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evaluated eight approaches for selecting genes for POD 
derivation and three previously proposed approaches (the 
lowest pathway BMD, and the mean and median BMD of 
all genes). The relationship between transcriptional BMDs 
derived using these 11 approaches and PODs derived from 
apical data that might be used in chemical risk assess-
ment was examined. Transcriptional BMD values for all 
11 approaches were remarkably aligned with correspond-
ing apical PODs, with the vast majority of toxicogenom-
ics PODs being within tenfold of those derived from api-
cal endpoints. We identified at least four approaches that 
produce BMDs that are effective estimates of apical PODs 
across multiple sampling time points. Our results support 
that a variety of approaches can be used to derive repro-
ducible transcriptional PODs that are consistent with 
PODs produced from traditional methods for chemical risk 
assessment.

Keywords  Transcriptomics · Point of departure · Risk 
assessment · Toxicogenomics · Microarray · NOAEL · 
LOAEL · BMD · BMDL

Introduction

Animal-based toxicity testing is expensive, time-consum-
ing, and requires large numbers of animals. For example, 
the National Toxicology Program (NTP) estimates that a 
rodent cancer bioassay requires 860 animals, $2–$4 mil-
lion, and 5 years to plan, conduct, and evaluate. As a result, 
the NTP has generally only conducted an average of 12 
cancer bioassays/year since this program was launched in 
the 1970s. Further, due to the need for animal-based toxic-
ity data for hazard identification and dose–response analy-
sis for many chemicals requiring risk assessment, the US 
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apical endpoint changes, there is no consensus on the pro-
cess used to derive a transcriptional POD. Specifically, 
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microarray data from dose–response studies on six chemi-
cals in rats exposed orally for 5, 14, 28, and 90 days. We 
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Environmental Protection Agency’s (EPA) Integrated Risk 
Information System (IRIS) has only evaluated 570 chemi-
cals since the EPA created the IRIS program (1985) up 
until March, 2016 (http://www.epa.gov/iris). In Canada, an 
important challenge is the requirement to assess the poten-
tial for risk to human health of a large number of existing 
chemicals in a short timeframe. Specifically, the Govern-
ment of Canada, under the Chemicals Management Plan 
launched in 2006, has a commitment to address 4300 exist-
ing substances identified as priorities by 2020; many of 
these substances have a paucity of traditional toxicology 
data (Barton-Maclaren et al. 2016). Traditional whole ani-
mal testing is not feasible for the regulatory testing of all 
chemicals requiring evaluation; hence, there has been an 
increase in the need for, and application of, non-traditional 
tools and approaches to support decision-making as the 
program progresses.

In light of the tens of thousands of chemicals in com-
merce, and the thousands of new chemicals being devel-
oped annually, an urgent need to shift from these con-
ventional toxicology tests toward higher throughput 
mechanistic and quantitative approaches has been identi-
fied (Committee on Toxicity Testing and Assessment of 
Environmental Agents 2007; Council of Canadian Acad-
emies 2016; Firestone et al. 2010; NRC 2009, 2010). Mul-
tiple alternative approaches have been proposed to improve 
and expedite chemical testing, including the application of 
toxicogenomics, cell-based assays, high-throughput testing, 
and computational modeling. In particular, toxicogenom-
ics has been identified as important in the next generation 
of risk science (Chepelev et al. 2015a, b; Cote et al. 2016; 
Guyton et al. 2009; Krewski et al. 2014).

Alteration in mRNA expression following chemical 
exposure is one of the earliest quantifiable effects in a toxi-
cological response. Genomics technologies, such as DNA 
microarrays and RNA-sequencing (RNA-seq), measure 
global transcriptional changes in a tissue or cell type fol-
lowing chemical exposure. Abundant evidence indicates 
that changes in mRNA levels occur during chemical toxic-
ity and that characterizing these changes can provide mean-
ingful information for toxicological assessment (Thomas 
et al. 2001, 2013a). Analyzing mRNA expression changes 
in cells or tissues following toxicant exposure offers a new 
dimension to hazard and mode of action (MOA) iden-
tification, assessment of human and animal variability 
in response to chemicals, and estimation of the doses at 
which adverse non-cancer and cancer effects occur (Hester 
et al. 2015; Jackson et al. 2014; Labib et al. 2015; Moffat 
et al. 2015; Thomas et al. 2007, 2011, 2012; Webster et al. 
2015a). The use of transcriptomic data has been suggested 
for informing the MOA of a chemical as part of a weight 
of evidence in risk assessment (Bourdon-Lacombe et  al. 
2015; NRC 2007), and recently it has been proposed that 

