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Abstract

Here we report an exploratory within-subject variance decomposition analysis conducted on a 

task-based fMRI dataset with an unusually large number of repeated measures (i.e., 500 trials in 

each of three different subjects) distributed across 100 functional scans and 9 to 10 different 

sessions. Within-subject variance was segregated into four primary components: variance across-

sessions, variance across-runs within a session, variance across-blocks within a run, and residual 

measurement/modeling error. Our results reveal inhomogeneous and distinct spatial distributions 

of these variance components across significantly active voxels in grey matter. Measurement error 

is dominant across the whole brain. Detailed evaluation of the remaining three components shows 

that across-session variance is the second largest contributor to total variance in occipital cortex, 

while across-runs variance is the second dominant source for the rest of the brain. Network-

specific analysis revealed that across-block variance contributes more to total variance in higher-

order cognitive networks than in somatosensory cortex. Moreover, in some higher-order cognitive 

networks across-block variance can exceed across-session variance. These results help us better 

understand the temporal (i.e., across blocks, runs and sessions) and spatial distributions (i.e., 

across different networks) of within-subject natural variability in estimates of task responses in 

fMRI. They also suggest that different brain regions will show different natural levels of test-retest 

reliability even in the absence of residual artifacts and sufficiently high contrast-to-noise 

measurements. Further confirmation with a larger sample of subjects and other tasks is necessary 

to ensure generality of these results.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Neuroimage. 2017 July 01; 154: 206–218. doi:10.1016/j.neuroimage.2016.10.024.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

task-based fMRI; variance decomposition; longitudinal studies

INTRODUCTION

Functional MRI (fMRI) time series constitute high-dimensional, rich spatio-temporal 

recordings of brain function that can be modulated by different physiological (e.g., anxiety 

levels), neuronal (e.g., ongoing cognition) and experimental factors (e.g., time-of-the-day) 

surrounding a scanning session. Activation and connectivity fMRI maps are not only 

dependent on the amount of residual head motion (Power et al., 2012), physiological noise 

(Birn, 2012) and hardware instabilities (Jo et al., 2010) not properly accounted for during 

pre-processing; but also vary as a function of additional factors such as attention 

(Vuilleumier and Driver, 2007), learning (Dayan and Cohen, 2011), caffeine ingestion (Liu 

et al., 2004), sleep (Gaggioni et al., 2014; McKenna et al., 2014), metabolite concentrations 

in blood (Poldrack et al., 2015) and, potentially, gene expression levels (Poldrack et al., 

2015). Experimenters cannot always control for all these factors, which end up adding 

unexplained within-subject variance to the data, and obstructing interpretation of single-

subject longitudinal results.

Additionally, signal fluctuations of interest in fMRI (i.e., those of a BOLD origin and driven 

by underlying neuronal activity) only account for a small percentage of the variance present 

in the data (Bianciardi et al., 2009). As a result of this, fMRI has been traditionally regarded 

as a technique with limited sensitivity due to insufficient contrast-to-noise ratio (CNR). This 

is particularly true within the context of potential clinical applications. While group 

averaging can alleviate insufficient CNR in a research environment, combining data across 

subjects is not an option in a clinical setting. Alternatively, single-subject CNR can be 

improved by combining successive within-subject recordings as long as the signal of interest 

remains relatively constant and the noise is randomly distributed across those repeated 

measures. In fact, intra-subject trial averaging is a common practice in other neuroimaging 

modalities such as in electroencephalography. For example, over a thousand trials are 

routinely combined to reliably detect brainstem auditory evoked-response potentials (ERPs) 

(Skoe and Kraus, 2010), and several hundred are combined when aiming for cortical ERPs 

in occipital cortex (e.g., visual P1 waves), where CNR is much higher (Luck, 2014). 

Although obtaining such “high-N” in individual subjects is not a common practice in fMRI, 

a few recent studies have demonstrated that when doing so (Nruns≈100) a richer, highly 

distributed picture of brain function emerges (Gonzalez-Castillo et al., 2015, 2012). 

Moreover, when those within-subject “high-N” experiments are accompanied by intensive 

phenome-wide assessments, the joint dynamics of human brain and metabolic function can 

be assessed in detail (Poldrack et al., 2015). Yet, collecting hundreds of trials in task-based 

fMRI may require several sessions, which in turn adds an additional component to total 

within-subject variance. Given the above-mentioned benefits associated with acquiring 

“high-N” within-subject measures, and the importance of within-subject longitudinal studies 

for developmental and clinical research, a better understanding of how within-subject 
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variance decomposes across basic experimental units (e.g., runs, sessions) is desirable, so 

that multi-session fMRI experiments can be optimized to minimize within-subject variance.

Although substantial past efforts have been devoted to assess the test-retest reliability of 

task-based fMRI(Gonzalez-Castillo and Talavage, 2011; Gountouna et al., 2010; Havel et 

al., 2006; McGonigle, 2012; McGonigle et al., 2002; Plichta et al., 2012), most of them rely 

on a limited number of sessions (Nsession<5). This is not sufficient to attempt any 

decomposition of within-subject variance into its primary subcomponents: (a) across-

sessions variance ( ; i.e., that associated with entering and exiting the scanner on the 

same or different days); (b) across-runs variance ( ; with run defined as a continuous 

scanning period that contains several blocks/trials of stimulation and/or task); (c) across-

blocks variance ( ; with block defined as each individual contiguous occurrence of the 

task/stimulus); and (d) error/modeling variance ( ; i.e., the remaining within-subject 

variance not attributable to any of the other three factors described here). Here, we address 

this gap by performing an exploratory variance-decomposition analysis in one of the within-

subject “high-N” datasets mentioned above (Gonzalez-Castillo et al., 2012) using a four-

level nested random-effect variance decomposition model. The selected dataset is 

particularly well suited for this exploration because it contains fMRI recordings for over 500 

trials (a trial here is a 60s second block with 20s of task and 40s of rest; please see details 

below) in each of three individual subjects. Those 500 trials were all acquired under the 

same experimental condition (i.e., a visual stimulation plus a letter/number discrimination 

task), and across 100 functional runs distributed among 9 to 10 different scanning sessions 

over a 3-month period.

