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Abstract

Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is 

complicated by the large number of reactions and interactions in metabolic networks. Metabolic 

control analysis with appropriate modularization is a powerful method for simplifying and 

analyzing these networks. To analyze control of cellular energy metabolism in adherent cell 

cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute 

mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied 

it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to 

extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic 

control analysis we identified the control properties that generate this sensitive response. Force-

flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM 

of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of 

ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by 

increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the 

hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas 

proton leak also contribute to the homeostatic control of ΔψM at low glucose. These findings 

suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible 

regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published 

cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged 

bioenergetic response of β-cells to glucose.
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1 Introduction

Mitochondrial metabolism of glycolytic pyruvate plays a central role in insulin secretion [1]. 

The canonical pathway of glucose-stimulated insulin secretion (GSIS) relies on 

hyperpolarization of mitochondrial membrane potential (ΔψM) (more strictly, 

hyperpolarization of the protonmotive force) leading to increased mitochondrial production 

of ATP, and is largely responsible for the first phase of insulin secretion [2–7]. Both type 1 

and type 2 diabetes (T2D) in humans are characterized by early impairment of this phase [8–

14], suggesting a possible role of disturbed cellular energy metabolism. While rare 

mitochondrial defects can cause diabetes [15], it is possible that more subtle derangements 

in cellular energy metabolism contribute more generally to β-cell impairment in diabetes. In 

support of this idea, the dampened response of ΔψM to glucose in T2D human β-cells may 

reflect a subtle bioenergetic supply-demand dysfunction [16].

Glucose stimulation of the β-cell changes virtually all variables of cellular energy 

metabolism, making it non-trivial to define which processes drive observed changes and 

which processes are responsible for deficiencies observed in disease. This is complicated by 

the large number of reactions in metabolic networks and the multiple interactions between 

them. Metabolic control analysis [17–19] with appropriate modularization is a powerful 

method for simplifying and analyzing these systems. Metabolic control analysis is a 

mathematical formalism to describe the control and regulation of metabolic systems; in 

particular, it can quantify how a change in a steady state is caused by changes in the 

activities of individual components of the system. Here, we reduce the complexity of β-cell 

energy metabolism to a simple modular system in which the modules of glucose oxidation, 

phosphorylation plus ATP turnover, and proton leak are linked by ΔψM as their common 

intermediate. Using this simplified system, the only measurements needed to describe the 

internal control structure and the regulation by external glucose are the fluxes through each 

module and the level of ΔψM.

Two complementary technologies make possible the measurement of these bioenergetic 

variables in adherent cell cultures. First, flux through each of the modules can be determined 

by measuring the extracellular oxygen consumption rate, where respiration is restricted by 

different combinations of mitochondrial inhibitors to report on a given module [20]. To this 

end, we used the Seahorse Extracellular Flux Analyzer, which utilizes our calibration 

algorithm [21], in conjunction with whole-well cell counting by fluorescence microscopy to 

normalize the measured rates. Second, we previously developed a method for determining 

absolute values of ΔψM in intact cells using fluorescence microscopy, allowing comparison 

between adherent cells in which plasma membrane potential (ΔψP) and morphological 

factors may differ [16,22]. To enable measurement of ΔψM in populations of cells in 

microplate samples, comparable to the populations used for cell respirometry, we introduce 
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here a microplate reader-based adaptation of this method. Together, these technical advances 

allow measurement all of the variables required for metabolic control analysis of energy 

metabolism in adherent cells. This is a major advance; though control analysis of 

mitochondrial energy metabolism has been applied previously, it was limited to isolated 

mitochondria [17,20] and, because of the need for bulk suspensions for Clark electrode-

based respirometry and radioisotope-distribution based ΔψM determinations, to suspensions 

of cells such as hepatocytes [18], precluding its application to adherent cells.

Using these approaches and analyses, we report two major findings. First, our data indicate a 

strong positive feedback loop in β-cell energy metabolism by ATP/ADP or other factors 

downstream of ΔψM. In other words, glucose stimulates its own metabolism, and this 

stimulation requires mitochondrial ATP synthesis. Second, the analysis suggests that the 

putative role of proton leak in regulating β-cell energetics is constrained to the fasting state 

of the cell, implying that physiological levels of uncoupling proteins are expected not to 

limit ATP/ADP at high glucose concentrations. We propose that the operation of the 

feedback mechanism and its defect in T2D explains recent bioenergetic findings on human 

primary β-cells [16] and islets [23].

2 Materials and Methods

2.1 Materials

The ΔψP indicator (PMPI; #R8042 FLIPR Membrane Potential Assay Explorer Kit) was 

from Molecular Devices (Sunnyvale, CA); tetramethylrhodamine methyl ester (TMRM) and 

Hoechst 33342 were from Life Technologies (Carlsbad, CA); zosuquidar was from MedKoo 

Biosciences (Chapel Hill, NC), and other fine chemicals were from Sigma-Aldrich (St. 

Louis, MO) or Santa Cruz Biotechnology (Dallas, TX) unless otherwise noted.

2.2 Insulinoma cell line

INS-1 832/13 cells [24] were cultured in RPMI 1640 medium containing 2 mM L-

glutamine, 1 mM Na-pyruvate, 0.05 mM β-mercaptoethanol, 10 mM HEPES, and 10 v/v% 

fetal bovine serum. An INS-1 832/13 line stably transfected with non-targeted pSilencer 4.1 

CMV-puro vector was used, and 2 μg/mL puromycin was added during cell culture and 

plating. INS-1 832/13 cells were plated 48–72 hours prior to the experiment in Seahorse V7 

PS Flux plates and in alternating columns of Corning 3340 96-well plates (both prepared by 

coating with a 1:15,000 dilution of polyethylimine) at 4×104 cells per well in 100 μl growth 

medium. For fluorescence microscopy 8-well LabTek coverglass-bottomed dishes were 

used, coated as described above.

2.3 Fluorescence microscopy assay of ΔψP and ΔψM

Absolute calibrated assays of ΔψP and ΔψM using wide field fluorescence microscopic 

time lapse imaging were performed as described in [25], in conditions similar to those 

described below for the microplate reader assay. The ΔψM assay is based on recording of 

time courses of the fluorescence of the cationic dye TMRM and an anionic bis-oxonol ΔψP 

indicator (PMPI). The calibration relies on a biophysical model of lipophilic potentiometric 

probe distribution to back-calculate potentials that cause changes in fluorescence intensities 
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of the two probes [22]. Absolute values of potentials in millivolts are calculated from paired 

TMRM and PMPI fluorescence intensity values and their rates of change, using a set of 

calibration parameters (see Supplemental Material). The prototypical experiment in Fig. 1 

was designed to allow computation of these calibration parameters, and therefore ΔψP and 

ΔψM, from a single fluorescence microscopy recording [22]. The calibration of ΔψP is a 

prerequisite for the calculation of ΔψM, because it allows separation of the effects of ΔψP 

and ΔψM on TMRM fluorescence and therefore calculation of ΔψM. In Fig. 1, ΔψP was 

calibrated by manipulation of extracellular K+ in the presence of the K+-ionophore 

valinomycin to ensure that the K+ equilibrium potential dominates ΔψP [22]. ΔψM was then 

calculated from the decay characteristics of TMRM fluorescence when mitochondria were 

completely depolarized at a maintained ΔψP. Both calibrations require fluorescence 

intensity measurement at 0 mV. These steps were combined in the single-run, or “complete” 

calibration (Fig. 1). After a recording of interest (e.g. in the presence of 30 mM glucose in 

Fig. 1 or a “challenge time course” in general) the mitochondrial inner membrane was 

depolarized using a mitochondrial depolarization cocktail (MDC; see compositions in Suppl. 

Table 1) triggering a characteristic decay of TMRM fluorescence intensity. Next, 

extracellular [K+] was elevated stepwise in the presence of valinomycin (a component of the 

MDC). The experiment was concluded by complete cellular depolarization using an 

ionophore cocktail (complete depolarization cocktail, CDC; See Supplemental Table 1; 

[22]). Fluorescence image analysis and calculations of potentials were performed using 

standard image processing pipelines and the “Membrane Potential Calibration Wizard” in 

Image Analyst MKII (Image Analyst Software, Novato, CA).