quantitative transcriptomic data may be used to determine 
benchmark dose (BMD) to estimate a chemical’s point of 
departure (POD) (Moffat et al. 2015; Thomas et al. 2013b; 
Webster et al. 2015a).

Numerous studies have applied BMD modeling to ana-
lyze dose–response relationships for global gene expression 
data. These studies have found that transcriptional PODs 
are in agreement with PODs derived using apical endpoints 
(e.g., histology, organ weight, cancer, etc.) (Auerbach 
et al. 2015; Black et al. 2014; Bourdon et al. 2013; Dong 
et  al. 2015; Thomas et  al. 2007, 2013a, b; Webster et  al. 
2015a). For example, Thomas et al. (Thomas et al. 2013a, 
b) reported a high degree of correlation between transcrip-
tional BMD values for the ‘most sensitive pathway’ (i.e., 
the lowest median pathway BMD) and BMD values for 
apical endpoints in rodent dose–response experiments for 
six chemicals over a variety of exposure durations (5-, 14-, 
28-, and 90-day exposures). A study on mice exposed to 
the carcinogen furan for 3 weeks reported that the overall 
mean/median pathway BMD was consistent with hepato-
cellular adenoma and carcinoma BMDs from both DNA 
microarrays data and RNA-seq data (Webster et al. 2015a). 
It has also been demonstrated that BMDs for pathways 
associated with key events in a chemical’s MOA are good 
predictors of the doses at which associated adverse apical 
effects occur (Bhat et  al. 2013; Chepelev et  al. 2015a, b; 
Hester et al. 2015; Webster et al. 2015a). Overall, there is 
agreement that transcriptional BMDs representing defined 
groups of genes provide a potentially effective approach for 
establishing a POD, but there is no consensus on how the 
genes that are used should be selected (e.g., lowest pathway 
BMD, BMD from genes in a pathway that is associated 
with a key event in the chemical’s MOA, overall median/
mean transcriptional BMD, etc.) and what the repercus-
sions of different agencies applying different approaches 
might be on the ultimate PODs used in risk assessment. 
Thus, a thorough analysis of different methods for estimat-
ing a transcriptional BMD and recommendations for best 
practices are required before application of transcriptional 
PODs in human health risk assessment can be realized.

The primary purpose of this study was to expand on the 
previous work described above by systematically explor-
ing different approaches to selecting genes from transcrip-
tional data to derive a POD, and comparing these to PODs 
derived from apical endpoints within the same rodent 
models. To do this, we leveraged published Affymetrix 
microarray data on well-designed dose–response studies 
in rats with matching (derived from the same rats) apical 
data. BMDExpress (Yang et  al. 2007) was used to derive 
BMD and lower confidence limit benchmark dose (BMDL) 
values for gene expression. Eleven approaches to select 
groups of genes and molecular pathways that are relevant 
to a chemical’s toxicity were evaluated for derivation of a 
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transcriptional BMD that is representative of the chemical 
response (Table  1). Three of these approaches are based 
on methods proposed previously, including BMD mean or 
median of all responsive pathways, and the lowest pathway 
BMD (Thomas et  al. 2013a; Webster et  al. 2015a). These 
BMD(L) values were compared to the BMD(L)s for con-
ventional toxicology endpoints from the same animals, and 
to cancer bioassay results published elsewhere. Because 
MOA-determination is time-consuming, the present work 
focuses on approaches that can be applied for relatively 
rapid transcriptional POD derivation without MOA knowl-
edge; this provides an additional advantage for the applica-
tion of the approach for the assessment of substances with 
limited toxicity data. The overarching goal of this work 
is to advance the utility and application of transcriptional 
BMDs for use in human health risk assessment.