Given this larger-than-usual number of recordings, we were able to segregate variance in the 

four components cited above (i.e., σ2
session, σ2

run, σ2
block and σ2

error). Our results not only 

show how measurement/modeling variance dominates over the whole brain, but more 

interestingly, how the other three components show a non-homogenous spatial distribution 

that is reproducible across subjects. In particular, σ2
session is the second dominant source of 

within-subject variance in occipital cortex (i.e., the primary input region for the task), while 

σ2
run is in most other regions. A detailed evaluation across sixteen well established cortical 

networks (Laird et al., 2011) revealed how σ2
block contributes to within-subject variance to a 

much larger extent in higher-order cognitive networks than in somatosensory networks. In 

fact, for a subset of higher-order cognitive networks (specifically those previously associated 

with emotion/interoception roles) a large percentage of voxels show σ2
block > σ2

session.

These novel insights into the spatio-temporal distribution of within-subject variance, not 

only confirm previous accounts of the overwhelming contribution of modeling/measurement 

error to within-subject variance (Friedman et al., 2006; Suckling et al., 2008), but could also 

help optimize future multi-session single-subject studies. For example, the dominance of 

across-session over across-run variance in visual regions suggests having fewer longer 

sessions rather than many shorter sessions, this if solely interested in responses within 

occipital cortex. The dominance of across-run over across-session variance everywhere else 

in the brain suggests that limiting sessions should not be a primary optimization criteria if 

interested in evaluating responses beyond occipital cortex.
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The code necessary to perform the four-level variance decomposition will be made publicly 

available upon publication as part of the AFNI software suite. This software, if directly 

provided with run-level activity estimates, could be used in group studies to decompose total 

group variance into variance across-subjects, across-sessions, and across-runs; and in that 

manner better segregate true between-subject variance in the experiments. In addition, the 

dataset presented here is also publicly available upon request in Xnat Central (https://

central.xnat.org) under project ID: 100RunsPerSubj.

METHODS

The analyses presented here were conducted on a task-based dataset previously described in 

(Gonzalez-Castillo et al., 2012) that contains a total of 100 runs acquired over 9 to 10 

different sessions (on average 10.3 ± 2.4 runs per session) in each of three different 

individuals (one male/two females: age = 27 ± 2.5 y.o.). Below we provide a brief 

description of the task and acquisition parameters. Please refer to the supplementary 

materials of the original study for additional details.

All participants gave informed consent in compliance with a protocol approved by the 

Institutional Review Board of the National Institute of Mental Health in Bethesda, MD.

Experimental Task

All functional runs had the same organization of blocks. An initial 30 s rest period was 

followed by five repetitions of the following sequence of blocks: task block (20 s) and rest 

block (40 s). An additional 10 s of rest were added at the end of each functional run. This 

resulted in 340 s runs. During the rest periods, subjects were instructed to remain still and 

focus their attention on a white fixation cross over a black background. During the task 

epochs, subjects were instructed to focus their attention in the center of a flickering 

checkerboard (frequency = 7.5 Hz) and to perform a letter/number discrimination task. Four 

random alpha-numeric characters appeared for 400 ms at random intervals in the center of 

the flickering checkerboard. Subjects were provided with a four-button response box 

(Curdes Fiber Optic Response Box Model No: HH-2x4-C) in their right hand and were 

instructed to press the leftmost button for each letter appearance and the next button if the 

character on the screen was a number.

Data Acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa HDx MRI scanner. 

Functional runs were obtained using a gradient recalled, single shot, full k-space echo planar 

imaging (geEPI) sequence [TR = 2.0 s, TE = 30 ms, FA = 75°, 32 oblique slices, slice 

thickness = 3.8 mm, spacing = 0 mm, in-plane resolution = 3.75 x 3.75 mm, field-of-view 

(FOV) = 24 cm]. T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) 

sequence was also acquired for presentation and alignment purposes. Physiological data 

were recorded during functional runs using a pneumatic belt and an optical finger pulse 

oximeter. Acquisition of the dataset presented in this article required 10 visits for two 

subjects, and only 9 visits for the other subject. These visits spanned a period of around 3 

months.
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Data Preprocessing

The Analysis of Functional NeuroImages (AFNI) software (Cox, 1996) was used for all of 

the data preprocessing. Preprocessing on each individual EPI run included: (i) discard initial 

five volumes to allow for magnetization to reach steady-state; (ii) physiological noise 

removal using regressors that model the effects of respiration and cardiac cycle 

[RETROICOR (Glover et al., 2000)] as well as the effects of slow blood-oxygenation level 

fluctuations [RVT (Birn et al., 2008)]; (iii) slice-timing correction; (iv) intra-run motion 

correction; (v) within-subject inter-run spatial co-registration; (vi) spatial smoothing 

(FWHM=6mm); and (vii) intensity normalization, by dividing each voxel-wise time series 

by its own mean. Physiological noise removal was omitted for two runs in subject 1 because 

physiological data were not available.

Statistical Analysis

Statistical analyses were performed separately in each subject after temporally concatenating 

all available 100 runs. We used AFNI program 3dREMLfit, which accounts for temporal 

autocorrelation in the residuals of functional MRI (fMRI) time series using an ARMA (1, 1) 

model. Expected hemodynamic responses were modeled via convolving a gamma-variate 

function with a boxcar function that follows the experimental paradigm (e.g., “ones” during 

active blocks and “zeros” during rest/fixation blocks). This corresponds to the sustained-

only model described in (Gonzalez-Castillo et al., 2012). Estimates of effect size (β) and 

associated T-stat were obtained for each separate task epoch (i.e., block). Nuisance 

regressors include run-specific 3rd order Legendre polynomials to account for slow drifts, 

and estimates of head motion and their first derivatives. This led to 500 estimates of effect 

size and their T-stat per subject that were input to the variance decomposition analysis 

described below.

Variance Decomposition

Here we consider a model that partitions the total variance into four components that 

correspond to the following four hierarchical levels: within block (σ2
err) and across blocks 

(σ2
block), runs (σ2

runs), and sessions (σ2
session). We first start with a simple model, 

decomposing the effect estimate βî(j(k))with the assumption of no measurement error,

(Eq. 1)

where indices i, j, and k denote the levels of block, run, and day, respectively; parentheses 

indicates the nesting structure between consecutive levels; α represents the intercept or 

overall average effect; θk, ζj(k), and ηi(j(k)) denote the session-, run-, and block-specific 

random effect, respectively, and are assumed to follow Gaussian distributions with a mean of 

zero and variances of σ2
block, σ2

runs and σ2
session, respectively.