2.4 Microplate reader assay of ΔψP and ΔψM

90 min prior to experiment, growth medium was exchanged for potentiometric medium 

(PM) containing 120 mM NaCl, 3.5 mM KCl, 1.3 mM CaCl2, 1 mM MgCl2, 0.4 mM 

KH2PO4, 20 mM TES (N-Tris-(hydroxymethyl)-methyl-2-amino-ethanesulphonic acid), 5 

mM NaHCO3, 1.2 mM Na2SO4, 2 mM D-glucose, TMRM (10 nM), PMPI (1:200), 

tetraphenylborate (TPB; 1 μM) and zosuquidar (1 μM [26]). PM was made from a 2× stock 

(2×PM) containing all components except NaCl, and diluted to final volume using 240 mM 

NaCl (or 240 mM KCl, resulting in PMK). K+ was varied by partial replacement of PM with 

PMK over the specimen.

Fluorescence intensity time courses were recorded using a Pherastar FS (BMG Labtech Inc, 

Cary, NC) fluorescence microplate reader capable of focusing on the cell monolayer in 

bottom fluorescence readout mode and simultaneous detection of TMRM and PMPI 

fluorescence emission with a custom dual-excitation, dual-emission filter set. The filter set 

(Semrock, Rochester, NY) comprised a 503/572-nm dual bandpass exciter, a 444/520/590-

nm multi-edge excitation beamsplitter, a 562-nm emission beamsplitter, a 537/26-nm 

emission filter for PMPI (custom matched to the exciter to avoid bleed through) and a 

641/75-nm emission filter for TMRM. Assays were performed at 37°C under air. All media 

and reservoir plates were held at 37°C in an air incubator. Fluorescence measurements of the 

cell monolayer were optimized by focusing at the appropriate z-offset for the cell 

monolayer, determined as the z-offset with peak difference in fluorescence intensity between 

cell-containing and blank wells. Each data point was determined by orbital averaging of 20 
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Xe-arc flashes in 3 mm circles. Typical recordings acquired 8 full columns (64 wells) with a 

36 s cycle time or 4 columns with a 19 s cycle time. Each time course consisted of 

sequential recordings interspersed by medium exchanges.

An experiment to determine ΔψP and ΔψM in microplates had two parts, to simplify liquid 

handling and allow scalability of experimental recordings. In the first part, the values of the 

baseline potentials (ΔψP0 and ΔψM0 at 2 mM glucose) were established for each cell 

culture plating, and this required the higher temporal resolution (Fig. 2). In the second part 

on separate microplates, at lower temporal resolution and higher throughput, experimental 

manipulations were made (the “challenge time course”; see 3.2 and Fig. 4A and B) followed 

by a single calibration addition. The two parts of the experiment were performed on sister 

cultures in separate microplates in order to keep identical incubation times in assay medium. 

Fluorescence time course recordings were exported to Microsoft Excel for analysis in 

Mathematica 8–10.2 (Wolfram Research, Champaign, IL). In Mathematica, spectral 

bleedthrough and fluorescence background were corrected for (Fig. 2A–B; Appendix B), 

and time courses of ΔψP (see Fig. 4C) and ΔψM (see Fig. 4D) were calculated using data 

from both parts as described below.

2.4.1 Determination of baseline ΔψM using microplates—The original microscopy-

based assay (Fig. 1) was designed to provide calibration of both ΔψP and ΔψM following 

any particular experiment (“challenge time course”) using a single recording to enable 

measurement of membrane potentials in single cells. In applying this approach to a cell 

population within a microplate well, we assume that cell populations are identical between 

wells and microplates of the same cell culture plating prior to experimental manipulation, 

enabling parallelization.

ΔψM was calibrated from the decay of TMRM fluorescence after acute and complete 

mitochondrial depolarization by MDC, followed by complete depolarization of the cell by 

CDC (Fig. 2C). ΔψM0 and the rate constant kT were determined by transformation of these 

data [22] (Fig. 2D, Appendix C). kT describes how quickly cells take up TMRM at zero 

ΔψP and allows calculation of ΔψM when TMRM is not in equilibrium. The calibration of 

ΔψP that is required to calculate ΔψM was obtained from the same data and is described 

later. The calculation of ΔψM0 was subject to unbiased quality control (Appendix D). ΔψM 

was calculated using a mitochondria:cell volume fraction (VF) of 6.3±0.49% (n=4) 

previously measured in INS-1 832/13 cells [25] and with values of VFM=63% and 

aR’=0.36±0.05 (n=3) from INS-1E cells [22]. The baseline ΔψM at 2 mM glucose and 2 

mM glutamine was -118±3.9 mV (n=10). kT was 0.012±0.001 s-1 (n=10). This rate constant 

translates to 90% equilibration of TMRM in 44 min at typical ΔψP0 and ΔψM0 (calculated 

as given in [27]). Importantly, the calculation of ΔψM0 implemented here allows for TMRM 

disequilibrium at baseline (see Appendix C), in contrast to our previously derived formulae 

[22].

2.4.2 Determination of baseline ΔψP using microplates—To simplify the 

experimental design, we developed an alternative ΔψP calibration using the same recording 

that provided ΔψM0. This approach eliminates the requirement for [K+] titration or 

establishment of K+ equilibrium potentials, in contrast to the original method shown in Fig. 
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1. It follows from the calibration equation ([22]; Appendix A) that ΔψP can be calculated if 

its mV value at two calibration points is known, e.g., ΔψP0 and 0 mV. In the new approach, 

ΔψP was assumed to be 0 mV at the end of the recording after complete depolarization and 

ΔψP0 was obtained by numerical optimization. The optimization exploits a finding of 

sensitivity analysis [22] that only when an accurate ΔψP0 is used to calculate ΔψP does the 

above calculation of ΔψM give 0 mV when mitochondria are completely depolarized and 

ΔψP has an intermediate value. To conduct the optimization, the ΔψM calibration described 

above was calculated for a range of assumed ΔψP0 values spanning physiological potentials, 

and the ΔψP0 value was taken as the value at which the calibrated ΔψM in completely 

depolarized mitochondria and partially depolarized plasma membrane was closest to zero 

(Fig. 2E–G). To this end the slow ΔψP-depolarizing effect of CDC was exploited, and 

calibrated ΔψM was averaged in the interval after CDC addition (Fig. 2F horizontal lines). 

Fig. 2G demonstrates that the absolute deviation of these averages from zero had a marked 

minimum at the expected [28] resting ΔψP of INS-1 832/13 cells. Fig. 2E–F illustrates 

calibrated potentials at this minimum (−70.2 mV) and at an arbitrary (−40 mV) value of 

ΔψP0. The mean value of ΔψP0 in 2 mM glucose and 2 mM glutamine obtained using this 

numerical optimization was −67.1±1.6 mV (n=10).

2.4.3 Calibration of ΔψM for inhibitor and uncoupler titrations—The values of 

ΔψP0, ΔψM0 and kt determined above for INS-1 832/13 cells in the resting state (2 mM 

glucose) allowed the use of a simplified, “short” calibration paradigm based on the known 

baseline (and 0 mV) potentials in identical samples (Appendix E). Importantly, the recording 

for the determination of ΔψM0 is the only time course requiring the fast data collection 

needed to resolve the decay characteristics of TMRM fluorescence after complete 

mitochondrial depolarization. This confers further experiments with scalability because only 

intermittent data acquisition is required to calibrate new data, and liquid handling is also 

minimal (one addition for the calibration). It also allows significant or complete 

depolarization of either or both potentials during the “challenge time course”, which would 

otherwise interfere or prevent single-run “complete” calibration. To perform this “short” 

calibration, experiments started with the resting state followed by a “challenge time course” 

and were finished by complete depolarization. This approach also accommodates differences 

in cell number in each well, because all intensity-related calibration parameters are 

calculated for each well. Parameters that describe the cell line at resting state (ΔψP0, ΔψM0, 

kt) were used from preceding recordings on sister cultures. Importantly, recording on sister 

cultures is not a strict requirement and once these values are established for the particular 

cell line and basal condition they can be reused for the subsequent experiments. In support, 

performing calibrations with individual ΔψP0, ΔψM0, kt values for each plating or using a 

single mean value obtained from all experiments did not result in a significant difference in 

millivolt values (e.g. −141 ± 4.1 mV vs −146 ± 2.5 mV, respectively, n=10 in the presence of 

10mM glucose; see 3.2).