Materials and methods

The data used in this study were publicly available and 
were selected for use because they contain both transcrip-
tomic and matching apical endpoints across a variety 
of time points and across a dose-range spanning the no 
observed effects levels and the maximum tolerated doses. 
Thus, they provide an ideal dataset for this analysis. Details 
of the original experiment are described below.

Summary of experimental model and previously 
published work

Details of the study design, animal exposures, necropsy, 
histology, serum clinical chemistry, blood concentration of 

chemicals, and microarray methods were reported previ-
ously (Dodd et al. 2012a, b, c, d, 2013a, b; Thomas et al. 
2013a, b) (Fig. 1). In brief, (1) male Sprague–Dawley rats 
were administered 1,2,4-tribromobenzene (TBB; CAS No. 
615-54-3) at 0, 2.5, 5, 10, 25, or 75 mg/kg per day (mkd) 
by oral gavage; (2) male Fischer 344 (F344) rats were 
administered bromobenzene (BB; CAS No. 108-86-1) at 
0, 25, 100, 200, 300, or 400 mkd by oral gavage; (3) male 
Sprague–Dawley rats were administered 2,3,4,6-tetrachlo-
rophenol (TCP; CAS No. 58-90-2) at 0, 10, 25, 50, 100, 
or 200 mkd by oral gavage; (4) female F344 rats were 
exposed to 4,4′-methylenebis(N,N′-dimethyl)aniline (CAS 
number 101-61-1; MDA) in feed at six doses (0, 50, 200, 
375, 500, or 750 ppm); (5) female F344 rats were exposed 
to N-nitrosodiphenylamine (NDPA; CAS No. 86-30-6) by 
dietary feed at 0, 250, 1000, 2000, or 4000 ppm; and (6) 
female F344 rats were exposed to hydrazobenzene (HZB; 
CAS No. 122-66-7) by dietary feed at concentrations of 0, 
5, 20, 80, 200, or 300 ppm (Table 2). The selected rodent 
strain, sex, and route of exposure were those that showed 
the critical effect in the previous IRIS assessments for 
these chemicals. Feed or oral gavage concentrations were 
selected based on the doses used in the IRIS reviews. Rats 
were administered or fed the chemicals for 5, 14, 28, or 
90 days. Two hundred and forty-five 4- to 5-week old rats 
were used for each chemical (n = 10 per group). Clinical 
signs of toxicity, body weights, and food consumption of 
animals were checked daily. Necropsies were conducted 
at scheduled time points. Following gross examination 
for abnormalities, the target organs (target organs were 
selected based on previous studies of the test article) were 
removed, weighed, and prepared for histopathological 
assessment and gene expression microarray measurements. 

Fig. 1   Study method over-
view. White boxes show animal 
exposures, necropsies, histology 
and microarray procedures that 
were conducted in previous 
studies (Dodd et al. 2012a, b, 
c, d, 2013a, b; Thomas et al. 
2013a, b). Blue boxes represent 
procedures that were conducted 
in the current study (color figure 
online)
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For RNA analysis, target tissues were either flash fro-
zen (TBB, TCP, and HZB) or preserved in RNAlater (BB, 
MDA, and NDPA) at the time of necropsy. RNA isolated 
from the primary target tissues of six rats per dose per time 
point was analyzed using Affymetrix microarrays. Because 
all of the chemicals selected in this study had published 
toxicological data, target tissues were known in advance. 
Target tissues were liver (TBB, BB, TCP and HZB), thy-
roid (MDA), and bladder (NDPA). DNA microarray 
hybridization was performed for 16 h on HT Rat230 + PM 
microarrays. The complete microarray datasets were down-
loaded from the Gene Expression Omnibus (GEO) at the 
NCBI (Accession No. GSE45892).

Gene expression data were normalized using robust 
multi-array average (RMA) (Irizarry et al. 2003) and log2 
transformed.