The framework (as in Eq. 1) is basically a linear mixed-effects model with a sequentially 

nested random-effects structure, and the variance partition is straightforward,
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(Eq. 2)

However, the model described in Eq. 1, with the assumption of no sampling error, is 

unrealistic because βî(j(k)) is only an estimate of the ideal βi(j(k)), the measurement not 

corrupted by measurement noise. Fortunately, this fourth source of variation is easily 

estimated through the regression analysis using a fixed-shaped hemodynamic response 

function (i.e., a canonical gamma-variate function). Therefore, we instead consider a more 

realistic model,

(Eq. 3)

where εi(j(k)) represents the measurement error that is assumed to follow a Gaussian 

distribution , and  is the estimated variance for the ith block. The variance 

composition for the model in Eq. 3 is then updated to,

(Eq. 4)

The difference between the two models (Eq. 1) and (Eq. 3) can be conceptualized from a 

different perspective. Even with the presence of sampling errors, we could still work with 

the first model (Eq. 1); however, the  component in Eq. 2 would not really be the cross-

block variance, but roughly the sum of the cross-block variance ( ) and the average 

(across blocks; ) of the individual within-block variances  from Eq. 4. In other words, 

if all the effect estimates are equally reliable (i.e., have the same sampling variance), the 

component  in Eq. 2 contains both the cross-block variance  from Eq. 4 and the 

within-block sampling variance ( ). This comparison between the two models, (Eq. 1) 

and (Eq. 3), is also parallel to the situation of a two-level model, the typical fMRI group 

analysis where one takes the effect estimates from individual subjects without and with their 

sampling variances (Chen et al., 2012; Woolrich et al., 2004; Worsley et al., 2002).

Fitting the model of Eq. 3, briefly, is similar to a simpler case with a three-level model 

(instead of four-level) previously described by (Konstantopoulos, 2011) within the context of 

behavioral studies. In the present work, estimates of βî(j(k)) and  were first generated by 

AFNI program 3dREMLfit (as described above in the Statistical Analysis subsection). Then 

they were provided as input to a customized R (R Core Team, 2016, https://www.R-

project.org/) program that relies on R package metaphor (Viechtbauer, 2010) to compute 

voxel-wise estimates of , and  via an iterative algorithm that solved Eq. 3 

via the restricted maximum likelihood scheme.
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In addition, voxel-wise estimates of total variance were computed as the voxel-wise variance 

across all 500 beta estimates. Voxel-wise maps of  were computed by averaging block-

wise estimates of  generated by AFNI program 3dREMLfit across all 500 blocks.

Network Analysis

To evaluate potential differences in within-subject variance components across typical 

cognitive networks, we used previously published network maps from (Laird et al., 2011). 

This particular taxonomy was selected because clear behavioral correlates have been 

reported for each of the networks based on meta-analysis against task-based studies included 

in the BrainMap database (Fox et al., 2005). Four networks from the original taxonomy were 

excluded: two because they were originally identified as artifactual in the original study 

(networks 19 and 20) and two more because they do not fall completely within our imaging 

field of view. Table 1 shows detailed information regarding which networks were used, and 

the labeling scheme used for the remainder of this paper.

Network maps publicly available at the BrainMap website (http://www.brainmap.org/icns/) 

were brought from MNI space into each subject’s specific space and converted to binary 

masks using a threshold of Z > 5. Finally binary network maps were further restricted at the 

individual level to only contain grey matter voxels marked as significant in statistical maps 

of activation (FDR q<0.05) for the Sustained Only Model computed using all 100 runs in 

(Gonzalez-Castillo et al., 2012). For this purpose, grey matter ribbon masks were generated 

with the SPM segmentation tool using as input the high resolution anatomical scans of each 

subject. This last individual-level restriction was implemented to ensure that variance 

decomposition analyses were conducted only over voxels where a sustained response to the 

task was present. For completion, supplementary figures with maps containing all 

significantly active voxels (not only those within the grey matter ribbon) are also provided.

Temporal Signal-to-Noise Ratio

Maps of voxel-wise temporal signal-to-noise ratio (TSNR) were computed for each run 

independently after the alignment step. Prior to computation of TSNR maps, task effects 

were regressed out, to avoid bias due to activity-induced fluctuations in TSNR values.

Per run voxel-wise TSNR maps were then averaged across all runs for each participant. 

These individual average TSNR maps were then used to compute representative TSNR 

values for each of the sixteen networks described above, separately for each participant. The 

TSNR value for each network is the average across all voxels part of that network.

RESULTS

Figure 1.A shows the spatial distribution of total within-subject variance for a representative 

subject (see Supplementary Figures 1 and 2 for equivalent maps in the other two 

participants). Total variance is highest at the edge of the brain, the ventricles, inferior frontal 

regions commonly affected by dropout and Bo distortions, and occipital cortex (primary 

input for the task). Figure 1B–E shows the spatial distribution for the variance 

decomposition analysis in the same representative subject. Measurement/modeling errors 
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dominate across the brain and account for the majority of the within-subject variance (Figure 

1.E). As for the other variance components, they show distinct spatial distributions. Both 

 and  are highest at the edges of the brain. In addition, regions with high 

and  are present in occipital cortex. Finally,  seems to be lowest across the majority 

of the brain, yet some clusters of high  can be found in components of the default mode 

network.

To better understand the contribution of different variance components to somatosensory and 

cognitive networks, we constructed pie plots with their relative contributions to each 

network (Figure 2). Somatosensory networks (i.e., MV1–4, VS1–3 and AUD) are in the top 

row of each subject’s panel, while higher-order cognitive networks (EI1–4, DMN, FPR, FPL 

and SPP) are depicted below. Although the exact distribution of within-subject variance 

components across participants differs, several general patterns were observed. First, σ2
err 

(white wedges) is the greatest contributor to within-subject variance in all networks. Second, 

σ2
run (red wedges) is the second largest contributor to within-subject variance in all 

networks except VS2–3 for all subjects (only exception being VS3 in subject 2 where σ2
run 

and σ2
session contribute similarly). Third, σ2

session (green wedges) is the second largest 

contributor only for early visual networks, which constitute the primary target of the 

experimental task in this dataset. Forth, σ2
block (blue wedges) is a higher variance 

contributor in higher-order cognitive networks relative to somatosensory networks. This is 

particularly clear for subjects 1 and 3. Yet, for subject 2 the only three networks (EI1,3–4) 

where σ2block exceeds 1% are also higher-order cognitive networks. To evaluate the 

homogeneity of these profiles across different regions of a network, we decided to also 

compute median values for each variance subcomponent on a ROI-by-ROI basis. 