2.5 Cell respiration

Oxygen consumption rates (OCR) were measured using a Seahorse XF24 Extracellular Flux 

Analyzer (Seahorse Bioscience, Billerica, MA). After 48–72 h growth and 90 min prior to 

experiment, growth medium was exchanged for PM lacking PMPI but otherwise identical to 
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the conditions of the microplate reader assay, including TMRM, TPB, and zosuquidar. 

Zosuquidar did not affect oxygen consumption rates (Fig. 2H). Respiration was measured as 

described [29]. Briefly, it was measured in cells at 2 mM glucose and 2 mM glutamine 

(resting state), followed by sequential additions of glucose to 10 mM (activated state) and 

2.5 μM oligomycin (non-phosphorylating state). Then, depending on the module tested, 0.5–

500 nM rotenone, 1 μM myxothiazol or 1–1000 nM FCCP was added. Respirometry was 

concluded by application of 2 μM antimycin plus 2 μM rotenone to determine non-

mitochondrial respiration (which was subtracted from all other values). Immediately 

following respirometry, cells were fixed for 30 min in 4% (w/v) formaldehyde, and nuclei 

were stained with 2 μg/mL Hoechst 33342 for 15 min. Cells were imaged using a Nikon Ti-

Eclipse Perfect Focus System and nuclei were counted in the acquired images using the 

“Whole Well Cell Count” standard pipeline in Image Analyst MKII.

2.6 Metabolic control analysis

Elasticities and control coefficients were calculated as in [17], response coefficients were 

calculated as in [18,30] and these formulae are also given in Appendix F. Elasticities 

measure the fractional change in steady-state flux through a module in response to an 

infinitesimal fractional change in the concentration of an intermediate (here, ΔψM). We 

assumed that the population of glucose-stimulated cells was at steady state (even though 

certain variables oscillate in individual cells [31]), because ΔψM remains relatively steady 

in 832/13 cells [31] and in most primary β-cells in dispersed culture [16,25]. We also 

assumed that known β-cell heterogeneity [25,32] does not invalidate the method. For 

practical reasons, elasticities to  of each module (glucose oxidation (i = O), 

proton leak (i = L) and phosphorylation plus ATP turnover (i = P)) were determined as the 

slopes of lines fitting all or connecting a pair of key measured data points in double-

logarithmic plots of respiration versus ΔψM. We assumed that elasticities vary little with 

locally changing ΔψM, allowing their calculation from large changes rather than 

infinitesimal ones. Possible errors due to violations of this assumption are discussed below. 

All other coefficients were expressed using these elasticities, fluxes (Ji, where i is O, L or P), 

and ΔψM, at 2 mM and 10 mM glucose. JP was calculated as the difference between the 

uninhibited flux (JO) and JL. To this end JL was calculated at the required ΔψM by 

interpolation using the above linear fit. Concentration control coefficients ( ), the 

fractional change in ΔψM upon a change in the activity of module i, and flux control 

coefficients ( ), the fractional change in the flux through module j upon a change in the 

activity of module i, were calculated using equations 1–12 in [17]. Partial internal response 

coefficients of ΔψM to a change in ΔψM acting through flux changes through module 

 were calculated using equation 6 in [18]. Partial integrated responses of ΔψM to 

a step change in [glucose], acting through changes in the activity of module 

were calculated using equations 4 and 7 in [18], and were normalized to 100%. These values 

express how strongly each module mediates a glucose-induced change in ΔψM by a change 

in its activity.
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2.7 Data and statistical analysis

Potentiometric calibration, metabolic control analysis and statistical analysis were 

performed in Mathematica 8.0–10.2. The standard error (SE) of the mean of independent 

experiments is reported, and these measurement errors were propagated to the SE of all 

derived values. The SE for elasticities was calculated using the LinearModelFit standard 

function in Mathematica as the estimated SE of the slope of the fit line. The fit was weighted 

with the reciprocal of squared measurement errors, and the SE of the slope and mean 

prediction were calculated from these measurement errors instead of residuals. The squared 

measurement errors were expressed as the square sum of the SE of respiration rate and the 

propagated error of ΔψM. The SE of the mean prediction was used to indicate the 

confidence of the fit at 1 SE in Fig. 6B, and to estimate the SE of the flux at an arbitrary 

ΔψM. Control and response coefficients were expressed by elasticities, fluxes and levels to 

derive error propagation formulae and their SEs were calculated by substituting measured 

means and SEs. For statistical comparison of control or response coefficients described by a 

mean value and propagated SE two-tailed Welch t-test was used taking n as the mean of 

independent experimental repeats. This analytical approach gave similar albeit smaller SEs 

than performing Monte-Carlo simulation [33], and the statistical distributions of control 

coefficients obtained by simulated experiments were close to normal distributions (not 

shown), likely due to the relative simplicity of the single intermediate system. Therefore we 

chose to use error propagation and parametric statistical testing over Monte-Carlo 

simulation.

3 Results

3.1 Metabolic control analysis of INS-1 832/13 cell energy metabolism

Complicated metabolic networks can be simplified to modules, or blocks of reactions, 

connected by small numbers of defined intermediates. This makes them tractable for 

systems analysis, which can reveal important information about the emergent behavior of the 

network. The modularization requires independent blocks of reactions linked only by 

common intermediates, but is otherwise arbitrary. To analyze cellular energy metabolism, we 

defined protonmotive force across the mitochondrial inner membrane as the common 

intermediate linking supply and demand pathways. Since protonmotive force is well-

represented under most conditions by ΔψM, we measured ΔψM in our analysis. Three 

modules are connected by ΔψM: glucose oxidation (including glycolysis, the pentose 

phosphate pathway, the tricarboxylic acid cycle and the respiratory chain; O), 

phosphorylation (ATP synthesis and cellular ATP consumption; P), and proton leak (L) (Fig. 

3). The overall flux through the system is reported by the rate of electron flow through the 

respiratory chain, and can therefore be measured as mitochondrial respiration. The fluxes 

through the demand modules can be expressed as respiration driving phosphorylation and 

respiration driving proton leak. Using micro-scale assays for respiration rate and ΔψM, we 

determine below how the steady-state flux through each module changes as a function of the 

common intermediate, ΔψM, when this is altered by pharmacological modulation of other 

modules while the queried module remains uninhibited. These data are then used in the 

calculation of the modular kinetic properties of cellular energy metabolism, control analysis 

quantifying how β-cells regulate and stabilize fluxes and ΔψM, and regulation analysis 
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quantifying responses to changes in glucose concentration. Notably, we look at β-cell energy 

metabolism in isolation here, and relate ΔψM to insulin secretion only by considering the 

canonical pathway of GSIS. While stimulation of insulin secretion by glucose in these cells 

is well characterized [24,34–36], the experimental conditions needed to interrogate the 

control of cellular energy metabolism prevent insulin secretion because of inhibition of 

mitochondrial ATP synthesis, and therefore secretion was not monitored.

3.2 Inhibitor and uncoupler titrations of ΔψM in INS-1 832/13 cells

To measure steady state levels of ΔψM, a simplified paradigm of the absolute potentiometric 

calibration [22,25] was developed and used (see 2.4.3). Fig. 4A and B show background-

subtracted and spectrally-unmixed fluorescence data recorded using this paradigm, and Fig. 

