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Introduction

Interleukin-17 (IL-17) is a multifaceted cytokine with diverse roles both in immune-

protection and also immunopathology. IL-17 has a well-recognized role in immune 

surveillance at mucosal and barrier surfaces (Miossec & Kolls, 2012, Song et al., 2016) but 

also has been increasingly implicated as a driver of immunopathology in settings of 

autoimmunity and chronic inflammation (Gaffen et al., 2014). The current review introduces 

basic aspects of IL-17 biology and examines the protective and pathogenic roles of IL-17 

with a focus on oral mucosal immunity and inflammation. Specific emphasis is given to the 

role of the IL-17 response as a catalyst in “shaping the microbiome at the oral barrier”.

IL-17 cytokine and its signaling

IL-17 is formally called ‘IL-17A’, but is usually referred to as IL-17 since it was the first 

described member of the IL-17 family (Rouvier et al., 1993). To date, the IL-17 family 

includes six members (from IL-17A to IL-17F) that share sequence homology (Patel & 

Kuchroo, 2015). IL-17A and IL-17F exhibit high sequence similarity and can form 

homodimers and heterodimers to signal (Miossec & Kolls, 2012). In fact, IL-17A and 

IL-17F signal through the same receptor complex (known as ‘IL-17R’, an heterodimer of 

IL-17RA and IL-17RC subunits) (Toy et al., 2006) and largely share biological functions 

(Miossec & Kolls, 2012). The IL-17 receptor family has additional members namely IL-17 

RB, IL-17RC, IL-17RD and IL-17RE. All IL-17 receptor subunits are structurally similar, 

consisting of an outer membrane fibronectin III-like domain, a conserved cytoplasmic SEF/

IL-17R (SEFIR) domain and a distal activation domain (CBAD) (Gaffen et al., 2014). The 

SEFIR domain exhibits sequence homology with the Toll/IL-1R domain (Novatchkova et al., 

2003), suggesting commonalities between IL-17 and TLR signaling cascades. Engagement 

of IL-17 (IL-17A, IL-17F and IL-17A/F) to the IL-17R heterodimeric complex, leads to the 

association of the adaptor protein Act1 (previously named CIKS) through the SEFIR domain 

(Qian et al., 2007). Act1 recruits the TNFR-associated factor (TRAF) 6 that is poly-

ubiquitinated by Act1 via its E3 ligase activity (Liu et al., 2009), triggering the activation of 

the canonical nuclear factor κB (NF-κB) pathway and some components of the mitogen-

activated protein kinase (MAPK) pathways, namely JUN N-terminal kinase (JNK), 

extracellular signal-regulated kinase (ERK) and p38 (Sonder et al., 2011, Patel et al., 2007). 
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Additionally, IL-17 signaling can activate members of the CCAAT/enhancer-binding protein 

(C/EBP) family of transcription factors that are critical for the expression of certain target 

genes (Patel et al., 2007). mRNA stabilization events are also involved in the regulation of 

the IL-17 signaling pathway. Important for mRNA stabilization is the formation of the 

TRAF2/TRAF5 complex and recruitment of HuR and ASF/SF2, which stabilize mRNA 

transcript targets (Datta et al., 2010, Sun et al., 2011, Herjan et al., 2013) (Figure 1). 

Moreover, there are other regulators of IL-17 signaling pathway that act at different levels. 

The adaptor protein TRAF3 has the ability to inhibit the association of the IL-17R with Act1 

and TRAF4 interferes with the Act1 and TRAF6 interaction, inhibiting downstream signal 

transduction (Zhu et al., 2010, Zepp et al., 2012). Act1 is stabilized by the chaperone Hsp90 

that prevents its targeting for proteasomal degradation by the negative regulator βTrCP E3 

ligase complex (Wang et al., 2013, Wu et al., 2014). Deubiquitinating enzymes (DUB) are 

also important negative regulators of this pathway. The DUB A20 removes ubiquitination 

residues on TRAF6 suppressing activation of NF-κB and MAPK signaling; likewise, the 

DUB USP25 negatively regulates IL-17 signaling by targeting both TRAF5 and TRAF6 

(Song & Qian, 2013). MicroRNAs (miRNAs) have also been implicated as negative 

regulators of IL-17, miR-23b targets the kinases TAB2, TAB3 and IKKα, all of which are 

integral to the NF-κB pathway (Zhu et al., 2012). Additionally, the distal activator domain 

(CBAD) of the IL-17RA subunit participates on inhibitory events for IL-17 signaling, such 

as coordinating phosphorylation of C/EBPβ and associating with the DUB A20 (Garg et al., 

2013). Lastly, it has been recently shown that the signaling molecule MCPIP1 (also known 

as Regnase-1), acts as a negative regulator of IL-17-induced genes, degrading mRNA of 

cytokines (Il6) and promoters needed for other gene targets (Garg et al., 2015).