Benchmark dose calculation

Because we are modeling both apical and transcriptional 
changes, to avoid confusion, we refer to a BMD derived 
from an apical endpoint as a BMDa, and from a transcrip-
tional endpoint as a BMDt throughout the manuscript. 
When both BMD and BMDL are discussed, BMD(L) is 
used. Unless otherwise stated, BMD(L)a values in the cur-
rent paper refer to non-cancer apical endpoints.

BMD analysis of apical effects (BMDa)

BMD(L)a values were modeled for apical endpoint meas-
urements [described in Dodd et al. (2012a, b, c, d, 2013a, 
b)] using the US EPA’s BMD Software (BMDS, version 
2.60) (Davis et  al. 2011) with BMDS Wizard (ICF inter-
national, version 1.1). The dose-dependent histological 
changes including hypertrophy, hyperplasia, necrosis, and 
vacuolation were fit as dichotomous data, and organ weight 
increases were fit as continuous data. All models specified 
in the BMD modeling guidelines (U.S. EPA 2012) were run 
for the appropriate data type (dichotomous data: Gamma, 
Dichotomous-Hill, Logistic, LogLogistic, Probit, LogPro-
bit, Weibull, and Multistage; continuous data: Exponential 

4, Exponential 5, Hill, Power, Polynomial, and Linear). 
The best-fitting model was selected based on adequacy of 
the fit of the model to the data using automated rules in 
BMDS wizard (U.S. EPA 2012). No manual interpretation 
of results was performed; BMD(L)a values were selected 
based on the program recommendation as described pre-
viously (Wignall et  al. 2014). The BMDS wizard catego-
rized fitted models into Viable, Questionable or Unusable. 
Only Viable model outputs were used in this study. If no 
model was Viable, the highest dose was removed and the 
models were re-run. If no model was Viable after removing 
the highest doses and only three doses remained (including 
control), the dose–response dataset was reported as having 
failed BMD modeling. For BMDa values that were higher 
than the highest dose, the BMD(L)a was not considered and 
“failed BMD modeling” was recorded.

The BMDa calculations for cancer are described in detail 
in a previous study (Thomas et al. 2013a). Briefly, cancer 
BMDa values for thyroid carcinoma/adenoma incidences, 
bladder carcinoma, and liver carcinomas for MDA, NDPA, 
and HZB, respectively, were calculated using BMDS 
software.

BMD analysis of transcriptional changes (BMDt)

BMDExpress was used for dose–response modeling and 
BMDt estimation for each gene (Yang et al. 2007). A sta-
tistical test was used as a pre-filter to identify genes that 
were significantly altered in at least one dose group rela-
tive to concurrent control rats (statistical test applied for 
each approach is described in Table  1 and described in 
more detail below). Subsequently, a best fit model (Hill, 
Power, Linear, Polynomial 2°, or Polynomial 3°) was 
identified for each gene based on: (1) a nested Chi-square 
test cutoff of 0.05 to choose between linear and polyno-
mial models; (2) the least complexity based on the Akaike 
Information Criterion (AIC) for the Linear, Polynomial, 
Hill, and Power models; and (3) a goodness-of-fit test p 
value >0.1. Other parameters included: power restricted 
to ≥1, maximum iterations of 250 (the convergence cri-
teria for the model fitting), confidence interval of 0.95, 

Table 2   Details on chemical treatments, rodent models, and target tissues

Chemical CAS number Doses Rodent model Target tissue

1,2,4-Tribromobenzene (TBB) 615-54-3 2.5, 5, 10, 25, and 75 mkd Male Sprague–Dawley rats Liver

Bromobenzene (BB) 108-86-1 25, 100, 200, 300, and 400 mkd Male F344 rats Liver

2,3,4,6-Tetrachlorophenol (TCP) 58-90-2 10, 25, 50, 100, and 200 mkd Male Sprague–Dawley rats Liver

4,4′-Methylenebis(N,N-dimethyl) ben-
zenamine (MDA)

101-61-1 50, 200, 375, 500, and 750 ppm Female F344 rats Thyroid

N-Nitrosodiphenylamine (NDPA) 86-30-6 250, 1000, 2000, 3000, and 4000 ppm Female F344 rats Bladder