4C and D show the corresponding calibrated potentials. All recordings started identically, 

with a 90 min fasting period in potentiometric medium containing 2 mM glucose and 2 mM 

glutamine. Recording of the initial steady state in 2 mM glucose (baseline) was followed by 

addition of glucose to 10 mM. This caused ΔψM to hyperpolarize from −118 ± 3.9 mV to 

−141 ± 4.1 mV in 10 min (n = 10; Fig. 4B and D). To interrogate the L module in this 

glucose-stimulated condition (see Fig. 3), the P module was completely inhibited by 

oligomycin (an inhibitor of the ATP synthase), and the remaining module, O, was inhibited 

to different extents in different wells by different concentrations of rotenone to decrease 

ΔψM (Fig. 4A,C). Notably, rotenone, and not other inhibitors was used here because of its 

stabile, titratable effects. The addition of oligomycin caused no significant change in ΔψM. 

To completely inhibit the respiratory chain, myxothiazol (a complex III inhibitor; 1 μM) was 

used. Separately, to interrogate the O module, different concentrations of FCCP (an 

uncoupler; 1–200 nM) were used after oligomycin addition in a similar paradigm (Fig. 

4B,D). As expected, both respiratory inhibition and uncoupling decreased ΔψM. The P 

module was not directly interrogated in a separate experiment, but is described as P+L 

modules by the 2 mM and 10 mM glucose data points, where the O module was activated by 

elevation of glucose concentration.

3.3 Inhibitor and uncoupler titrations of mitochondrial respiration in INS-1 832/13 cells

Mitochondrial respiration rate was determined under nearly identical conditions as ΔψM, 

with interrogation of the L and O modules exactly as described above (Fig. 5). Respiration 

rate was normalized to cell counts performed after respirometry by fluorescence imaging of 

the entire bottom of the wells. The baseline recording was followed by addition of 10 mM 

glucose (Fig. 5), causing a gradual increase in respiration. Oligomycin caused a drop in 

respiration rate to the rate driving proton leak (non-phosphorylating state). This rate was 

further decreased by titration with rotenone (Fig. 5A) or increased by titration with FCCP 

(Fig. 5B).

3.4 Modular kinetic analysis of β-cell energy metabolism

β-Cell metabolism is specialized to allow sensitive responses of insulin secretion to changed 

extracellular glucose levels. We ask here how bioenergetic supply and demand interact to 

allow ΔψM, and therefore downstream ATP/ADP and insulin secretion, to respond 

sensitively to glucose level. To describe and quantify how the interaction of the three 

modules depicted by Fig. 3 achieves this, we first conducted a modular kinetic analysis by 
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combining all the data collected above as a force-flux diagram showing respiration rate (the 

flux) as a function of ΔψM (the force) (Fig. 6A).

3.4.1 Proton leak module—Starting at the non-phosphorylating state in the presence of 

oligomycin (red ellipse; 10 mM glucose), as the respiratory chain (O module) was 

progressively inhibited by increasing concentrations of rotenone (a complex I inhibitor), 

both respiration rate and ΔψM decreased (Fig. 6A, blue squares). Because phosphorylation 

was inhibited by oligomycin, and respiration rate therefore reported only proton leak rate, 

these data points describe the dependence of proton leak rate on ΔψM, i.e. the activity of the 

L module, or the “leak curve” (Fig. 6A, blue line). An increase in proton leak activity (e.g. 

expression of uncoupling proteins or addition of the uncoupler FCCP) would shift this curve 

upwards [37].

3.4.2 Glucose oxidation module—Starting at the non-phosphorylating state (red 

ellipse; 10 mM glucose with oligomycin), as ΔψM demand was progressively increased by 

increasing FCCP, respiration rate increased and ΔψM decreased as expected (Fig. 6A, green 

solid circles). These data points outline the kinetic dependence of glucose oxidation on 

ΔψM, i.e. the activity of the O module, or the “glucose oxidation curve” (Fig. 6A, green 

line). Activation of glucose oxidation (e.g. addition of higher concentrations of extracellular 

glucose, increased activity of glycolysis, pyruvate transport, tricarboxylic acid cycle or 

respiratory chain) would shift the glucose oxidation curve upwards, to reflect higher flux at 

each ΔψM [37].

3.4.3 Phosphorylation module—Starting at the uninhibited resting state (Fig. 6A 2 mM 

glucose red triangle) respiration and ΔψM were increased by increasing glucose to 10 mM 

(10 mM glucose red triangle). These two data points outline the kinetic dependence of the P 

+ L modules on ΔψM. Knowing the “leak curve”, the kinetic dependence of the P module 

on ΔψM is calculated by subtraction.

3.5 Energization-dependent positive feedback to glucose oxidation

Fig. 6B is a log-log representation of the force-flux diagram in Fig. 6A, and this 

transformation allowed us to approximate kinetic curves with linear fits, and to estimate the 

uncertainty of calculated values. Remarkably, the data points at 2 and 10 mM glucose with 

no inhibitors (Fig. 6B, red triangles) did not lie on the glucose oxidation curve (green line 

and solid circles), which was also measured in 10 mM glucose, but with the P module 

compromised by oligomycin, but lay significantly above it (p<0.001). The significance was 

tested by calculating fluxes in the L module at identical ΔψM to the 2 and 10 mM glucose 

data points (dotted vertical lines in Fig. 6B). This difference indicates inhibition of the O 

module in the presence of oligomycin. Importantly, this effect of oligomycin was not simply 

due to an inhibition of demand (because demand does not contribute to the shape of the 

glucose oxidation curve, only to the position of the points along it), but is the signature of a 

decreased activity of the O module. The difference in the kinetics of the O module between 

the two 10 mM glucose conditions is caused by the specific effect of oligomycin on the 

internal workings of the P module. In the absence of oligomycin, ATP synthesis will allow 

ATP/ADP and other internal intermediates of the P module to be closely coupled to ΔψM. 
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However, in the presence of oligomycin ATP/ADP will fall due to inhibited ATP synthesis, 

and no longer be strongly coupled to ΔψM. These data show that β-cell energization 

increases the response of glucose oxidation to ΔψM, and therefore indicates the operation of 

a positive feedback loop between ATP/ADP (or other downstream signals such as Ca2+) and 

control-bearing components of the glucose oxidation module (such as glucokinase [38,39] 

and/or phosphofructokinase [40]). We can tell that the feedback is from a component of the 

P module such as the ATP/ADP ratio, because it is prevented by addition of oligomycin 

(Fig. 6A), which decouples the downstream elements from changes in ΔψM. Crucially, this 

positive feedback causes a very steep response of glucose oxidation to ΔψM near the non-

phosphorylating state (Fig. 6A, approximated by the green dashed line).

3.6 Metabolic control analysis of oxidative phosphorylation in INS-1 832/13 cells

To measure the control exerted by the O, L and P modules over the different system fluxes, 

and to quantify the relative importance of O, L and P modules in determining the value of 

ΔψM, we performed metabolic control analysis in low and high glucose using the data 

shown in Fig. 6. To quantify the response of β-cell metabolism to changes in glucose 

concentration and to determine how that change propagates through the metabolic system, 

we also applied a subset of metabolic control analysis, regulation analysis [19], which 

“decodes” underlying activity changes (changes in amounts or activation status of enzymes 

or modules) that drive changes in fluxes and intermediate levels as external conditions (such 

as glucose concentration) change.

The three-branched system (Fig. 3) is validly described by the mathematical formalism of 

metabolic control analysis only if ΔψM is the sole intermediate between the modules. If 

other interactions exist through intermediates not made explicit in the system (e.g. ATP/ADP 

ratio), they must be related to ΔψM by some unique function [41]. The kinetic analysis in 

Fig. 6 revealed the operation of a positive feedback mechanism from the P module to the O 

module. Importantly, this does not invalidate the analysis below. The L curve is valid, 

because proton leak does not depend on bioenergetic intermediates other than ΔψM. The 2 

and 10 mM glucose data points are acceptable points on the glucose oxidation curves, 

because the feedback interaction between P and O modules is included in the kinetic 

response of module O to ΔψM. This is because the feedback is mediated by ATP/ADP or 

another downstream effector whose level is assumed to be a unique function of ΔψM. In 

contrast, oligomycin breaks this linkage between ΔψM and feedback by inhibiting 

downstream ATP synthesis, invalidating the O curve obtained by FCCP titration in the 

presence of oligomycin, which was excluded from analysis of conditions lacking 

oligomycin. Finally, we assume that the non-phosphorylating state point itself is valid, 

because effects of the feedback loop are expected to be minimal when the glucose oxidation 

flux is small. Further assumptions related to the applicability of metabolic control analysis 

are given in the Methods and addressed in the Discussion.