In sum, the IL-17 signaling cascade is complex, involving multiple pathways and levels of 

regulation that continue to be interrogated expanding knowledge in the IL-17 field.

Cellular sources of IL-17

IL-17 is primarily secreted by a distinct CD4+ T cell subset, known as T helper 17 cells 

(Th17), named after their signature cytokine (Harrington et al., 2005). Th17 cells in different 

contexts can also produce other cytokines such as IL-17F, IL-21, IL-22 and granulocyte-

macrophage colony-stimulating factor (GM-CSF), at varying expression levels (Liang et al., 

2006, Korn et al., 2007, Codarri et al., 2011). Typically, the differentiation of naïve CD4+ T 

cells towards an effector subset necessitates antigen engagement through the T cell receptor 

(TCR) and depends on the surrounding cytokine milieu. Differentiation of murine Th17 cells 

has been shown to be dependent on transforming growth factor β (TGF-β) and IL-6 

(Veldhoen et al., 2006, Bettelli et al., 2006, Mangan et al., 2006), whereas human Th17 cells 

can be induced in the presence of TGF-β/IL-1β, IL-6 and IL-23 (Acosta-Rodriguez et al., 

2007a, Manel et al., 2008, Volpe et al., 2008). However, human and murine Th17 cells have 

also been shown to be generated independent of TGF-β (Ghoreschi et al., 2010), suggesting 

that presence or absence of TGF-β during differentiation may determine distinct functional 

profiles of Th17 cells (Acosta-Rodriguez et al., 2007a, Volpe et al., 2008). IL-21 also has the 

ability to drive Th17 differentiation in conjunction with TGF-β (Korn et al., 2007), and is 

proposed as an amplification signal for differentiation since IL-21 production from Th17 

cells leads to increased IL-23R expression. This is important because IL-23 is critical for 
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stabilization and maintenance of the Th17 phenotype and IL-23R is not typically expressed 

on naïve T cells. (Bettelli et al., 2008) (Burkett et al., 2015).

A critical step in the differentiation of Th17 cells is the activation of the signal transducer 

and activator of transcription 3 (STAT3) (Yang et al., 2007). Upon binding of the Type I 

cytokines IL-6, IL-21 and IL-23 to their receptors, Janus kinases (Jaks) phosphorylate the 

receptors, leading to the recruitment and phosphorylation of STAT3, which dimerizes and 

then translocates to the nucleus to enhance the expression of target genes (O’Shea et al., 

2009). Then, STAT3 induces the expression of the transcription factor orphan nuclear 

receptor ROR-γt, which is recognized as the Th17 lineage-specific master regulator (Ivanov 

et al., 2006). Transcription factors BAFT and IRF4 cooperate with STAT3 to initiate the 

Th17 differentiation program (Ciofani et al., 2012). High throughput transcriptional network 

analyses have revealed that Th17 cell development is tightly controlled by 22 genes that act 

as positive regulators and a module of 5 genes that are negative regulators of differentiation, 

illustrating the complexity of the Th17 cell developmental program (Yosef et al., 2013).

After differentiation, Th17 cells are able to produce type 17 cytokines and express the CC 

chemokine receptor 6 (CCR-6), which allows for their preferential migration into mucosal 

and barrier sites (Hirota et al., 2007, Acosta-Rodriguez et al., 2007b).

Apart from Th17 cells, IL-17 is produced by other cellular sources that include γδ T cells, 

lymphoid tissue inducer cells (LTi), innate lymphoid cells type 3 (ILC3s) and natural killer 

cells (NK) (Patel & Kuchroo, 2015, Artis & Spits, 2015) (Figure 2). Particular disease 

settings appear to provide favorable conditions for other immune cells to produce IL-17, 

such as neutrophils during fungal infections and breast cancer metastasis (Taylor et al., 2014, 

Coffelt et al., 2015) and alveolar macrophages during allergic lung inflammation related to 

asthma (Song et al., 2008). In addition, mast cells have also been involved as relevant IL-17 

producers in psoriatic skin (Lin et al., 2011, Mashiko et al., 2015) and in rheumatoid arthritis 

affected joints (Hueber et al., 2010), however, a recent report suggests that human mast cells 

rather than making IL-17 have the ability to capture and store exogenous IL-17A using a 

receptor-mediated exocytosis mechanism (Noordenbos et al., 2016).

