioinformatic input that generally helps, AAWSEM nevertheless does give a good 

average quality for fragment memories from atomistic simulations, and the optimized water-

mediated interactions consistently improves those predictions. Taken together, AAWSEM, 

which gets its fragment memories from all-atom simulations sampled according to a 

thermodynamic distribution, seems to be a better candidate for employing iteration, at least 

for α/β proteins.

Figure 3 shows the annealing profiles for 20 runs for each protein. This plot shows the 

relatively good quality of AAWSEM and AWSEM-HE results. Except for 1UBQ, the 

general trend of the prediction for the second round (blue) of AAWSEM is to be better than 

it was for the first round (magenta). In two cases (T089 and T120) iterative AAWSEM does 

better than first round AWSEM-HE.

Structural alignments between the best predicted structures and the crystallized native 

structures are shown to the right side of the annealing profiles in Fig. 3. The results indicate 

a generally good tertiary structure alignment, especially in the prediction of TOP7 and T120, 

where secondary structures also align perfectly. In the case of 1UBQ, although the overall 

structural topology is correct and the secondary structures align perfectly, the major shift 

arises from a random loop region (residue 45 to 65) that connects the α-helix and β-sheet. 

We note that although fully atomistic simulations of ubiquitin show the crystal structure to 

be stable, so far, fully atomistic simulations have not been successful in folding ubiquitin 

starting from an extended state,34 unlike what we see AAWSEM can do. We note that even 

in perfectly funneled model simulations ubiquitin’s assembly mechanism is not purely 

progressive but involves backtracking, i.e., one part of the protein must partially unfold 

before the whole molecule can complete its folding.35 This feature of the mechanism 

undoubtedly makes the results sensitive to the annealing schedule22 which monotonically 

encourages native structure formation.

Clustering Analysis for Predicted Structures of Five α/β Proteins

Simulations always lead to a multiplicity of predictions. How can one choose the best 

structures out of an ensemble? Using the potential energy of the simulation or using some 

relatively complete scoring function as a metric often proves useful.33 Unfortunately, scoring 

metrics fluctuate a lot (proteins with incorrect symmetries sometimes share similar potential 

energies: the mirror image structures of TOP7 that contain nearly all the contacts of the true 

native structure differ only by about several kJ/mol in potential energy from fully correct 

structures with the AAWSEM force field).

We suggest here using hierarchical clustering to pick apart the ensemble of predictions. We 

find the best clustering uses Qαβ as the metric. As shown in Fig 4, the tightest cluster based 

on Qαβ (labeled with a black square) usually corresponds to the most native-like structures, 
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while the smaller and more diffuse clusters usually represent more misfolded structures. The 

shadow of the best structural clusters shows small variances for the five α/β Proteins (the 

misfolded ensembles with large variances are not shown). The central structures (colored 

blue in each shadow) identified from the folded cluster have very similar contact maps to 

those of the actual native structures.

A tight cluster having many native-like configurations signals the funneled nature of protein 

folding landscapes for 1UBQ, T089, TOP7 and T120. In T251, the structures turn out to be 

barely correlated after hierarchical clustering (Fig. 4D). In other words, the landscape 

appears to be glassy with many quite different structures having similar free energies. T251 

turns out to be easily trapped in a glassy state in structure prediction using either the 

database fragment memories or the atomistic fragment memories in the AAWSEM force 

field (Fig. 3D). This broad rugged landscape suggests to us that this protein of unknown 

function may be involved in allosteric changes. In the SI one can compare the frustration 

pattern of the AAWSEM predicted structure and the reported crystal structure of T251, 

which shows more frustration (Fig S9A and B). Previous work on structure refinement of 

T251 using fully atomistic force fields also showed that the crystal structure of T251 is 

rather difficult to model and refine.36 Indeed that work showed the crystal structure was in 

part unstable under the atomistic force field. We also find that results with the AAWSEM 

force field. We find that attempting structure prediction with even the native structure as 

memory is not able to fold the structure properly(Fig S9C and D). In our experience, this is 

very unusual and we must entertain the idea that either there are potential defects in the 

crystal structure of T251 or that our models miss an essential cofactor or partner for folding.