3.7 Control analysis (control coefficients): the control structure of β-cell energy 
metabolism at low and high glucose

Elasticities quantify the change in flux through a module when the intermediate (ΔψM) 

changes by a small amount in the absence of any other changes in the system. Because 
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elasticities are always normalized to the starting values, it is convenient to measure them as 

the slopes of linear fits in log-log plots of the force-flux relationships (Fig. 6B). A larger 

(positive or negative) elasticity means that the flux through a module is very sensitive to 

ΔψM, and is indicated by a steeper slope in the corresponding line in the force-flux diagram 

(Fig. 6A–B). An important aspect of the analysis given below is that the limited number of 

data points describing individual modules (Fig. 6) is sufficient to calculate all required 

elasticities without committing large errors, using a set of rational assumptions (see 4.1.5). 

The values of the elasticities for the system described in Fig. 3 and measured in Fig. 6B are 

given in Table 1.

The distribution of control within any system can be fully quantified from its structure and 

the elasticities and fluxes. Concentration control coefficients were calculated from 

elasticities and fluxes as described in Methods to express how a change in the activity of 

each module affects ΔψM [17]. By definition, the concentration control coefficients of 

supply and demand are equal and opposite. Table 1 shows that at 2 mM glucose control of 

ΔψM is strong, whereas at 10 mM glucose it is an order of magnitude weaker, reflecting the 

great sensitivity of ΔψM (and downstream insulin secretion) to effectors at low glucose, but 

its stability at high glucose. In other words, ΔψM responds to activation or inhibition of 

supply or demand pathways more in low glucose and less in high glucose. Within the 

demand modules, Table 1 shows that control of ΔψM was shared about equally between L 

and P at both low and high glucose, similar to results from isolated INS-1E mitochondria 

[42]. This shows that while proton leak may be a significant regulator of ΔψM in the fasting 

condition, it only weakly controls ΔψM at high glucose, just like the other modules.

Flux control coefficients were also calculated from the elasticities and fluxes to express how 

a change in the activity of each module affects the flux through each module [17]. At 2 mM 

glucose control of respiration rate ( ) was well-distributed between the three modules, 

but at 10 mM glucose the O module lost control to the other modules ( Table 1), as expected.

The control of a module by its own activity [18] is of particular interest, because a small flux 

“self”-control coefficient (e.g. ) is caused by a large elasticity to the intermediate 

compared to the elasticities of other modules in the system. In other words, respiration 

associated with the module is relatively strongly determined by ΔψM. In contrast, a value 

close to 100% indicates that its elasticities are relatively small and the flux through the 

module is governed mostly by its own activity, and less by ΔψM. Glucose oxidation had 

very little control over its own flux. This suggests that the layout of cellular energy 

metabolism in INS-1 832/13 cells confers a strong sensitivity to glucose by making glucose 

oxidation very insensitive to changes in enzymatic activities within this module, other than 

the ΔψM-linked effects of the feedback loop discovered above. In contrast, the leak module 

displayed strong “self”-control ( ) and also controlled phosphorylation to a small extent 

at 2 mM glucose but not at 10 mM glucose. The P module was highly controlled by its own 

activity, indicating that major ATP consumers are little affected by changing energization 

between 2 and 10 mM glucose.
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3.8 Control analysis (partial internal response coefficients): homeostatic control of ΔψM in 
β-cells at low and high glucose

Since glucose-stimulated insulin secretion uses ATP levels rather than the flux of 

phosphorylation as an intermediate signal, a goal of this study was to determine how 

homeostasis of ΔψM, which is linked to ATP/ADP, is mediated by the interplay of the three 

modules. This is further emphasized by our findings above, that the flux of phosphorylation 

is largely controlled by its own activity changes, but not by glucose oxidation, and JP did not 

change between 2 and 10 mM glucose.

The concentration control coefficients calculated above quantify the fractional change in 

ΔψM in response to a change in the activity of each module. In contrast, homeostatic control 

describes how strongly each module maintains the steady state level of the intermediate 

when activities do not change. Any increase in an intermediate (e.g. caused by random 

fluctuations) will increase its consumption and decrease its production due to mass action 

effects until the steady state is regained, and the magnitude of this effect may be distributed 

differently between supply and demand modules. Here we assess how much the rate through 

each module changes if ΔψM is perturbed, to re-establish the steady state. This homeostatic 

response is quantified by the partial internal response coefficients [18] (Fig. 7A, Table 1). At 

2 mM glucose, glucose oxidation had higher homeostatic control over ΔψM (77% of the 

total) than the L module (23%) while the P module had none. At 10 mM glucose essentially 

all of the homeostasis of ΔψM shifted to glucose oxidation. Therefore, although proton leak 

is generally high in INS-1 832/13 cells [42,43], its homeostatic control over ΔψM is 

substantial only at low glucose, and close to zero at high glucose. Thus, cellular ATP 

turnover and proton leak play little role in stabilizing steady state ΔψM at high glucose.

3.9 Regulation analysis: the response of ΔψM to glucose in β-cells

Finally, we sought the contribution of the three modules in bringing about the observed 

hyperpolarization of ΔψM due to a change in their activities when glucose is raised from 2 

to 10 mM. To this end the partial integrated responses ( ) of ΔψM to the change 

in [glucose] acting through the direct effects of glucose on each module (i) were calculated 

[30]. The calculation uses the elasticities and concentration control coefficients of the system 

in its initial state, and the fractional changes in fluxes and ΔψM caused by moving the 

system into a new steady state by adding (or removing) glucose. We calculated the partial 

integrated responses using both 2 and 10 mM glucose as the initial state, with virtually 

identical results ( Table 1). These data show that the glucose-stimulated increase in O 

module activity (that implicitly includes the effect of glucose as a substrate), rather than any 

changes in the activities of the P and L modules, causes the observed hyperpolarization of 

ΔψM (Fig. 7B). In other words, increased metabolism of glucose and not inhibition of futile 

cycling in glycolysis or altered ATP demand mediates hyperpolarization of ΔψM upon an 

increase in glucose concentration.
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4 Discussion

4.1.1 Homeostasis, modular kinetic analysis, control analysis and regulation analysis in 
insulinoma cells

Homeostasis occurs when the concentration of a metabolite is kept constant despite changes 

in the fluxes through the system [19]. Cellular energization, ATP/ADP, and mitochondrial 

protonmotive force are subject to strict homeostatic regulation in many tissues, e.g. liver [44] 

and heart [45]. Critically, plasma glucose homeostasis is achieved through alterations in 

insulin levels by a metabolically exceptional cell type (pancreatic β-cells) in which the 

programmed lack of homeostasis of cellular energization state allows the signaling 

machinery of insulin secretion to sense and respond to changes in blood glucose 

concentration. This signaling machinery is dysfunctional in diabetes (type 2 and pre-type 1) 

[8–14], making the understanding of β-cell bioenergetic function and dysfunction vital for 

understanding and treating diabetes. In T2D, ΔψM in β-cells becomes less sensitive to 

changes in blood glucose [16,46–48] by unknown mechanisms.