Cellular targets of IL-17

The IL-17 receptor complex has a ubiquitous expression and is present in a wide variety of 

tissues and cell types (Yao et al., 1995a, Haudenschild et al., 2002). The IL-17RA subunit of 

the receptor shows higher expression in cells of hematopoietic origin (Kuestner et al., 2007, 

Ishigame et al., 2009). In contrast, the IL-17RC subunit is primarily found in cells of non-

hematopoietic lineage, such as mesenchymal, epithelial and endothelial cells, which 

constitute the main targets of IL-17 (Kuestner et al., 2007, Ge & You, 2008, Ishigame et al., 

2009). Interestingly, macrophages seem to constitute an exception, bearing both IL-17RA 

and IL-17RC (Ishigame et al., 2009).

IL-17 signaling on epithelial cells is critical for physiologic regulation of mucosal immunity 

and barrier defenses (discussed in detail below). Additionally, in settings of inflammation 

IL-17 has been shown to exert its activity on a variety of cell types including keratinocytes, 
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fibroblasts, osteoblasts, endothelial and immune cells (Figure 2). For instance, IL-17 

stimulates the production of pro-inflammatory mediators such as IL-6, IL-8, Prostaglandin 

E2 (PGE2) and GM-CSF from epithelial, endothelial and fibroblastic cells (Yao et al., 

1995b, Fossiez et al., 1996). In the context of rheumatoid arthritis (RA) IL-17 has been 

shown to mediate tissue pathology by acting on a variety of cell targets. IL-17 can induce the 

release of connective tissue destructive enzymes matrix metalloproteinase 1 (MMP-1) and 

MMP-3 (van Hamburg et al., 2011) from synovial fibroblasts. IL-17 is also shown to directly 

act on osteoblasts through different mechanisms. It can stimulate the release of PGE2 

followed by osteoclast differentiation factor (ODF), which induces osteoclast maturation and 

further bone destruction in RA (Kotake et al., 1999). In addition, IL-17 can enhance 

RANKL expression on osteoblasts and activate RANK signaling on osteoclasts, promoting 

osteoclastogenesis (Miossec & Kolls, 2012). Lastly, macrophages are reported to increase 

their production of the pro-inflammatory cytokines IL-1β and TNF-α upon IL-17 

stimulation, further amplifying inflammatory responses (Jovanovic et al., 1998, Mosser & 

Edwards, 2008).

In the context of fungal infection, it has been shown that endogenous and/or exogenous 

IL-17 can directly enhance reactive oxygen species (ROS) production in neutrophils (Taylor 

et al., 2014). However, this is controversial since it has been reported previously that 

neutrophils do not exhibit the IL-17RC on their surface (Pelletier et al., 2010). IL-17 is also 

shown to play a role in the development of NK cells, which during fungal infections increase 

GM-CSF expression in an IL-17RA dependent manner (Bar et al., 2014).

Interestingly, IL-17 signaling can also affect T and B cell differentiation and functions. 

IL-17 modulates T helper cell differentiation, by inhibiting the transcription factors T-bet 

and STAT-1 (O’Connor et al., 2009). On autoreactive B cells, IL-17 has been documented to 

modulate chemotaxis and positively impacts their survival and proliferation (Xie et al., 

2010).

IL-17 as a key Mediator of Mucosal Surveillance and Barrier Integrity

IL-17 producing cells are considered by many the sentinels of mucosal barrier immunity 

(Cua & Tato, 2010). In fact, IL-17 exerts its function as a protective mediator in barrier 

immunity by multiple mechanisms. To date it is recognized that: 1) IL-17 has key roles in 

maintaining barrier integrity, 2) IL-17 promotes the production of antimicrobial factors 

which are key for the containment of pathogens and commensals at barrier sites, 3) innate 

cells producing IL-17 are a first line of defense strategically positioned at barrier sites to 

regulate the recruitment and generation of neutrophils (Figure 3).

IL-17 promotes epithelial integrity by regulating tight junction proteins that connect and 

stabilize epithelial cell connections with the purpose of maintaining the barrier and keeping 

out gut luminal contents and commensal organisms. To date it’s been shown that IL-17 

regulates the production of the tight junction protein claudin (Karp et al., 2010) and that 

IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury is 

key in limiting excessive permeability and maintaining barrier integrity (Lee et al., 2015). 
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Accordingly, IL-17A or IL-17RA inhibition has been associated with severe weakening of 

the intestinal epithelial barrier (Maxwell et al., 2015).