Supplementary Figure 3 shows the results of this analysis. Despite some punctual 

differences in the median value of specific variance components across some intra-network 

ROIs (e.g., DMN for all subjects, EI1 for subject 2), an overall agreement in the profile of 

variance decomposition across ROIs part of the same network could be observed.

Next, we focus our attention on σ2
session, σ2

run, and σ2
block as their separate estimation 

constitutes the main novelty of this study. First, we explored the relationship between effect 

size and each of these three variance components on a network-by-network basis. Figure 3 

shows scatter plots of absolute values of median network-wise effect size against network-

wise median estimates for the three variance components of interest: (A, B) variance-across 

sessions, (C, D) variance across runs within a session, and (E, F) variance across blocks 

within runs within sessions. Top panels (A, C, E) show all 16 networks and 3 subjects. 

Bottom panels (B, D, F) show the same information excluding the visual networks (VS1–3) 

to help better visualize the relationships for the other networks. In all plots, data points for 

subject 1 are represented as circles, for subject 2 as diamonds, and for subject 3 as squares 

(for a depiction of the same network-level variance decomposition results on a subject-by-

subject basis please see Supplementary Figure 4). The color of these symbols indicates the 

network. Warm colors are used to indicate higher-order cognitive networks—namely orange 

for EI1–4 and red for DMN, SPP, FPL, and FPR—while different shades of green is used to 

indicate somatosensory networks—dark green for VS1–3, green for MV1–4 and olive for 

AUD. Visual networks are characterized by higher average effect size than the rest of the 
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networks. This higher effect size comes accompanied by higher across-day (Fig 3.A) and 

across-run (Fig. 3.C), but not across-block (Fig. 3.E) variance, compared to all other 

networks. Once visual networks are excluded, no significant linear relationship between 

effect size and any of the variance components was found (Fig. 3.B, D and F; pBonf>0.05 for 

all three attempted linear fits).

Next, we generated maps (Figure 4; Supplementary Figure 5) with voxels colored according 

to which is the second largest variance contributor (i.e., other than σ2
err). In all subjects, 

(red) dominates across the majority of significantly active grey matter, with the exception of 

occipital cortex, where  (green) dominates. This confirms the network-based results 

of Figure 2 at the voxel-wise level.

We also conducted a series of pair-wise variance component comparisons using three 

different variance ratios: σ2
session/ σ2

run (Figure 5); σ2
run / σ2

block (Figure 6); and σ2
session / 

σ2
block (Figure 7). Figures 5–7 contain voxel-wise maps of the above-mentioned ratios, as 

well as per-network percentages of voxels where the ratio is greater than one (i.e., the 

variance on the numerator is the largest) or less then one (i.e., the variance in the 

denominator is the largest).

When comparing  to  via their ratio, we observe once more how σ2
session only 

dominates over σ2
run in early visual networks/occipital cortex (Figure 5.A). The same is true 

in terms of within-networks voxel counts. Only for VS2 and VS3 the number of voxels with 

σ2
session/ σ2

run > 1 account for more than 50% of voxels in the network (red dashed 

rectangle). Results for the other two subjects can be seen in Supplementary Figure 6.

Similarly, in Figure 6 (see Supplementary Figure 8 for the other subjects) we can observe 

how, when σ2
run and σ2

block are compared directly to each other, σ2
run dominates over 

σ2
block in the majority of the brain. This is confirmed in the network-wise analysis for the 

σ2
run / σ2

block ratio, which shows how, for all networks, voxels with a ratio greater than one 

account for the majority of within-network voxels.

Perhaps, the most interesting pair-wise comparison is that of σ2
session versus σ2

block (Figure 

7; Supplementary Figure 10). While σ2
session dominates over σ2

block across most brain 

regions, in all subjects, we can observe how σ2
block exceeds σ2

session in several subcortical 

regions, as well as nodes of the default mode network. For the particular instance of subject 

3, σ2
block exceeds σ2

session also in several frontal locations. The network-wise analysis of the 

σ2
session/σ2

block ratio revealed a reproducible pattern across subjects in which somatosensory 

networks (i.e., VS1–3, MV1–4 and AUD) contain predominantly voxels where σ2
session 

exceeds σ2
block, while higher-order cognitive networks contain relatively larger proportions 

of voxels with σ2
block/σ2

session > 1 (red dashed rectangles). In some instances, such as 

network EI2 in subject 1, networks EI1, EI3 and EI4 for subject 2, and networks EI1–4, 

DMN, FPR and FPL for subject 3, voxels where σ2
block exceeds σ2

session account for more 

than half of the network.

Figure 8 shows individual averaged BOLD responses across all blocks and all significantly 

active grey matter voxels inside each network of interest. All networks, with the exception of 
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FPL and SPP, show responses that follow, to different degrees, a sustained pattern of either 

positive or negative activity. Although networks show different, and in some cases 

prominent, deviations from the canonical expected response, it is not always the case that 

networks with the largest contribution of σ2
block (Figure 2) are the ones that are a worse fit 

for the canonical response. For example, subject 1 DMN and EI2, subject 2 EI3, and subject 

3 DMN and EI4—all of which are networks with prominent σ2
block contributions—; follow 

the canonical model better than subject 1 VS1, subject 2 SPP and VS1, and subject 3 MV4

—which have almost no contribution from σ2
block (Figure 2).

Finally, to evaluate the influence of TSNR on the results, we computed average TSNR 

values per network in all three subjects. Figure 9 shows the results of these analyses as bar 

plots. For each subject, networks are sorted by TSNR in descending order. For all subjects, 

higher-order cognitive networks (white bars) appear interleaved with somatosensory 

networks (dark-grey bars), suggesting there is not a clear relationship between TSNR and 

dominance of σ2
block over σ2

session.

DISCUSSION

Variance of fMRI activity estimates is commonly decomposed into three random terms: 

measurement/modeling error, within-subject variance, and between-subject variance. 