Here we divided pancreatic insulinoma cell energetics into three all-inclusive, simplified 

modules connected by a single common intermediate, ΔψM. We analyzed its control and 

regulation using the powerful tools of metabolic control analysis to understand how the 

cellular metabolic network is poised to change ΔψM (and ATP/ADP) in response to changes 

in glucose concentration. We show that the control properties can readily be measured in 

adherent insulinoma cells in a microplate reader format using standard cell respirometry, 

parallel to the microplate-based quantitative assays of ΔψM introduced here. Modular 

kinetic analysis revealed the presence of a strong feedback control over glucose oxidation 

from downstream elements of the phosphorylation module. This feedback loop greatly 

enhances the response of ΔψM to glucose addition, making it an important player in GSIS. 

Control analysis showed that proton leak contributes to the control over the magnitude and 

the homeostasis of ΔψM at low glucose but not at high glucose concentrations, revealing a 

possible regulatory role of proton leak that is confined to the low-glucose state.

4.1.2 Relationship of results with insulinoma cells to primary human β-cells and T2D

Control over energy metabolism in INS-1 832/13 cells reflects several observations made in 

nondiabetic human β-cells, making these insulinoma cells a relevant model system that is 

well-suited to the analysis described here. These observations include the large range of 

ΔψM between low and high glucose, and the insensitivity of ΔψM to oligomycin at high 

glucose concentrations [16]. As demonstrated by the kinetic analysis performed here, this 

insensitivity to oligomycin reflects a very steep response of glucose oxidation to ΔψM, 

supported by a positive feedback from the P-module. In turn, the shape of the glucose 

oxidation curve is critical to achieve high ΔψM (and ultimately, insulin secretion) at high 

extracellular glucose concentration (Fig. 6). The kinetic and control analyses provide insight 

into two important observations on the glucose response of ΔψM in primary human 

pancreatic β-cells from T2D individuals [16].

Firstly, while normal β-cells showed no oligomycin-evoked ΔψM hyperpolarization in high 

glucose, T2D β-cells showed a substantial ΔψM hyperpolarization. Although respiration 
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data are not available, the ΔψM responses to oligomycin suggest that the glucose oxidation 

curve at high glucose must be very steep in normal human primary β-cells, as it is in 

insulinoma cells (Fig. 6, dashed green line), and shallower in T2D, therefore  must be 

significantly smaller in diabetic than in normal human β-cells. Notably, basal and glucose-

induced respiration rates are also decreased in T2D islets [23], consistent with the shallower 

response to ΔψM, and suggest no increase in proton leak or ATP turnover. These 

considerations raise the possibility that a deficit in the glucose-induced kinetic activation of 

glucose oxidation is a potential cause of impaired glucose-evoked ΔψM hyperpolarization 

observed in T2D. This is because the steady state of ΔψM formed at the intersection of the 

glucose oxidation and P+L curves shifts to the left (to smaller ΔψM) when the former 

becomes shallower (Fig. 6A).

Secondly, we found previously that in normal β-cells, but not in T2D β-cells, ΔψM 

decreased when downstream pathways of GSIS were activated in low glucose by 

glibenclamide, an inhibitor of KATP channels [16]. The depolarization in normal β-cells may 

be explained as an effect of glibenclamide-induced ATP turnover, and the lack of it by a 

smaller activity-induced ATP turnover in T2D, even though the evoked ΔψP depolarization 

was identical between T2D and normal β-cells [16]. Alternatively, the glibenclamide-

induced ΔψM depolarization in normal β-cells is predictable by the above kinetic analysis 

scheme if the glucose oxidation curve becomes shallower in the presence of glibenclamide. 

This may happen if ATP/ADP decreases because the glibenclamide-induced ATP turnover is 

not matched by increased supply, and this deenergization reduces the amount of positive 

feedback on glucose oxidation. Importantly, in INS-1 832/13 cells, the activity of glucose 

oxidation was lower when in was compromised by oligomycin plus FCCP in 10 mM glucose 

than in 2 mM glucose without inhibition. This suggests that the positive feedback loop is 

partially active at 2 mM glucose, and the glucose oxidation curve can get shallower during 

deenergization. This mechanism assumes that the feedback is through ATP/ADP and not 

other downstream factors, such as Ca2+, that reach high levels in the presence of 

glibenclamide. With these assumptions, we propose that both the oligomycin-induced ΔψM 

hyperpolarization at high glucose and the lack of glibenclamide-induced ΔψM 

depolarization in low glucose observed in T2D β-cells [16] can be ascribed to a defect in an 

ATP/ADP-dependent positive feedback mechanism in T2D.

4.1.3 Inhibition of mitochondrial ATP synthesis limits substrate supply to mitochondria

Prior studies reported failure of cell respiration when ATP synthase was inhibited in cells. 

Cell respiration in oligomycin-inhibited INS-1E (but not HEK293) cells gradually declined 

due to unidentified effects on substrate supply to the respiratory chain [49]. ATP synthase 

inhibition was also found to reduce maximal uncoupled respiration in certain tumor cell 

lines, but negligibly when these cells were permeabilized, and it was ascribed similarly to 

impaired metabolism [50].

4.1.4 The possible role of glucokinase

The proposed feedback must act on a step in glucose oxidation that has significant control 

over the O module. Substantial in vitro and clinical data implicate glucokinase as such a step 
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in β-cells [39]. Piragliatin, a glucokinase activator, has been shown to restore the diminished 

activation of cell respiration by glucose in human T2D islets and confer a supra-sensitized 

response to glucose equally in normal and T2D islets [23]. An intriguing (and testable) 

hypothesis that follows is that glucokinase activators override the endogenous feedback 

mechanism. A positive feedback within glycolysis has been suggested to contribute to the 

generation of slow, metabolic oscillations in islets, mediated by 6-phosphofructo-2-kinase/

fructose- 2,6-bisphosphatase and possibly its interaction with glucokinase [51].

4.1.5 Assumptions and caveats in the control analysis

As shown here, the control structure of cellular energy metabolism can be quantified and 

interpreted with remarkably few experimental data points. We argue here that pairs of data 

points in Fig. 6 are sufficient to define the elasticities of each module. Elasticities are 

defined for infinitesimal changes, and thus are tangents to kinetic curves. Since log-log 

transformed proton leak and oligomycin-inhibited glucose oxidation curves in Fig. 6B 

approximate straight lines, the elasticity of these modules to ΔψM is minimally affected by 

the magnitude of ΔψM and accurately defined by the slopes of fit lines. In contrast, for the 

uninhibited O module, we have only two data points (2 or 10 mM glucose and the point 

representing the non-phosphorylating state) to calculate the elasticities of glucose oxidation 

to ΔψM. We lack sufficient information to predict how the elasticities change with ΔψM, 

although other modules have good linearity in log-log transformed data (and this is also 

typical in other studied systems until ΔψM is close to maximal [17,52]). Due to the expected 

shape of the kinetic curve in Fig. 6A we expect to slightly overestimate these elasticities 

when calculating from the step change. Because  at 10 mM glucose is much larger 

than other elasticities, a slight overestimate will not alter our conclusions. We tested the 

effects of stochastic measurement errors on our conclusions, and we expect that the 

systematic bias due to this overestimate is small compared to stochastic errors. Similarly, the 

elasticity of the P module to ΔψM is calculated from two data points (2 and 10 mM 

glucose). Glucose may increase the flux through ATP turnover mostly through ΔψM 

(because downstream signaling is a function of ΔψM), so we do not expect one kinetic 

curve for the P-module at 2 mM glucose and another at 10 mM glucose, but (approximately) 

a single curve through the 2 and 10 mM glucose points. If the P-module is activated by 

glucose independently of ΔψM, then these two data points may lie on a pair of closely 

parallel kinetic curves, with the curve at 10 mM glucose higher (because of activation). 