Another mechanism by which IL-17 contributes to mucosal immune surveillance is the 

induction of antimicrobial mediators. IL-17 alone and in coordination with IL-22 induces the 

production of β-defensins (HBD), regenerating (ReG) proteins, S100 proteins, cathelicidins, 

lipocalins and lactoferrins (Liang et al., 2006, Kolls et al., 2008, Peric et al., 2008). These 

microbicidal agents are predominantly produced by epithelial cells. IL-17 also promotes 

epithelial cell secretion of chemokines such as CC-chemokine ligand 20 (CCL-20) for 

recruitment of neutrophils when the mucosal barrier is breached.

In fact, neutrophil recruitment is a major IL-17 function. For this, innate IL-17-producing 

cells are strategically positioned at barrier sites to sense injury and infection and rapidly 

recruit neutrophils for initial containment of any insult. This early IL-17 production is 

required for optimal neutrophil recruitment and resistance to infection. It is important to note 

that innate cells IL-17 populations not only interact with pathogens during infection, but also 

are critical under physiologic conditions for the containment of commensal flora and the 

maintenance of mucosal homeostasis (Cua & Tato, 2010). IL-17 exerts its neutrophil 

stimulatory functions by inducing epithelial cell secretion of granulopoietic factors such as 

G-CSF, GM-CSF and chemokines such as CXCL-1, 2, 5, which promote neutrophil 

chemotaxis (Mantovani et al., 2011)

These immune-protective functions of IL-17 have been shown to be particularly important 

for the clearance of specific extracellular pathogens and fungi at barrier sites. Specifically, 

disruptions in IL-17 signaling or production have been linked to susceptibility to 

Staphylococcus aureus, Citrobacter rodentium and Klebsiella pneumoniae, which infect the 

skin, colon and lung, respectively (Ishigame et al., 2009, Cho et al., 2010, Aujla et al., 

2008). IL-17 immunity undoubtedly has emerged as a critical component in mucosal fungal 

surveillance (Lionakis et al., 2014). In both humans and animal models disruptions in the 

IL-17 pathway have been linked to increased susceptibility to oral and mucocutaneous 

candida infections (CMC) (Cypowyj et al., 2012). CMC is a disease characterized by 

recurrent symptomatic infections of the nails, skin, genital and oral mucosa caused by 

members of the genus Candida, mostly due to the commensal Candida albicans (Puel et al., 

2012). Candida albicans does not cause chronic infections in healthy subjects; nonetheless, 

in immunocompromised patients might trigger a variety of distinct disease forms, with 

systemic and/or mucosal involvement (Cypowyj et al., 2012).

Humans with disruptions in the development of Th17 cells do exhibit susceptibility to select 

bacterial and fungal infections. Specifically, patients with hyper-IgE syndrome have a defect 

in the differentiation of Th17 cells due to a mutation in the STAT3 gene (Milner et al., 2008) 

and are susceptible to skin S. aureus infections and recurrent pneumonias, most commonly 

due to S. aureus, but also Streptococcus pneumoniae and Haemophilus influenza infections. 

Lung infections with Aspergillus are also seen secondary to bronchiectasis. Mucocutaneous 

candidiasis is detected in the majority of patients (Freeman & Holland, 2009). Patients with 

other genetic disruptions in the IL-17 cascade or response all also present with 

mucocutaneous and oral candidiasis (see below).
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IL-17 as a driver of Inflammation/Immunopathology/Autoimmunity

Evidence from human disease and disease models

IL-17 secreting cells have been documented in inflammatory lesions of patients with a 

variety of human inflammatory and autoimmune diseases including psoriasis, inflammatory 

bowel disease, rheumatoid arthritis, type 1 diabetes, multiple sclerosis and periodontitis 

(Gaffen et al., 2014) (Zenobia & Hajishengallis, 2015) and speculated and/or shown to be 

involved in the pathogenesis of the respective diseases. The link between over-activated 

IL-17 related responses and various inflammatory and autoimmune diseases in humans is 

also supported by results from genome wide association studies (GWAS) studies revealing 

IL-23R polymorphisms being linked with susceptibility to autoimmune diseases such as 

psoriasis, psoriatic arthritis, ankylosing spondylitis, multiple sclerosis and Crohn’s disease 

(Duerr et al., 2006, Wellcome Trust Case Control et al., 2007, Liu et al., 2008) (Figure 4).