Additional terms, such as between-site, may be added in studies that combine data across 

imaging centers (Sutton et al., 2008; Yendiki et al., 2010). Yet, a more accurate model is one 

that further subdivides within-subject variance into its three primary contributors: across-

blocks (σ2
block), across-runs (σ2

run) and across-sessions (σ2
session). Such finer model is 

difficult to estimate in practice because studies lack sufficient repeated within-subject 

measures under stable conditions (i.e., same task). One exception is the task-based dataset 

studied here. The large number of available intra-subject trials permitted us to segregate 

contributions due to measurement/modeling errors (σ2
err) from those due to sessions, runs 

and blocks; and discover how these last three components (i.e., σ2
session, σ2

run, σ2
block) have 

distinct spatially inhomogeneous distributions. And more specifically, how they contribute 

differently to the within-subject variance of somatosensory and higher-order cognitive 

networks.

Measurement/Modeling Error Variance dominates across the brain

For all subjects, measurement/modeling error (σ2
err) was the largest contributor to within-

subject variance across the brain (Figure 2). This was the case even after separating the 

effects of sessions, runs and blocks. Several prior studies have reported σ2
err to be the largest 

variance contributor in fMRI (Friedman et al., 2006; Suckling et al., 2008) yet these 

previous accounts pooled variance across blocks and runs as part of the residual variance. 

Our results confirm that even when these contributions are properly segregated, σ2
err 

remains the greatest source of within-subject variance across repeated measures.

Measurement error estimates include, in addition to random error, unexplained variance due 

to inaccurate modeling of expected responses. Hemodynamic responses are known to vary 

regionally within subject (Handwerker et al., 2004), yet few studies account for this 

variability. Moreover, they can have different relationships to task timing across the cortex 
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(Gonzalez-Castillo et al., 2015, 2012; Uludağ, 2008), yet those are also commonly ignored. 

Given the prominent contribution of σ2
err to within-subject variance everywhere in the brain, 

it follows that most substantial reductions in within-subject variance may result from 

additional efforts to account for inter-regional hemodynamic variability, as well as modeling 

of additional task components (e.g., transients at blocks onset and offsets).

More generally, this result ultimately underscores the limitations of mass univariate General 

Linear Model (GLM) analyses for single-subject fMRI, which not only rely on spatial 

homogeneity of hemodynamic responses, but also on additional strong assumptions of 

linearity, including that of pure-insertion of cognitive processes when defining contrasts of 

interest (please see (Friston et al., 1996; Sartori and Umiltà, 2000) for a discussion on this 

particular topic). It may be that substantial reductions in σ2
err at the single-subject level may 

only be obtained via alternative multivariate data-driven analytical methods, such as 

Independent Component Analysis (Calhoun et al., 2001) or Self Organizing Maps (Katwal et 

al., 2013) that rely on a less stringent set of underlying assumptions about the data. Any such 

efforts may be vital to the success of longitudinal single-subject examinations with fMRI.

Most fMRI group analyses are conducted taking only into account individual effect size 

estimates, but no σ2
err estimates, despite the availability of models and software(Chen et al., 

2012)that can compute group-level statistics using both pieces of information. The 

prominence and spatial heterogeneity of σ2
err as a contributor to within-subject variance 

reported here suggests that wider adoption of these advanced group level analytical methods 

may substantially improve group study results, as they can account for the inter-subject and 

inter-regional variability described here.

Across-session and across-runs contribute most prominently to visual networks

Across-session and across-run variances contributed approximately half of within-subject 

variance to the three visual networks (VS1: 41 ± 6%, VS2: 54 ± 3%, VS3: 47 ± 5%), while 

their joint average contribution across all other networks was approximately one forth (25 

± 4 %). Moreover, across-session variance appeared to dominate over across-run variance in 

the majority of occipital cortex (Figure 4; Supplementary Figure 5). Different factors may 

have caused the elevated contribution of these two “longer-term” variance components.

First, visual networks had the strongest average response of all networks, which is expected 

for the task under examination. When response strength was plotted against different 

variance components, a clear relationship between response strength and across-session and 

across-run variance was observed (Figure 3.A, C) for visual networks, but not for across-

block (Figure 3.E). This suggests that, to a given extent, larger values of across-session and 

across-run variance in visual networks are the result of larger responses in these regions.

Second, a potentially lower σ2
err in absolute terms for the VS1–3 networks, relative to the 

rest of the brain, could render the relative contributions of any remaining sources of variance 

(e.g., σ2
session) to appear disproportionally larger in these networks. Examination of absolute 

σ2
err values (not shown) did not support this possibility. Moreover, hemodynamic responses 

(Figure 8) and TSNR results (Figure 9) for these networks also neglect it. Not all visual 

networks, and most particularly network VS1 in subjects 1 and 2, are either among the top 

Gonzalez-Castillo et al. Page 11

Neuroimage. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TSNR networks or present hemodynamic responses that fit canonical standard sustained 

responses better than else in the brain; both of which could lead to a lower σ2
err for these 

regions.

Third, it is possible that estimated responses in visual cortex do indeed present lower 

stability across repeated measures, especially across-sessions, relative to other regions. 

Factors previously shown to modulate occipital cortex responses to visual stimuli include: 

caffeine (Liu et al., 2004), attention(Jäncke et al., 1999; Specht et al., 2003), luminance 

(Liang et al., 2013), unstable fixation (Merriam et al., 2013), and even competing auditory 

stimulation, such as scanner noise (Zhang et al., 2005). None of these factors were 

appropriately controlled during the experiments (e.g., screen/mirror positioning may have 

varied across sessions resulting in differences in luminance (Strasburger et al., 2002)), and 

therefore they should be considered likely contributors to across-session, and in some 

instances, also across-run variance in visual regions. Yet, many of these factors are known to 

also modulate activity outside visual regions. It is therefore not easy to discern whether 

observed elevated contributions of across-session and across-run variance in visual networks 

are the result of different contributing factors affecting different regions (e.g., factor A adds 

variance across-sessions in VS1 but not the DMN), inter-regional differences in contribution 

levels of the same factor (e.g., factor A affects activity levels to a larger extent in VS1 than 

in DMN), or a combination of both.

Finally, the elevated within-subject across-session variance in visual regions reported here 

for a task-based dataset is in agreement with the results from two separate high-N 
(Nsessions=158 and Nsessions=84 respectively) within-subject longitudinal evaluations of 

connectivity using resting-state scans (Choe et al., 2015; Poldrack et al., 2015). In both of 

these studies, visual networks were reported to be among those with the greatest degree of 

within-subject variability across sessions. This suggests that visual regions are characterized 

by high across-session within-subject variability independently of whether or not these 

regions are being driven by external task demands.