However because the flux through the P module is virtually the same between 2 and 10 mM 

glucose (Fig. 6B), these curves collapse into a single curve through the 2 and 10 mM 

glucose data points. Furthermore, while we have determined ΔψM and respiration rate in an 

uninhibited condition only for 2 and 10 mM glucose, such concentration responses are 

known for β-cells in general, and these can be used to approximate the P+L curve 

connecting the 2 and 10 mM glucose points. Glucose-dependent activation of ΔψM and 

respiration follow similar sigmoid relationships. The published S0.5 of glucose for OCR is 

4.3 mM in human islets [23], and we measured an S0.5 for ΔψM (in mV) 4.9±0.6mM (n=4; 

unpublished) in normal human β-cells and 5.5±0.4 mM in rats (n=3; from data in [25]). With 

the assumption of applicability of human β-cell data to INS-1 832/13 cells, these values 

translate to a straight or slightly convex P+L curve connecting 2 and 10 mM. Convexity 
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slightly underestimates  at 2 mM glucose and slightly overestimates it at 10 mM 

glucose when calculating elasticities from a straight line between the 2 and 10 mM glucose 

points, and would only strengthen our conclusion that the P module loses control over 

glucose oxidation at 10 mM glucose. Lastly, partial integrated responses require minimal 

experimental data to provide a qualitative assessment of activity and elasticity changes 

caused by a perturbation, because their calculation uses the control structure of the system 

only in the original steady state, and the steady state fluxes and intermediate levels of the 

perturbed system. Importantly, the small partial integrated response of ΔψM to glucose 

acting through the P module also suggests that the elasticity change in the P module between 

2 and 10 mM glucose is small, implying little error in assuming the two elasticities are 

equal.

4.1.6 Comparison to mitochondria isolated from INS-1E cells

Proton leak exerts significant control over ΔψM and respiratory flux in INS-1E 

mitochondria, in striking contrast to muscle mitochondria, showing that proton leak is well 

suited to regulate ΔψM [42]. In this sense, the isolated mitochondrial system mimics the 

intact cell system at low glucose. However, we observed loss of this control at high glucose. 

This suggests that proton leak is well suited to regulate the null point of insulin secretion 

without interfering with the maximal response in high glucose. Our data suggests that the 

change in control happens by an energization-dependent activation of glucose oxidation. In 

contrast, in isolated mitochondria the activity of succinate oxidation is insensitive to 

ATP/ADP [42], suggesting that if ATP/ADP is the factor responsible for the positive 

feedback in cells, it acts upstream of succinate dehydrogenase.

5 Conclusion

The metabolic control analysis described here reveals a positive feedback due to an 

energization-dependent activation of glucose oxidation that amplifies changes in ΔψM and 

therefore in ATP/ADP as glucose concentration rises. We propose that this is essential for 

the proper regulation of GSIS, and that it is dysfunctional in T2D β-cells, at least in the 

small group of studied individuals [16,23]. At low glucose the positive feedback has weak 

effects, allowing relatively strong control over the magnitude of ΔψM by glucose oxidation, 

proton leak and ATP turnover, and a relatively high contribution of proton leak to 

homeostasis of ΔψM. However, at high glucose the feedback loop fully engages, and control 

over the magnitude of ΔψM by glucose oxidation, proton leak and ATP turnover is greatly 

diminished, and homeostatic control shifts almost entirely to glucose oxidation. The 

magnitude of ΔψM at high glucose concentrations is relatively insensitive to ATP turnover, 

thus preventing ion transport and macromolecule synthesis from interfering with GSIS. 

These data resolve a long-standing puzzle related to the relatively high proton leak observed 

in insulinoma cells. A large proton leak seemingly conflicts with GSIS, as it short-circuits 

energy metabolism and decreases ATP/ADP. However, our analysis indicates that proton 

leak can control ΔψM more strongly in the fasting state than under high glucose, which 

could be a means for attenuating insulin secretion during fasting without affecting maximal 

secretion, since control shifts away from proton leak at high glucose concentrations.
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Altogether, the observed kinetic characteristics and positive feedback loop and the 

consequent control structure of insulinoma cell energy metabolism appear well-suited to 

support GSIS, because they allow a strong amplification of responses of ΔψM and GSIS to 

small changes in glucose concentration. We suggest that disruption of this fine control can 

explain the damaged GSIS characteristic of β-cells in previously observed cases of T2D. 

The assay technology and analysis described here will allow identification of the feedback 

factor, its target and the precise role of this loop in T2D.
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Abbreviations

aR’ activity coefficient ratio

CDC complete depolarization cocktail

ΔψM mitochondrial membrane potential

ΔψP plasma membrane potential

FCCP carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

GSIS glucose-stimulated insulin secretion

KATP ATP-sensitive K+-channels

MDC mitochondrial depolarization cocktail

OCR oxygen consumption rate

PM potentiometric medium

PMK K+-based potentiometric medium

PMPI ΔψP indicator

SE standard error

T2D type 2 diabetes mellitus

TMRM tetramethylrhodamine methyl ester

TPB tetraphenylborate

VF, mitochondria:cell volume fraction
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Highlights

We applied control analysis to mitochondrial energy metabolism in insulinoma 

cells

Glucose oxidation is amplified by a positive feedback by factors downstream of 

ΔψM

At high glucose, ΔψM is set by glucose oxidation, not by bioenergetic demand

Proton leak may contribute to setting ΔψM only in low glucose
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Fig. 1. Determination of absolute values of ΔψP and ΔψM in millivolts in INS-1 832/13 cells from 
a single time course recording using fluorescence microscopy
(A–B) Fluorescence time courses of potentiometric probe intensities (F.U., fluorescence 

units). A, PMPI; B, TMRM. (C–D) Time courses of calibrated potentials corresponding to 

A–B calculated using parameters given in Error! Reference source not found.. Data are 

mean±SE of n=12 groups of cells in a single view field, representative of 7 experiments. The 

calibration algorithm back-calculates ΔψP from KCl-evoked depolarizations, and ΔψM 

from the decay of TMRM fluorescence upon a sudden and complete mitochondrial 

depolarization by the mitochondrial depolarization cocktail (MDC) (see Error! Reference 
source not found.). Both calibrations require fluorescence intensities measured at 0 mV 

potentials set by the complete depolarization cocktail (CDC). Note that non-quench mode 

TMRM fluorescence is dependent on both ΔψP and ΔψM, and a fast change in either 

potential (e.g. subsequent to oligomycin addition) results in a slow redistribution of the 

probe. The calibration algorithm deconvolutes the observed slow fluorescence change into 

the instantaneous potentials that cause the redistribution.
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Fig. 2. Calibration of ΔψM and ΔψP using a fluorescence microplate reader
(A–B) Spectral unmixing. (A) Unprocessed recording shown as fluorescence units in a well 

containing INS-1 832/13 cells and in a blank well. To demonstrate spectral crossbleed, cells 

were exposed to glucose (10 mM) and high extracellular [K+] (64 mM) increasing PMPI 

fluorescence and decreasing TMRM fluorescence. (B) Fluorescence intensities of the data in 

A after spectral unmixing (see Error! Reference source not found.) and blank well 

background subtraction. (C) Spectrally unmixed and background subtracted fluorescence 

recording for the determination of ΔψP0, ΔψM0 and kT. The calibration is based on the 

decay of TMRM fluorescence after acute and complete mitochondrial depolarization 

provided by MDC, followed by complete depolarization of the cell by CDC (see 

compositions in Error! Reference source not found.). Data are from a representative single 

well chosen from 16 technical replicates in each of 10 independent experiments. (D) Linear 

regression analysis to calculate ΔψM0 and kT as described in Error! Reference source not 
found., corresponding to TMRM fluorescence intensities measured between MDC and CDC 

additions in panel C. The good linear fit indicates that the experimental system followed the 

biophysical model assuming a time- and ΔψP-dependent leakage of TMRM from the 

cytosol to the extracellular space. (E) Calibrated ΔψP and (F) calibrated ΔψM 

corresponding to panel C. ΔψP0 was numerically optimized (resulting in a ΔψP time course 

for each iteration, see E) to give minimal deviation from 0 mV in calibrated ΔψM at the end 
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of the recording, indicated by horizontal lines in F. Circles and squares indicate potentials 

calibrated at the optimum ΔψP0, while triangles indicate those at an arbitrary different ΔψP0 

(−40 mV). (G) Dependence of the deviation of mean calibrated ΔψM from 0 mV at the end 

of the recording as a function of assumed ΔψP0. Symbols correspond to panels E–F and 

indicate the ΔψP0 used for the calibration of traces. (H) Zosuquidar (zos) used to prevent 

pumping of fluorescent probes during the assay does not alter basal respiration. INS-1 

832/13 cells were preincubated in 2.5 μM zosuquidar for 90 min before cell respirometry. ns, 

not significant.
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Fig. 3. Modularization of energy metabolism
Energy metabolism was partitioned into thee modules (black labels): glucose oxidation, O 
(including glucose uptake, glycolysis, tricarboxylic acid cycle and the respiratory chain), 

proton leak, L and phosphorylation, P (ATP synthesis and the use of ATP by the cell). 