Consistent with human observations, mice deficient in IL-17A/F and related cytokines and 

mediators (including IL-22-, IL-23A- or IL-23RA-deficient mice) or treated with antibodies 

against IL-17/23 have increased susceptibility to EAE, collagen antibody-induced arthritis, 

and CIA, and models of inflammatory bowel disease (IBD), ankylosing spondylitis and 

psoriasis (Murphy et al., 2003, Langrish et al., 2005, Hue et al., 2006, van der Fits et al., 

2009, Sherlock et al., 2012). On the basis of these human observations and genetic linkage 

studies as well as preclinical models, IL-17-specific and IL-23-specific antibody treatments 

have emerged as candidate therapeutic targets for Crohn’s disease, psoriasis and psoriatic 

arthritis. Specifically, to date Secukinumab the human IL-17 antagonist has been FDA 

approved for the treatment of psoriatic arthritis, ankylosing spondylitis and plaque psoriasis 

(Langley et al., 2014). Ustekinumab inhibitor of the p40 subunit that is shared by IL-23 and 

IL-12 is currently FDA approved for the treatment of psoriasis and psoriatic arthritis and has 

shown efficacy in the treatment of Crohn’s disease (Sandborn et al., 2012).

Pathogenic Th17 cell subsets and cooperative IL-17 signaling in inflammation

IL-17’s reason for being (teleology) is however not to cause disease, it is a protective 

mechanism geared towards the establishment of mucosal immunity. The pathologic role of 

IL-17 in disease appears to be context dependent and related to the development of a subset 

of pathogenic IL-17 secreting cell subsets. In fact, it has been recently established that there 

is a pathogenic subset of Th17 cells that are increasingly capable of mediating inflammatory 

pathology (Figure 4). Pathogenic murine Th17 cells express a unique transcriptional 

signature compared to non-pathogenic Th17, which includes the elevated expression of the 

IL-23R (Lee et al., 2012). Importantly, IL-23R deficient cells cannot induce autoimmunity 

irrespective of how they are differentiated in vitro (Lee et al., 2012). Accumulating data 

support a central role for IL-23 in promoting the pathogenicity of Th17 cells by several 

mechanisms, including through the maintenance and stabilization of the Th17 signature gene 

expression program (Rorc and Il17), the induction of effector genes as well as upregulation 

of the Il23r expression (Gaffen et al., 2014). Amongst the currently appreciated roles of 

IL-23 in mediating Th17 pathogenicity is its ability to stimulate the production of 

endogenous TGF-β3, which will thereafter drive development of a pathogenic Th17 

phenotype (Lee et al., 2012). It is also well recognized that GM-CSF, which is produced by 
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pathogenic Th17 is dependent on IL-1 and IL-23 and is required for pathogenicity (Codarri 

et al., 2011, El-Behi et al., 2011). Additionally, exposure to IL-23 diminishes the 

concentration of the anti-inflammatory cytokine IL-10 in developing Th17 cells, which 

renders these cells pathogenic (McGeachy et al., 2007). Pathogenic signaling of IL-23 

through the IL-23R is thought to be STAT3 mediated with STAT3 representing a major 

downstream mediator of IL-23R signaling in mice and humans and implicated in the 

pathogenicity of Th17 cells (Burkett et al., 2015). Consistent with a critical role for STAT3 

in pathogenic Th17 responses, gain of function mutation in STAT3 in humans display early 

onset multi-organ autoimmunity (Flanagan et al., 2014, Milner et al., 2015). However, 

IL-23R/STAT3 activation alone cannot explain the unique requirement for IL-23 in 

pathogenic Th17 cell commitment, as IL-6 is an even more potent activator of STAT3. 

Recently IL-6 activation of STAT3 has been shown to contribute to the pathogenicity of 

Th17 cells via induction of the microRNA miR-183C, which is shown to inhibit Foxo1 (a 

negative regulator of Th17 pathogenicity)(Ichiyama et al., 2016). However, additional 

transcriptional regulators or signaling pathways may be operating to promote inflammatory 

Th17 cell effector function in different settings.