Hydrazobenzene (HZB) 122-66-7 5, 20, 80, 200, and 300 ppm Male F344 rats Liver
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and benchmark response (BMR, the number of stand-
ard deviations at which the BMD is defined) set to 1.349 
(Yang et al. 2007). The Hill model was flagged if the “k” 
parameter was <1/3 of the lowest positive dose (Black 
et  al. 2012). In such cases, the next best model with a 
goodness-of-fit test p value >0.05 was selected. In the case 
where no model had a p value >0.05, probes that fit Hill 
models were considered and the lowest BMDt value (only 
BMDt derived from Hill models excluding flagged mod-
els) was multiplied by 0.5 for use in subsequent analyses. 
Using the built-in defined category analysis feature, probes 
with BMDts were mapped to Ingenuity Pathway Analysis 
(IPA) canonical pathways (downloaded on April 24, 2014). 
Promiscuous probes (probes annotated with more than 
one gene), as well as probes with BMDts higher than the 
highest dose and goodness-of-fit test p value <0.1, were 
removed.

Identification of differentially expressed genes

Differentially expressed genes (those with mRNA lev-
els that were significantly increased or decreased follow-
ing chemical exposure relative to concurrent controls) 
were identified using microarray analysis of variance 
(MAANOVA). This analysis was conducted in R (R Core 
Team 2015) using the MAANOVA library (Wu et  al. 
2003). The Fs statistic (Cui et  al. 2005) was used to test 
for treatment effects. The p values were estimated by the 
permutation method with residual shuffling followed by 
the false discovery rate (FDR) adjustment (Benjamini and 
Hochberg 2007). The fold-change estimates were deter-
mined using least-square means (Goodnight and Harvey 
1978; Searle et al. 1980).

Identification of perturbed pathways and upstream 
regulators

Ingenuity Pathway Analysis (IPA)

Gene expression data were analyzed using IPA (QIAGEN 
Redwood City, www.qiagen.com/ingenuity) to identify 
significant enrichment of genes in specific molecular path-
ways and to predict activated upstream regulators. IPA 
Core Analysis with a gene expression threshold of fold 
change ≥±1.5 and FDR p ≤ 0.05 was run, and enriched 
canonical pathways that were statistically significant 
(p ≤ 0.05) were selected. IPA calculates the p value using 
the right-tailed Fisher’s exact test. In this method, the p 
value for a given pathway is calculated by considering the 
number of differentially expressed genes (FC ≥±1.5 and 
FDR p ≤  0.05) that participate in that pathway and the 
total number of genes that are known to be associated with 
that pathway.

BMDExpress Data Viewer

Pathway enrichment analysis using the BMDExpress 
Data Viewer tools are described in detail elsewhere (Kuo 
et  al. 2015). Briefly, the datasets derived from BMDEx-
press were used in this analysis. The Affymetrix probe sets 
were first converted into unique genes (based on NCBI 
Entrez Gene ID). The output files (BMDt analyzed and 
IPA mapped files) were uploaded to the BMDExpress Data 
Viewer Functional Enrichment Analysis tool. This tool per-
forms enrichment analysis using a Fisher’s exact test. The 
Fisher’s exact test is identical to conventional pathway 
analysis (e.g., IPA), except it only applies the analysis to 
genes that passed the BMDt filtering criteria and have a 
BMDt. Thus, it explores pathway enrichment for genes that 
show a dose–response and are significantly increased in at 
least one dose group relative to controls. A list of signifi-
cant pathways (p < 0.05) for each dataset is obtained. Only 
pathways with four or more genes with BMDt values were 
considered.

Transcriptomic‑based approaches to predict POD

Eight novel approaches were explored to select and group 
genes for BMDt analysis (Approaches 1–8). The specific 
details of each approach are described in Table 1 along with 
a very brief rationale for why this approach was considered. 
The mean of the gene BMDts within the groups defined by 
these approaches was calculated. The correlation between 
the BMDts derived for each approach and the BMDa values 
(as well as no and lowest observable adverse effects lev-
els: NOAEL and LOAEL, respectively) was computed. We 
also used three approaches (Approaches 9–11) that have 
been used previously (Thomas et al. 2013a; Webster et al. 
2015b) to derive BMDts (details again provided in Table 1). 
The BMDts derived from each of the 11 approaches are 
presented and analyzed as potential PODs for application 
in risk assessment.