Across-blocks variance contributed more prominently to higher-order cognitive networks

Across-block variance was the smallest contributor of variance to all networks in all subjects 

(Figure 2). This is not surprising given the closer temporal proximity of items contributing to 

this variance (seconds to a few minutes apart) relative to the other two “longer-term” 

variance components (i.e., σ2
session and σ2

run). Moreover, given that physiological noise 

corrections are performed on a run-by-run basis, within-run blocks can be expected to have 

residual levels of physiological noise that are more similar than different runs do (e.g., due 

to differences in quality of physiological recordings across runs). Similarly, there is a higher 

probability of substantially larger head repositioning between than within runs (average 

within-run maximum volume-to-volume displacement=0.42±0.23; average within-day 

across-run displacement=1.15±0.92); making differences in geometric distortions a potential 

lower contributor to σ2
block as well. For all subjects, spatial maps for the different variance 

components (Figure 1, Supp. Figures 1 and 2) confirm these hypotheticals as they show how 

σ2
block is smaller than σ2

block or σ2
block at the edges of the brain, ventricles and near 

prominent vascular structures.
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Voxel-wise maps of σ2
session/σ2

block (Figure 7) tentatively indicate a greater contribution of 

σ2
block to regions embedded in higher-order cognitive networks, particularly in subcortical 

regions (all subjects) and components of the default mode network (subjects 1 and 3). Yet, 

the unsmoothed and noisy profile of these voxel-wise maps make ascertaining any clear 

inferences difficult. A sharper picture emerges when analyses are conducted at the network-

level. Despite the low contribution of σ2
block to within-subject variance for all networks, we 

were able to detect an interesting trend across all subjects, namely that across-block variance 

contributes more to total within-subject variance in higher-order cognitive networks (4.0 

± 1.8%) than in somatosensory networks (0.6 ± 0.9 %). Moreover, for a subset of those 

higher-order cognitive networks (more specifically those labeled EI1–4), voxels with σ2
block 

> σ2
session accounted for approximately half of intranetwork significantly active grey matter 

voxels (Figure 7; Subject 1: 51.5 ± 13.9 %, Subject 2: 53.2 ± 6.7%, Subject 3: 66.9 ± 10.3). 

In two subjects, this behavior also extended to the DMN. Laird and colleagues (2011) 

originally described the networks labeled here EI1–4 as being strongly related to a collective 

range of emotional, interoceptive and autonomic processes. In the same study, the network 

labeled as DMN was associated with theory of mind and social cognition tasks, when 

contrasted against the BrainMap database. Although all these cognitive processes are to a 

large extent tangential to our task (e.g., our task had no emotional or social content), 

significant responses, both positive and negative, were detected when sufficient CNR was 

available. It is possible that high across-block variability for these regions is a consequence 

of such a loose relationship between our task processing requirements and what are thought 

to be the main functional roles of these regions. Moreover, in our original study we stated 

that the detection of brain-wide activations in fMRI (when CNR is sufficiently high) poses a 

very difficult question: “…if a task-driven BOLD response is triggered across the whole 
brain, how does one differentiate between BOLD responses from regions critical for 
handling the task, versus regions that are not?” It is possible that detailed variance analysis 

such as the ones reported here may help answer this question if for example regions not 

essential to task performance were to be reliably and distinctly characterized by across-block 

variance that exceeds across-session variance. We hope future work can help test the validity 

of this speculative, yet potentially powerful, notion.

Factors contributing to natural within-subject variance

Potential sources of longitudinal within-subject variance in fMRI recordings include, but are 

not limited to: habituation effects (Hamid et al., 2015), strategy shifts/practice effects (Kelly 

and Garavan, 2005), fatigue, lapses of attention, caffeine (Koppelstaetter and Poeppel, 2010; 

Liu et al., 2004), nicotine (Warbrick et al., 2012, 2011), time-of-day (Gaggioni et al., 2014; 

Schmidt et al., 2015), aging (Cliff et al., 2013; Koch et al., 2010), residual levels of 

physiological noise(Birn, 2012), distinct geometric distortions across sessions (Raemaekers 

et al., 2012), or progression of clinical conditions. As our understanding of natural within-

subject variability in both neuronal and fMRI responses improves, additional factors may 

need to be added to this list.

Although it is difficult to conclusively evaluate the potential contribution of all these sources 

to our variance decomposition, several factors can be ruled unlikely given the experimental 

tasks and procedures. The dataset reported here was collected over a time span of 
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approximately 3 months in healthy young individuals. Therefore, aging, cognitive decline 

and disease can be excluded with a high degree of confidence. Practice effects are also 

unlikely given the simplicity of the task and the consistently high performance revealed by 

concurrent behavioral metrics (above 95% accuracy; see (Gonzalez-Castillo et al., 2012) for 

additional details.). Similarly, evaluation of average positive response levels in VS3 

(Supplementary Figure 11), which includes primary visual cortex, did not show any clear 

pattern of habituation across sessions (i.e., monotonous decrease in activation as days 

progresses), making this factor also an improbable contributor of variance. Regarding time-

of-day effects, although all scans were not always conducted at the same time, 86% of scans 

happened in the afternoon between noon and 6pm, with the remaining happening at later 

hours of the day (never concluding after 10pm). As such, time-of-day effects might be 

considered negligible. Finally, only one subject reported to be a smoker. Given that similar 

levels of variability were observed in all participants, levels of nicotine consumption can 

also be thought as an unlikely contributor to within-subject variance here.

Other factors such as fatigue, variable attention, caffeine, residual misalignment and 

physiological noise are more likely to be among the strongest contributors to observed 

variance here. Caffeine has been shown to significantly affect the shape and duration of 

hemodynamic responses in visual cortex using a stimulus of very similar characteristics to 

ours(Liu et al., 2004). Given that we did not control for caffeine consumption in the hours 

preceding each scanning session, it is possible that caffeine levels may have been a 

contributing factor here. Regarding residual physiological noise and misalignment, our data 

suggest that these have also contributed to the results, despite our best efforts at accounting 

for them during pre-processing. Spatial maps of within-subject variance (Figure 1, Suppl. 