The ability of IL-17 to signal cooperatively with other cytokines is probably one of the most 

important aspects of its biology as it relates to disease. Importantly, on their own, IL-17A 

(and IL-17F) are modest activators of signaling, but they function cooperatively with other 

pro-inflammatory molecules, particularly TNF, but also IFNγ, IL-22, lymphotoxin, IL-1β 
and lipopolysaccharide (Gaffen, 2009). The molecular basis for this synergy is not 

completely understood and probably involves multiple mechanisms (Gaffen, 2009). In 

synovial tissue, IL-17 upregulates TNFR2 expression, and thereby enhances responsiveness 

to TNF (Zrioual et al., 2009). For some genes, cooperation between IL-17 and TNF occurs 

at the level of the promoter (for example, Il6 and Lcn2) and/or mRNA stability (for example, 

mRNA encoding chemokines such as CXCL1) (Shen & Gaffen, 2008). IL-17 also 

upregulates the expression of NF-κB inhibitor-ζ (IκBζ) — which promotes the expression 

of select target genes (Karlsen et al., 2010).

IL-17 in oral mucosal immunity and inflammatory disease (periodontititis)

Importantly the IL-17 cytokine has been shown to play a major role both in mucosal 

surveillance and immunopathology at the oral mucosal barrier. Consistent with its 

immunoprotective role towards fungi, IL-17 is critical for oral mucosal protection against 

Candida albicans.

The Th17 lineage, acting largely through IL-17, has been elegantly shown in animal model 

systems to confer a dominant protective response to oral candidiasis through neutrophil 

recruitment and induction of antimicrobial factors (Conti et al., 2009). Consistent with 

experimental data HIES patients (bearing a STAT3 mutation and defects in Th17 

differentiation) exhibit great susceptibility to oral candidiasis (thrush) which has been 

attributed to low levels of salivary AMPs, including HBD-2 and various histatins and 

reduced candidacidal activity of patient saliva (Conti et al., 2011).
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Similarly, patients harboring mutations in molecules required for IL-17 signaling, such as 

IL-17RA, IL-17RC, IL-17F and the adaptor protein ACT1 also exhibit increased 

susceptibility to mucocutaneous, including oral, candidiasis (Puel et al., 2011, Boisson et al., 

2013, Ling et al., 2015). Additional primary immunodeficiencies (PIDs) that may affect 

Th17 differentiation, such as gain-of-function mutations in STAT1, also manifest with CMC, 

reinforcing the importance of Th17 cells in coordinating fungal mucosal immunity (Zhang et 

al., 2009, Liu et al., 2011). Of the PIDs that affect fungal recognition molecules, mutations 

on DECTIN-1 and its adaptor CARD9 have been linked to defects in mounting effective 

IL-17 responses and CMC susceptibility (Glocker et al., 2009, Ferwerda et al., 2009). 

Additionally, individuals harboring genetic mutations in AIRE (and high titers of 

neutralizing autoantibodies to IL-17A, IL-17F and IL-22), almost invariably present with 

CMC and oral thrush (Meloni et al., 2012, Ferre et al., 2016), and show diminished Candida 
killing activity in saliva and decreased levels of the salivary AMP cystatin SA1 (Lindh et al., 

2013). Finally, some of the patients with severe combined immunodeficiency (SCID) may 

also present with CMC, depending on their mutation and whether it affects the T 

lymphocytic lineage (Lionakis et al., 2014). Importantly, this continuously growing 

knowledge gained from the study of PIDs is helping define the role of IL-17 in human 

immunity (Table).

Conversely, exaggerated IL-17 responses have been linked to immunopathology, particularly 

periodontitis in the oral cavity. Several studies have found high levels of IL-17 in chronic 

periodontitis (reviewed in (Zenobia & Hajishengallis, 2015)), and indicate a correlation of 

increased IL-17 expression with disease severity and with clinical parameters of periodontal 

destruction (Johnson et al., 2004, Lester et al., 2007, Dutzan et al., 2012). In fact, IL-17 

expression is higher in periodontitis than in gingivitis and is almost undetectable in healthy 

control tissues (Honda et al., 2008, Okui et al., 2012, Moutsopoulos et al., 2012). IL-17 is 

also shown to be increased in aggressive periodontitis compared to chronic periodontitis and 

controls (Shaker & Ghallab, 2012). Finally, numerous studies have found an increase in 

Th17-related cytokines in periodontal lesions, such as IL-23, IL-21 and other pro-

inflammatory and osteoclastogenic mediators such as IL-6 and RANKL, respectively (Lester 

et al., 2007, Cardoso et al., 2009, Dutzan et al., 2009, Ohyama et al., 2009, Allam et al., 

2011). In humans, the presence of Th17 cells has been previously shown in periodontal 

lesions (Cardoso et al., 2009) and recently Th17 cells have been identified as the main 

source of IL-17 in periodontitis (Dutzan et al., 2016).