We note that previous approaches to derived tran-
scriptional BMDs have applied different statistical fil-
tering prior to BMD modeling, ranging from no statis-
tical filter to a conservative filter of FDR p ≤  0.05 and 
an unadjusted p ≤ 0.05. We previously showed that it is 
important to pre-filter global transcriptional data prior to 
BMDt modeling to reduce noise (Webster et  al. 2015a). 
Thus, we applied two analytical methods for pre-filtering 
data—MAANOVA FDR p  ≤  0.05 and ANOVA unad-
justed p ≤  0.05 (Table 1) to include both a conservative 
and liberal filter, respectively, in the present study. In 
Approaches 1, 2, 4, 5, 6, 7, and 8, microarray data were 
normalized using RMA, a MAANOVA was performed, 
and genes with FDR p values ≤0.05 and fold changes 
≥1.5 were imported into BMDExpress. In Approaches 

http://www.qiagen.com/ingenuity
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3, 9, 10, and 11, RMA normalized data were directly 
imported into BMDExpress and analyzed by ANOVA 
(retaining genes with p  <  0.05). The subsequent BMD-
Express analysis was similar for all approaches follow-
ing these pre-filtering steps (Table  1). For our analysis, 
a pathway was only assigned a BMDt if it had a mini-
mum of four genes with BMDs within that pathway. The 
approaches are also described in detail in Supplementary 
methods. The mean BMD for each gene with a BMD 
within a pathway was used to represent the BMDt for that 
pathway. BMDs derived from each approach represent the 
mean gene expression BMD for the following groups of 
genes:

•	 Approach 1—The 20 significantly enriched pathways 
with the lowest BMDts.

•	 Approach 2—The 20 most statistically significantly 
enriched pathways.

•	 Approach 3—The 20 lowest pathway BMDts.
•	 Approach 4—The 20 genes with the largest fold 

changes relative to controls.
•	 Approach 5—Genes with BMDts within the 25th–75th 

percentile.
•	 Approach 6—The 20 pathways with the greatest num-

ber of shared genes.
•	 Approach 7—The 20 genes that contribute to the 

greatest number of enriched pathways.
•	 Approach 8—The BMDs of genes that are regulated 

by the 20 most significant upstream regulators.
•	 Approach 9—The significantly enriched pathway with 

the lowest BMDt (i.e., most sensitive pathway).
•	 Approach 10—The mean of gene BMDs across all 

pathways.
•	 Approach 11—The median gene BMD across all path-

ways.

Estimating distributions for each approach

Distributions for the mean or median (Approach 11 only) 
BMDt for the 11 approaches were estimated using the 
bootstrap (Efron 1993). BMDt estimates for genes or 
for genes within pathways were randomly selected with 
replacement. For those approaches that employed path-
way information, the mean gene BMD was used to esti-
mate the pathway BMDt. To estimate the BMDt for each 
approach, the mean across pathways or the mean across 
genes was used for each bootstrap. A total of 2000 boot-
straps were used to approximate the distribution for each 
of the 11 approaches. The mean values were used as the 
transcriptional POD for each approach (except Approach 
11) in the subsequent analyses in the manuscript because 
the mean values had a lower variance than the median 
values.

Correlation analysis

Pearson’s correlations were estimated using the R statisti-
cal package. In this analysis, BMD and BMDL values in 
ppm were converted to milligrams per kilogram-day using 
strain-specific subchronic food intake factors (female F344 
rats 0.113 and male F344 0.1) calculated based on recom-
mended biological values from the EPA (1988). Linear asso-
ciations between the NOAEL, LOAEL, and the apical end-
point were visualized using scatterplots. The one-to-one line 
and the 95% confidence curves were also displayed for each 
approach. These results were visualized using scatterplots.