In contrast to the cluster analysis using Qαβ, Cluster analyses of the predicted ensemble 

(TOP7) using two other common metrics, RMSD and CE-score, show considerable scatter 

rather than yielding a single-tight cluster as happens with the Qαβ metric(Fig 5, Fig S2, Fig 

S3, Fig S4, Fig S5, and Fig S6). The differences in behavior found using the three order 

parameters suggests Q to be the best choice of order parameter for clustering.37

Discussion

Iteration of AAWSEM Improves the Funneling of the Landscape

While implementing the structure prediction protocol documents the useful side of iterating 

AAWSEM, to understand the performance of iterative AAWSEM, it is interesting to 

compare the free energy profiles of TOP7 from the first iteration with the profiles for the 

initial round. The second round dynamics is guided by the fragment interactions from the 

first round structures that have the lowest potential energy. The free energy profile generated 

using the total potential energy along with Q as order parameters shows there are two basins 

in the first round(Fig. 6 A). The first basin (lower Q values ~ 0.4) represents partially folded 

structures of TOP7, while the second (Q ~ 0.6) contains nearly completely-folded structures 

(Fig. 6A). Similar free energy profiles for TOP7 using the bioinformatically guided 

AWSEM-HE model can be found in Truong et al.24 The low-Q basin also corresponds to a 

possible kinetic trap during the folding process of TOP7. The native structure of TOP7 is 

thermodynamically favorable, but reaching it is somewhat kinetically unfavorable.38
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The free energy profile based on the iterative AAWSEM landscape no longer contains the 

first lower Q basin that was comprised of partially folded structures(Fig. 6B and C). The 

landscape is more funneled towards the native state, after iteration.

Possible mirror-image structures in the predicted structures of TOP7

Clustering with the mutual Q metric reveals two structural ensembles for TOP7 (Fig. 4C). 

The clusters were determined with a threshold of 0.6 (structures with mutual Q larger than 

0.6 were considered to be in the same cluster). The tightest cluster, which includes the 

structure with the largest mean mutual Q value, corresponds to the correctly folded ensemble 

(as detailed above), but the other cluster represents a misfolded ensemble populated with 

“mirror-image” structures (Fig. 7A and B). The predicted “mirror-image” structures of 

TOP7 share similar contacts with the native but have an overall inverted symmetry, while 

still keeping the usual chirality of α helices (Fig 7 C and D).39 As a computationally 

designed protein lacking an evolutionary history, while the native structure of TOP7 has 

been validated to be thermodynamically favorable, it has turned out to be kinetically difficult 

to access.38 In the laboratory the folding landscape of TOP7 is rugged with multiple non-

native conformational traps.38 It is possible that the predicted mirror-image structures 

formed by AAWSEM are contributing to the kinetic traps in the laboratory. Atomistic 

simulations often encounter such mirror-image structures.40–42

Frustration analysis of T120 and T089 and their natural complexes suggests there can be 
internal domain swapping in monomer mis-prediction

T120 is an N-terminal domain of human XRCC4DNA repair protein (PDB ID: 1FU1, also a 

CASP4 target). It is a single domain of a much larger complex. The native structure of this 

protein is composed of two sandwich-like β-sheets with two helices linking together (Fig. 8 

A). The unstable β-sheet in our prediction corresponds to the binding interface between the 

N-terminal and C-terminal domain in the larger protein complex. In order to quantify the 

stability of this region, we carried out frustration analysis of T120 by itself and in the 

complex using the Frustratometer.43 Although both the isolated and in-complex T120 show 

mostly minimally frustrated patterns on the 4-strand β-sheet (Fig. 8A and B), the protein has 

a higher density of minimally frustrated contacts in the complex (Fig. 8 C). This suggests 

these additional contacts with the C-terminal of protein complex stabilize the 4-strand β-

sheet of T120. These interfacial contacts cannot be made when the monomer is folded by 

itself without its partner. The monomer essentially undergoes an internal domain swap, 

employing strong interfacial interactions inappropriately to stabilize the monomer, a pattern 

we have previously seen for oligomeric membrane proteins.44

A similar pattern was also found in T089, a single domain from the protein complex 1E4F. 

In the T089 native structure, a long three-strand β-sheet is wrapped around the α-helix, and 

interacts with the rest of 1E4F. Frustration analysis shows that the binding-interface has a 

higher density of minimally frustrated contacts in the structure of the complex than it has in 

the T089 monomer alone (Fig S1). Frustration analysis then suggests it might be easier to 

predict more accurately its structure by simulating the entire multimolecular complex, rather 

than its parts individually. Just as in experimental structure determinations, computational 
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predictions will benefit from paying attention to the context provided by a protein chain’s 

partners in vivo.