Critically, tissue neutrophils are now recognized as key cellular regulators of Th17 responses 

in periodontitis. Studies from our group and collaborators have demonstrated that the lack or 

severe reduction in tissue neutrophils in patients with Leukocyte Adhesion Deficiency Type 

1 (LAD-1) and relevant animal models is linked to exaggerated IL-17 responses 

(Moutsopoulos et al., 2014). Conversely, over-abundance of tissue neutrophils in patients 

with chronic and aggressive periodontitis is also linked to excessive IL-17 responses (as 

discussed above). Consistent with these observations, mechanistic evidence from animal 

models also supports that excessive neutrophil recruitment can lead to exaggerated IL-17 

responses. In fact, unregulated neutrophil recruitment in the absence of Del-1 (an 

endogenous inhibitor of neutrophil extravasation) leads to a deregulation of the IL-17 
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response (Eskan et al., 2012). Collectively, all of this evidence suggests that a balance of 

tissue neutrophils is key in IL-17 regulation.

Dysregulated IL-17 production could be playing a pathogenic role in periodontitis though 

distinct but possibly overlapping mechanisms. IL-17 has the ability to amplify inflammation 

through excessive neutrophil recruitment, by enhancing pro-inflammatory cytokine 

production and by activating osteoclasts, all of which could contribute to immunopathology 

and bone destruction (Moutsopoulos et al., 2015b). Experimental studies in animal models 

strongly support a pathogenic role for IL-17 in periodontitis. IL-17 blockade has been shown 

to reverse immunopathology linked to excessive neutrophil recruitment in Del-1-deficient 

mice (Eskan et al., 2012). Likewise, in mouse models of LADI periodontitis (LFA-1KO) 

inhibition of IL-17 or IL-23p19 was able to arrest inflammatory bone loss (Moutsopoulos et 

al., 2014). However, human studies targeting the IL-17 cytokine pathway are necessary to 

conclusively define the role of IL-17 in the pathogenesis and progression of periodontal 

diseases.

What is the role of IL-17surveillance in the establishment of the oral 

microbiome

IL-17 has emerged as a critical cellular regulator of mucosal immunity and inflammation at 

the oral barrier. Given the well-recognized role of the commensal microbiome in health and 

disease it becomes important to understand what the role of IL-17 immunity is in shaping 

microbiome colonization in the oral cavity. To date it is well appreciated that IL-17 

responses are critical for fungal surveillance in the oral cavity, particularly for surveillance 

of oral Candida. Yet, little is known of the role of IL-17 responses in microbiome/bacterial 

surveillance. Interestingly, despite the fact that IL-17 signaling has been shown to participate 

in immunity against bacterial pathogens at various tissue sites (Isailovic et al., 2015), data 

from various PID patient cohorts with disruptions in Th17 immunity do not indicate 

susceptibility to any other oral infections in patients with blunted Th17 responses. Yet one 

cannot disregard a possible role for the microbiome as a contributor in the susceptibility to 

oral candidiasis. The interplay between microbiome and mycobiome is a well-recognized 

factor in the control of fungal infections as evidenced by the increase in fungal mucosal 

infections in patients following antibiotics (Sobel, 2007, Diaz et al., 2014). Therefore, 

evaluating microbiome/mycobiome interactions in the setting of defective IL-17 immunity 

becomes of greater interest.

Interestingly, while the oral microbiome in the setting of reduced IL-17 immunity is only 

recently beginning to be evaluated (Smeekens et al., 2014), it is well documented that 

exaggerated IL-17 oral responses are linked to microbial overgrown and dysbiosis (Figure 

5). Exaggerated IL-17 production in the context of chronic and LAD-1 periodontitis is 

accompanied by an increase in microbial load and presence of dysbiotic bacterial 

communities (Eskan et al., 2012, Moutsopoulos et al., 2015a, Abusleme et al., 2013). 