These modules share a common intermediate, ΔψM, and there are different fluxes through 

each (blue arrows; weight indicates the magnitude of the flux). The flux supplying ΔψM is 

the pumping of protons out of the mitochondrial matrix by the respiratory chain. Since a 

fixed number of protons is pumped per oxygen consumed, this is measured as mitochondrial 

oxygen consumption rate of the cells. The protons can reenter the matrix through proton leak 

or to drive phosphorylation of ADP; the sum of these two fluxes equals the flux of proton 

pumping. Therefore these fluxes can be expressed as the respiration rate required to drive 

them. Modulators of each module are shown in green. OCR, oxygen consumption rate.
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Fig. 4. Measurement of the level of the common intermediate (ΔψM) for control analysis: 
rotenone and FCCP titration of ΔψM in INS-1 832/13 cells
(A,B) TMRM and PMPI fluorescence after spectral unmixing and background subtraction. 

Additions of glucose (10 mM final), oligomycin (2.5 μM) and rotenone (A) or FCCP (B) at 

concentrations indicated in panels C and D were followed by complete depolarization of 

both ΔψP and ΔψM using CDC. (C,D) ΔψP and ΔψM were calibrated using the “short” 

calibration paradigm, based on ΔψP0, ΔψM0 and kT measured under identical conditions for 

each cell culture plating (Fig. 2; 10 platings in total), and fluorescence measured at 0 mV 

potential achieved at the end of the time lapse. Calibrated data points are shown only before 

complete depolarization. Glucose addition served to map the relationship of fluxes through 

the P+L modules to ΔψM by combining these data with data from Fig. 5. Oligomycin 

served to inhibit phosphorylation, allowing mapping of the L module by titrating glucose 

oxidation with rotenone (C) or mapping of the O module by titrating proton leak with FCCP 

(D). Traces represent single-well fluorescence or calibrated potential data from 6 (A,C) and 

4 (B,D) independent experiments.
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Fig. 5. Measurement of the fluxes through the system for control analysis: rotenone and FCCP 
titration of respiration of INS-1 832/13 cells
(A,B) Respiration of INS-1 832/13 cells cultured in identical conditions to Fig. 2 and Fig. 4, 

but in Seahorse V7 PS flux plates. Additions of glucose (10 mM), oligomycin (2.5 μM) and 

the indicated concentrations of rotenone (A) or FCCP (B) were followed by rotenone (2 μM) 

plus antimycin A (2 μM) to determine non-mitochondrial respiration (which was subtracted 

from all data). Oxygen consumption rate (OCR) is shown normalized to whole-well cell 

numbers counted after respirometry. Glucose addition served to map the relationship of 

fluxes through the P+L modules to ΔψM by combining these data with data from Fig. 4. 

Oligomycin served to inhibit phosphorylation, allowing mapping of the L module by 

titrating glucose oxidation with rotenone (A) or mapping of the O module by titrating proton 

leak with FCCP (B). Data are mean±SE of (A) n=9 and (B) n=3 experiments.
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Fig. 6. Modular kinetic analysis of energy metabolism in INS-1 832/13 cells
(A) Kinetic analysis of the response of the proton leak (blue squares; bare labels above or 

over symbols indicate nM concentration of rotenone), oligomycin-inhibited glucose 

oxidation (green circles; labels above or over symbols indicate nM concentration of FCCP) 

and phosphorylation plus leak (red triangles) modules to ΔψM was compiled from ΔψM 

data in Fig. 4 and respiration data in Fig. 5. Only data from matching concentrations were 

used from these two assays. Red triangles indicate the uninhibited resting and activated 

states corresponding to low (2 mM) and high (10 mM) glucose, respectively. The red ellipse 

indicates the non-phosphorylating state in the presence of 10 mM glucose and oligomycin 

(2.5 μM). The leak curve (blue line) was mapped by rotenone titration, while the glucose 

oxidation curve (solid green line) was mapped by FCCP titration, starting from the point 

representing the non-phosphorylating state. The phosphorylation plus proton leak curve is 

mapped by the uninhibited points at 2 mM and 10 mM glucose (gray line). Kinetic curves 

are not fits and are for illustration only, see panel B for quantitative analysis. Dotted and 

dashed green curves illustrate probable uninhibited glucose oxidation kinetics, based on the 

available two data points and comparable literature [20,42]. Data are mean±SE of n=(10,14) 

for points representing the uninhibited and non-phosphorylating states, n=(6,9) for proton 

leak and n=(4,3) for glucose oxidation, where n is expressed as (ΔψM, respiration) 

independent experiments. (B) Log-log conversion of the data shown in panel A with the 

addition of phosphorylation fluxes (JP; orange diamonds and line) calculated by subtraction 
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of proton leak fluxes (JL; interpolated and extrapolated to the required ΔψM marked by the 

black dotted vertical lines) from uninhibited fluxes (JO. Lines are weighted linear fits for 

proton leak and oligomycin-inhibited glucose oxidation, or connecting lines of available 

pairs of data points for other modules, including the uninhibited glucose oxidation module 

for 2 and 10 mM glucose separately (red lines). The confidence bands around fit lines 

indicate ±1 SE. Symbols correspond to panel A with error bars omitted here. olgm, 

oligomycin; myxo, myxothiazol.
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Fig. 7. Homeostatic control and response of ΔψM to glucose
(A) Homeostatic control of ΔψM is quantified by partial internal response coefficients of 

ΔψM to a change in ΔψM acting through each indicated module. Values are shown as 

percent of total (their sum is therefore 100% for the system) separately for 2 and 10 mM 

glucose conditions. The size of arrows is proportional to the strength of control. Data 

correspond to Table 1, see errors there. (B) The contribution of the three modules to bringing 

about glucose-induced changes in ΔψM is quantified by the partial integrated responses of 

ΔψM to the change in [glucose] acting through direct effects of glucose on each module. 

These responses were calculated as fractional changes in ΔψM, and normalized to total 

100% for better visualization.
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Table 1

Metabolic control analysis of energy metabolism in INS-1 832/13 cells.

i = O L P

Glucose concentration (mM) glucose oxidation proton leak phosphorylation

elasticities

2 −2.8±1

1.9±0.37 −0.016±0.9210 62±280

concentration control coefficients (fractions expressed as percent)

2 28±8.6% −12±3.8% −16±5.2%

10 −1.6±7.4%* 0.85±3.8%* 0.79±3.6%*

flux control coefficients (percent of total control)

2 23±13% 33±6% 44±8.9%

10 −1.6±7.3% 52±5.7%* 49±7.7%

2 53±18% 77±7.9% −30±11%

10 −3.1±14%* 102±7.4%* 1.5±6.9%*

2 −0.44±25% 0.19±11% 100±14%

10 0.03±1.5% −0.01±0.78% 100±0.73%

partial internal response coefficients for homeostasis of ΔψM (percent of total control)

2 −77±13% −23±7.9% 0.25±14%

10 −102±7.3% 1.6±7.4%* −0.01±0.73%

partial integrated response of ΔψM to glucose (percent of total response)

2 to 10 102±29% −2±10% −0.02±19%

10 to 2 100±24% −0.1±0.8% −0.00±1.1%

Data are means±SE. Errors were calculated by error propagation for an average of 7.7 independent experimental repeats (n averaged between 
respirometry and ΔψM assays).

*
p<0.05 by Welch t-test comparing conditions with 2 and 10 mM glucose for each coefficient.
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