Likelihood ratio test

A likelihood test was used to test each approach to deter-
mine whether it was statistically significantly different from 
the 1:1 ideal line (the null model). The likelihood ratio sta-
tistic is the difference in the likelihood function under the 
alternative hypothesis and the likelihood function under the 
null hypothesis; this difference is then multiplied by 2. The 
likelihood statistic is distributed as a Chi-square distribu-
tion with the degrees of freedom equal to the difference in 
dimensionality of the parameter space under the alternative 
and null hypothesis. In this analysis, the degrees of freedom 
is 2. The null model was rejected if the p value was <0.05.

Three criteria for assessing approaches

We applied three criteria to assess the effectiveness of the 
approaches in identifying a relevant POD: (1) the mean 
ratio of the BMD(L)t derived from an approach should be 
less than threefold the apical POD; (2) significance of the 
Pearson’s correlation coefficient (p value) should be <0.05; 
and (3) the significance of the likelihood ratio test (p value) 
in deviating from the 1:1 slope should be >0.05.

Results and discussion

Apical data

BMD(L)a values were calculated for changes in target organ 
weight and histology (Table 3). For each chemical, the low-
est BMDa value for these apical endpoints within a time point 
and across all time points was determined (Figures S2, S3). 
Because we are not using these data for human health risk 
assessment, no additional considerations were made (e.g., the 
relevance of apical endpoint to human health, reversibility of 
effect, the impact of the allometric exponent). Generally, the 
BMDa values decreased over time. The lowest BMDa values 
were observed at 90 days for TBB, TCP, NDPA, and HZB, 
and 28 days for BB and MDA. The lowest BMDas across all 
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time points by our calculations were: 4.9 mkd for TBB (hepat-
ocyte hypertrophy), 1567 ppm for NDPA (diffuse transitional 
epithelial hyperplasia), 55 ppm for HZB (bile duct duplica-
tion), 47  mkd for BB (increase in absolute liver weight), 
4.5 mkd for TCP (hepatocyte hypertrophy), and 43 ppm for 
MDA (follicular cell hypertrophy). The lowest BMDas across 
all time points for TBB, NDPA, and HZB were similar to 
the NOAEL values (5 mkd, 1000, and 80 ppm, respectively) 
reported in previous studies (Dodd et  al. 2012b, d, 2013a). 
However, the BMDa values for BB, TCP, and MDA were 
approximately fourfold, twofold, and fourfold lower than 
NOAEL values (200, 10 mkd, and 200  ppm, respectively) 
(Dodd et al. 2012a, c, 2013b). We note that no histopathologi-
cal changes were observed for HZB at the 5-, 14-, and 28-day 
time points (Dodd et al. 2012b); thus, BMDa values were not 
calculated. We used BMDas as apical PODs, but also con-
sidered previously published NOAEL and LOAEL values. 
Although BMDas offer several advantages over NOAELs or 
LOAELs [e.g., less dependence on dose spacing, statistical 

criteria, and making full use of the information on the shape 
of the dose–response curve (EFSA 2009)], BMDa analyses 
also have some limitations. For example, severity of the effect 
observed in apical endpoints (e.g., histopathology observa-
tions in Dodd et al. papers were generally ranked 1, 2, 3, 4, 
or 5 representing a minimal, light/mild, moderate, moder-
ately severe, or severe/high incidence), which is an important 
factor for NOAEL and LOAEL, is not considered in BMDa 
derivation. Thus, we decided to compare BMDts derived from 
transcriptional data to NOAEL, LOAEL, as well as the lowest 
BMDa at the matched time point and the lowest BMDa over-
all of all of the apical data.