However, strong evidence supporting a role for exaggerated IL-17 inflammation in 

facilitating the formation of dysbiotic microbial communities comes from animal models of 

LAD-1 periodontitis. Murine LAD-1 (LFA-1KO) is associated with an increase in oral 
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microbial load and anaerobic counts. Importantly, inhibition of IL-17 or IL-23 alone 

(without restoration of the genetic defect) reverses microbial dysbiosis suggesting that 

exaggerated IL-17 inflammation is a driving force for microbial imbalance in periodontitis 

(Moutsopoulos et al., 2014). It has been theorized previously that the microbial communities 

associated with periodontitis have an ‘inflammophilic’ character and thrive in the presence 

of inflammation and its nutrients (Hajishengallis, 2014). In accordance with this hypothesis 

and data from experimental models, in humans it has been shown that periodontal 

inflammation drives an increase in microbial load in periodontitis (Abusleme et al., 2013). It 

is possible (based on data from the LAD model) that amplification of the IL-17 axis is a 

critical component of periodontal inflammation which facilitates a shift towards a 

“pathogenic” microbial community. However, further studies in humans targeting the IL-17 

response can only conclusively define the role of IL-17 in the pathogenesis of periodontitis 

and its contribution to microbial dysbiosis.
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Figure 1. The IL-17 signaling
IL-17 (IL-17A, IL-17F, IL-17A/F) engages the heteromeric IL-17R complex and recruits the 

adaptor protein Act1. Act1 triggers the ubiquitination of TRAF6. TRAF6 activates three 

major pathways namely NF-κB, MAPK and C/EBP, triggering the transcription of IL-17 

target genes. This signaling cascade is regulated at multiple steps. Hsp90 acts as a positive 

regulator of this cascade by stabilizing Act1. TRAF2 and TRAF5 are also positive regulators 

that form a complex with SF2 and recruit HuR, to mediate mRNA stabilization. TRAF3 

inhibits the association of the IL-17R with Act1 and TRAF4 inhibits the recruitment of 

TRAF6 by Act1. miR-23b negatively regulates NF-κB activation.
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Figure 2. Cellular sources and targets of IL-17
(Upper panel) Main cellular sources of IL-17 are Th17 cells and other immune cells such as 

γδ T cells, lymphoid tissue inducer cells (LTi), innate lymphoid cells type 3 (ILC3s) and 

natural killer cells (NK). During inflammation IL-17 can also be produced by neutrophils 

and macrophages. (Lower panel) Cellular targets of IL-17 are primarily non-hematopoietic 

cells, including keratinocytes, fibroblasts, endothelial and osteoblasts cells. Immune cells 

such as T, B and NK cells can also be IL-17 targets.
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Figure 3. IL-17 is critical for oral mucosal integrity and immunosurveillance
Th17 cells, largely through its effector cytokine IL-17 (but also through IL-22), have an 

important role in maintaining mucosal barrier integrity. Key functions in IL-17-mediated 

mucosal surveillance are (1) regulation of epithelial tight junction protein expression (2), 

induction of antimicrobial peptide production (3) and release of neutrophil chemo-

attractants.
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Figure 4. Th17 in inflammatory disease and their pathogenic Th17 signature
(Left) Th17 cells have been implicated in the pathogenesis of various inflammatory and 

autoimmune diseases. (Right) Cellular and molecular signature of pathogenic Th17 cells.
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Figure 5. Concepts of how IL-17 immunity may participate in the establishment of the oral 
microbiome/mycobiome
Defects in the Th17 pathway are associated with an overgrowth of fungi leading to oral and 

mucocutaneous candidiasis. Conversely, exaggerated IL-17 responses in the context of 

periodontitis have been linked to bacterial overgrowth and dysbiosis.
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Table 1

Primary Immunodeficiencies Affecting the Th17 Cell Pathway Linked to Susceptibility to Oral Mucosal 

Infection.

Oral manifestation Gene affected by mutation Clinical Syndrome (If 
described)

Reference

Chronic Mucocutaneous Candidiasis 
(CMC)

IL-17RA, IL-17RC
IL-17F, ACT1

(Puel et al., 2011)
(Boisson et al., 2013)
(Ling et al., 2015)

Loss-of -function STAT3 Autosomal dominant hyper IgE 
syndrome (AD-HIES)

(Freeman & Holland, 2009)

Gain-of-function STAT1 (Liu et al., 2011)

AIRE Autoimmune 
polyendocrinopathy- 
candidiasis-ectodermal 
dystrophy (APECED)

(Meloni et al., 2012)

DOCK8 Autosomal recessive hyper IgE 
syndrome (AR-HIES)

(Zhang et al., 2009)

DECTIN-1 (Ferwerda et al., 2009)

CARD-9 (Glocker et al., 2009)

IRF8 (Hambleton et al., 2011)

STK4 (Abdollahpour et al., 2012)

CD45, IL7RA, RAG1, RAG2, 
ADA, AK2
JAK3, ARTEMIS

Severe combined 
immunodeficiency (SCID)

(Buckley, 2004)
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