Conclusion

In conclusion, we have explored the AAWSEM force field using the CHARMM36 force 

field and including an iterative scheme. The present study of five α/β proteins documents the 

prediction capabilities of both AAWSEM and the iterative AAWSEM algorithm. Iterative 

AAWSEM displays improved structure prediction capabilities. Iteration increases the 

funneling of the landscape towards the native structure. Clustering analyses with mutual Q 

as the order parameter effectively identify the structural clusters that have the most native-

like configurations. AAWSEM and iterative AAWSEM appear to be useful in predicting 

protein structure from the ground up without any bioinformatic input.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Protocol for structural prediction using database AWSEM (right side of figure) and 

AAWSEM (left side). The secondary structure of T089 is used as an illustration, and 

different secondary structures are color labeled. An iterative scheme, which is to use the 

predicted structure with lowest potential energy for a second round of AAWSEM prediction, 

is indicated in the bottom.
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Figure 2. 
A summary of the prediction results for 5 α/β Proteins. Only the predictions with highest Q 

value are reported here. From left to right are: Ubiquitin (PDB ID: 1UBQ), T089 (PDB ID: 

1E4F), TOP7 (PDB ID: 1QYS), T251 (PDB ID: 1XG8) and T120 (PDB ID: 1FU1). Q is 

used as an evaluation metrics. The maximum Q values in each prediction runs were plotted 

against the sequence length of each of the five proteins. The red star represents a structure 

prediction for 1UBQ using AWSEM that allowed for the presence of homologues. 

Simulations using homologues only are typically of higher quality still.
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Figure 3. 
Prediction quality for each of the 5 α/β Proteins. Left: A total of 20 simulated annealing 

runs were completed for each protein with different prediction algorithms: Purple filled 

diamonds indicate the first round with AAWSEM; blue filled diamonds for the second round 

with AAWSEM; red empty squares for the first round with HE-database; green empty 

squares for the second round with HE-database;. In each case, the Q values of different runs 

are arranged in the order of ascending quality. Right: The alignment of the best predicted 

structures from AAWSEM with their native counterparts. The predicted structures are shown 

in red and the native structures are shown in white.
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Figure 4. 
Clustering Analysis for Predicted Structures using relative Q as the metric. From top to 

bottom are (A) 1UBQ, (B) T089, (C) TOP7, (D) T251 and (E) T120. 20 predicted structures 

were hierarchically clustered and shown in a heatmap on the left. The tightest cluster is 

identified in a black square on the heatmap, and structures from this cluster are shown in the 

middle. On the right are the contact maps for the central structure of the tightest cluster 

(shown in blue) and the native structure (shown in red).
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Figure 5. 
Comparing clustering analysis of a structural ensemble (TOP7) using different local metrics. 

(A): Clustering analysis using RMSD as the metric. The nearly correctly folded structures 

scatter over multiple clusters (inside the black squares). (B): Clustering analysis using the 

score from CE alignment as the measure. The nearly correctly folded structures again scatter 

over multiple clusters (inside the black squares).
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Figure 6. 
Free energy landscapes of TOP7. (A) Free energy landscape of TOP7 using the AAWSEM 

potential energy and Q as the order parameters. The plot shows two thermodynamically 

stable basins. (B) Free energy landscape of TOP7 using Iterative-AAWSEM with potential 

energy and Q as the order parameters. The plot contains only one of the basins from the first 

round. (C) Representative structures from the two basins. (D) Free energy profiles for 

different models with Q as the order parameter are shown.
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Figure 7. 
Predicted mirror-image structures for TOP7. (A): The structural ensemble of the non-native 

cluster found from structure prediction. (B): Alignment of the picked central structure of the 

ensemble (colored from blue to red) and the native structure (colored white) in two different 

views related by 90° rotation. (C): The mirror-image domain of the misfolded structure is 

compared with its native counterpart. (D): Comparison of the contact maps of the mirror-

image (blue) and the native (red) structure.
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Figure 8. 
Frustration analysis of T120 folding. The frustratograms show calculated configurational 

frustration of T120 (A) and its complex 1FU1 (B). Minimally frustrated contacts are shown 

in green and highly frustrated contacts are shown in red. (C): Comparison of the density of 

minimally frustrated contacts in T120 (Blue) and 1FU1 (Red) on each residue. The green bar 

above represents the 4-strand β-sheet that interacts with the additional parts in T120 

complex.
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