Figures 1 and 2) show large contributions from σ2
session and σ2

run both in the edges of the 

brain—signaling residual motion or misalignment—as well as in the ventricles and large 

vascular structures (e.g., Circle of Willis), which suggests contributions from residual 

physiological noise. Finally, the experimenters visually confirmed the presence of clear 

positively sustained activation in primary visual cortex for all 1500 blocks. Such visual 

confirmation, combined with the high accuracy reported for the letter/number discrimination 

task, suggests that subjects attended to the stimuli and were compliant with the task in all 

instances. Yet, it does not preclude fatigue, shifts in motivation and short attention lapses to 

have contributed variance to the data. This is particularly true considering the highly 

repetitive and monotonous nature of our task.

A better characterization of contributing variance could be obtained if per-session 

phenotypic information, such as in (Poldrack et al., 2015) were available. Unfortunately that 

is not the case for the dataset studied here. Several institutions have started, or are currently 

in the process, of collecting large publicly available fMRI dataset, yet the focus is mainly on 

resting-state and large samples of subjects (Essen et al., 2012; Yan et al., 2013). While these 

datasets are an invaluable asset in our quest for uncovering fundamental principles of the 

structural and functional organization of the human brain, they are limited when it comes to 

obtaining a better understanding of natural—i.e., to be expected in the absence of any 

clinical development—within-subject variability of fMRI responses to task and its 

contributing sources. We believe that the parallel acquisition and publication of highly-

sampled, multi-task, single-subject fMRI datasets annotated with phenotype-wide session 
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specific information may be an equally valuable contribution to our understanding of the 

brain. Such datasets will provide new insights into the brain’s natural variability in response 

to external stimulation and cognitive challenges. Moreover, in a time when many fMRI 

groups are turning their attention from studying commonalities in activity and connectivity 

patterns across pseudo-homogenous populations (e.g., healthy adults, autism, etc.) to finding 

optimal ways to capture those aspects of fMRI that are unique to each subject (Finn et al., 

2015; Laumann et al., 2015; Poldrack et al., 2015), getting such a detailed understanding of 

within-subject natural variability is a fundamental step. Finally, such a dataset can also help 

inform the future development of fMRI clinical protocols. Although, many scientists and 

clinicians alike foresee resting-state as the primary paradigm for clinical fMRI (Khanna et 

al., 2015; Shimony et al., 2009), task-based fMRI is also clinically relevant, as clearly 

evidenced by its inclusion in many existing pre-surgical protocols (Hirsch et al., 2000; 

Stippich et al., 2007). Low test-retest reliability is often cited as a reason why fMRI has not 

been widely adopted in clinical practice (Stevens et al., 2016). Understanding and modeling 

naturally occurring, clinically irrelevant within- and between-subject variance is key to 

improving its reproducibility, and with it, its suitability for the clinic.

Limitations of the study

In our original analyses of this dataset we focused on the commonalities of responses across 

all blocks and discovered that small, yet meaningful, responses could be found in the 

majority of the brain. Here, we focused on the differences and attempted a within-subject 

variance decomposition analysis. Yet, some of the original limitations remain. First, despite 

having a larger-than-usual number of samples per subject, we have a very limited set of 

subjects. Although our conclusions are based only on those patterns of variance that were 

consistent across all subjects, the sample remains too small to make any generalizations or 

perform adequate statistical analysis to support more specific conclusions. Second, all 

subjects performed the same experimental task, precluding any evaluation of generalization 

of observations to other tasks (Plichta et al., 2012). Future studies with tasks targeting other 

sensory and cognitive systems will help elucidate if the spatial patterns of variance reported 

here are generalizable across tasks—and therefore represent fundamental principles of how 

components of within-subject variance appear in the brain—or if they are task-dependent 

(e.g., should higher-order cognitive networks be always expected to have higher across-

block natural variability in their responses given their putative roles, or can such variability 

be modulated by task demands?). Third, analyses reported here focused solely on response 

estimates obtained using a single sustained canonical response model; despite evidence that 

responses with different temporal profiles (e.g., onset/offset only responses) are present 

(Gonzalez-Castillo et al. 2012). The use of more versatile models that allow for additional 

response types will affect variance components estimates (e.g., measurement error should 

decrease), and in turn may affect the relative contributions reported here. We focused here 

on sustained responses because these are the ones commonly reported in the literature for 

block design experiments. Additional analyses should evaluate the effect of modeling 

decisions on the within-subject variance decompositions reported here. It is also worth 

mentioning that the 40s off periods used in the present study are not the most common 

practice in block-designs, and that it is possible that offset durations may modulate observed 

variability patterns. Fourth, our analyses focus solely on the decomposition of variance for 
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effect size estimates. Additional analyses should evaluate if variance decomposes equally for 

other activity summary metrics such as activation extent, activation overlap, etc. Fifth, all 

sessions were acquired within a period of three months. It is possible that if data were 

acquired over longer periods the contribution of across-sessions variance may increase. 

Longer longitudinal evaluations will be needed to answer this limitation.

Previous studies that have evaluated the temporal evolution of within-subject variance for 

connectivity estimates at different temporal scales have found meaningful, spatially 

inhomogeneous, non-artifactual dynamic changes(Choe et al., 2015; Gonzalez-Castillo et 

al., 2014; et al., 2015) that help inform the analysis and interpretation of longitudinal single-

subject resting fMRI studies. Similarly, understanding the relative contributions of blocks, 

runs and sessions to within-subject variance can guide how to best combine and interpret 

longitudinal single-subject task-based results. It can also help optimize protocols and data 

acquisition for longitudinal studies, both for clinical and research purposes. We believe that 

despite the limitations cited above, the exploratory analyses reported here constitute a first 

step in that direction and will instigate working hypotheses for future more detailed 

evaluations of natural within-subject variability of fMRI responses.

CONCLUSIONS

Within-subject variance for effect size estimates of activity was decomposed in four nested 

components: across-sessions, across-runs within sessions, across-blocks within runs within 

sessions, and residual variance. Exploration of the contribution of these variance 

components to sixteen brain networks provided new insights on how individual subject 

variance is distributed spatially across the brain and temporally across these primary 

experimental units (i.e., blocks, runs, sessions and error). In particular, we showed that 

measurement error is the dominant source of within-subject variance across the brain even 

when variance across-blocks, runs and sessions are properly accounted for. Next, we showed 

that the second dominant source of variance for visual regions is across-sessions variance, 

while for the rest of the brain it was across-runs variance. Finally, we showed how across-

block variance is a larger contributor of naturally occurring within-subject variance in high-

order cognitive networks relative to that of somatosensory networks. These results suggest 

that efforts to minimize within-subject variability of activity estimates in single-subject 

examinations should focus primarily on reducing measurement error (e.g., use of more 

accurate response models that account for spatial and temporal heterogeneity of 

hemodynamic responses). In addition, the elevated contribution of across-block variance to 

higher-order cognitive networks suggests that these networks respond in a less reliable 

manner across blocks relative to primary somatosensory networks (at least within the 

context of the current task). As such, stable characterization of higher-order cognitive 

regions in individual subjects (e.g., for longitudinal and or clinical purposes) will require 

more samples than that of primary somatosensory regions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Within-subject variance in activity estimates was decomposed in four 

elements: across-sessions, across-runs, across-blocks and measurement error.

• Measurement error is the dominant source of within-subject variance across 

the brain.

• Across-session variance was the second highest contributor in occipital 

cortex, while across-runs variance was for most other regions.

• Across-block variance can exceed across-session variance in higher-order 

cognitive networks.
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Figure 1. 
Spatial Maps for Variance for a representative subject. (A) Total variance across the 500 

estimates of effect size. (B) Variance across days. (C) Variance across runs within days. (D) 

Variance across blocks within runs and days. (E) Residual measurement/modeling error 

variance.
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Figure 2. 
Pie charts of median per-network contributions of the different variance components to total 

within-subject variance. (A) Subject 1. (B) Subject 2. (C) Subject 3. In all panels, 

somatosensory networks are depicted on the top row, and higher-order cognitive networks on 

the bottom row. When a component contributes less than 1%, a wedge for that component is 

absent. Color codes: σ2
session in green; σ2

run in red, σ2
block in blue, and σ2

err in white.
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Figure 3. 
Scatter plots of per-network median variance components against per-network absolute 

value of median effect size. (A, B) Across-session variance vs. effect size. (C, D) Across-run 

variance vs. effect size. (E, F) Across-block variance vs. effect size. Top panels (A, C, E) 

include all networks and subjects. Bottom panels (B, D, F) show the same information after 

excluding visual networks (VS1–3). In all panels, data points corresponding to subject 1 are 

depicted as circles, subject 2 as diamonds and subject 3 as squares. The color of these 

symbols indicates the type of network. Somato-sensory networks are depicted with different 

shades of green: dark green for visual networks (VS1–3), light green for motor-visual 

networks (MV1–4), and olive for auditory network (AUD). Higher-order cognitive networks 

are depicted with warm colors: red for emotion/interoception networks (EI1–4); and orange 

for the remaining higher-order networks (DMN, FPR, FPL, and SPP). Linear fitting 

attempts, none of which rendered significant at pBonf<0.05, are shown as dashed black lines.
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Figure 4. 

Maps of largest variance component (excluding ) for the three subjects under evaluation. 

Green signal voxels where  was the largest. Red signal voxels where  was the 

largest. Finally, blue signal voxels were  was the largest. Maps are restricted to 

significantly grey matter active voxels.
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Figure 5. 

(A) Maps of the voxel-wise  ratio for a representative subject (Subject 1). Cold 

colors signal voxel where σ2session < σ2run, while hot colors signal voxels where 

. (B) Percentage of within-network voxels where each of the variance 

dominates (i.e., ratio is above or below one) for the same subject. A small depiction of the 

original network definition in Laird et al. (2011) accompanies each bar graph for reference. 

Results for the other two subjects in Supplementary Figure 6. In addition, the results of the 

same analyses when all significantly active voxels are taken into account are reported in 

Supplementary Figure 7.
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Figure 6. 
(A) Maps of the voxel-wise σ2run / σ2block ratio for a representative subject (Subject 1). 

Cold colors signal voxel where σ2run < σ2block, while hot colors signal voxels where 

σ2run > σ2block. (B) Percentage of within-network voxels where each of the variance 

dominates (i.e., ratio is above or below one) for the same subject. A small depiction of the 

original network definition in Laird et al. (2011) accompanies each bar graph for reference. 

Results for the other two subjects in Supplementary Figure 8. In addition, the results of the 

same analyses when all significantly active voxels are taken into account are reported in 

Supplementary Figure 9.
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Figure 7. 

Maps of voxel-wise  ratios for all three subject. (A) Subject 1. (B) Subject 2. 

(C) Subject 3. For all subjects, on the top we show spatial maps of the voxel-wise ratio of 

interest. Cold colors signal voxel where , while hot colors signal voxels where 

. Below the maps, there are 16 bar plots per subject showing the percentage of 

voxels for which the ratio is greater and lower than one. Each bar plot corresponds to a 

different network.
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Figure 8. 
Average block-wise responses across significantly active voxels in the sixteen networks of 

interest for all three subjects. (A) Subject 1. (B) Subject 2. (C) Subject 3. Each experimental 

block lasted 60 s, of which the initial 20 s (marked in cyan) corresponds to the active part of 

the block. In all plots, the average response is depicted with a continuous black line, while 

the standard error across these averages is shown as dotted traces.
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Figure 9. 
Average Temporal Signal-to-Noise Ratio (TSNR) for all networks in each of the subjects. 

(A) Subject 1. (B) Subject 2. (C) Subject 3. For each subject networks are sorted by TSNR 

in descending order. TSNR for somatosensory networks are depicted as white bars. TSNR 

for higher-order cognitive networks as dark grey.
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Table 1

Summary of Networks

Original Network ID (Laird et al., 2011) New Network ID Description

1 EI4 Emotion/Interoception Network #4

2 EI3 Emotion/Interoception Network #3

3 EI2 Emotion/Interoception Network #2

4 EI1 Emotion/Interoception Network #1

6 MV1 Motor/Visuospatial Network #1

7 MV2 Motor/Visuospatial Network #2

8 MV3 Motor/Visuospatial Network #3

9 MV4 Motor/Visuospatial Network #4

10 VS1 Visual Network #1

11 VS2 Visual Network #2

12 VS3 Visual Network #3

13 DMN Default Mode Network

15 FPR Right Fronto-Parietal Network

16 AUD Auditory Network

17 SPP Speech Production Network

18 FPL Left Fronto-Parietal Network
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