Genomics data

General characteristics

The number of significantly differentially expressed genes 
(FC ≥1.5 and FDR p ≤ 0.05) at each time point generally 

Table 3   BMD(L)a values for changes in organ weight and histological effects across different time points, along with NOAEL and LOAEL val-
ues

The POD values for TBB, BB, and TCP are in mg/kg and for MDA, NDPA, and HZB in ppm. The lowest apical responses for each time point 
and across all time points are shown in italics and bold fonts, respectively

NA not available: no finding, NC not calculated: no BMDa can be calculated; failed BMDa modeling; NC*: BMDa > the highest dose
a  Dodd et al. (2012d)
b  Dodd et al. (2013b)
c  Dodd et al. (2012a)
d  Dodd et al. (2012c)
e  Dodd et al. (2013a)
f  Dodd et al. (2012b)

Chemical Apical endpoint 5 days 14 days 28 days 90 days NOAEL* LOAEL*

TBB (mkd) Absolute liver weight 15 (7) 27 (21) 11 (5.9) 7.6 (4.3) 5a 10a

Hypertrophy 56 (24) 9.3 6.0 5.3 (2.6) 4.9 (2.6)

BB (mkd) Absolute liver weight 426 (368) NC 47 (26) 85 (65) 200b 300b

Hypertrophy 228 (197) 202 (160) 240 (194) 199 (177)

TCP (mkd) Absolute liver weight 92 (54) 17 (11) 36 (28) 7.4 (4.8) 10c 25c

Vacuolation NA 23 (15) 6.8 (1.5) 8.0 (6.5)

Hypertrophy 100 (82) 45 (29) 23 (14) 4.5 (1.0)

Necrosis, single cell 131 (64) 39 (19) 42 (34) 38 (21)

MDA (ppm) Absolute thyroid weight 294 (218) 328 (220) 218 (156) NC 200d 375d

Follicular cell hypertrophy 221 (137) 148 (47) 43 (12) 169 (63)

Follicular cell hyperplasia 719 (535) 228 (192) 49 (35) 189 (98)

NDPA (ppm) Absolute bladder weight 1841 (1460) NC 2058 (1673) NC 1000e 2000e

Increased mitosis 1980 (1568) 2879 (1638) 2581 (1900) NA

Diffuse transitional epithelial hyperplasia NA 3625 (2680) 1689 (1053) 1567 (971)

Increased necrosis epithelial cell NA 2559 (1529) 2876 (2414) 3838 (3017)

HZB (ppm) Absolute liver weight NC* NC* NC* NC* 80f 200f

Hypertrophy NA NA NA 151 (76)

Microvesiculation NA NA NA 199 (176)

Bile duct duplication NA NA NA 55 (37)
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increased in a dose-dependent manner, but did not appear 
to be time dependent (Table  4). Lists of differentially 
expressed genes and the BMD(L)t values in response to 
TBB, BB, TCP, MDA, NDPA, and HZB for all time points 
are shown in Tables S1–S24.

Visual inspection of the distributions of transcriptional 
and apical BMDs

Eight approaches to selecting gene and molecular path-
way BMDt s for derivation of a transcriptional POD were 

Table 4   Number of significantly differentially expressed genes (FC ≥1.5; FDR p ≤ 0.05) in rats following exposure to TBB, BB, TCP, MDA, 
NDPA, and HZB for the 5-, 14-, 28-, and 90-day time points

cd concentration dependent, td time dependent
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applied as well as three previously proposed approaches 
(approaches summarized in Table  1). The mean BMDts 
of genes and pathways for each approach were calculated 
(all gene BMDs available in Tables S1–S24; data avail-
able upon request for each approach in 43 supplementary 
tables).

Distributions of BMDts for each approach were visu-
alized by box and whisker plots (Figs.  2, S4). Figure  2 
includes horizontal colored lines to indicate the candidate 
POD values for apical endpoints that would be considered 
in a risk assessment, including the cancer BMDa (when 
available), NOAEL and LOAEL values for apical end-
points measured in the rodents in this study, and the lowest 
BMDas for these animals. Visual inspection of Fig. 2 sug-
gests a high degree of overlap in the BMDts and ranges for 
each of the approaches despite being drawn from, in many 
cases, very different gene lists. Approach 9 (the signifi-
cantly enriched pathway with the lowest BMDt) generally 
produces the lowest BMDts, but also appears to have the 
broadest interquartile ranges, suggesting a higher degree 
of variability and uncertainty in applying this approach. In 
contrast, Approaches 10 and 11 (mean and median of all 
pathways) yield BMDts that are somewhat higher (with 
tighter distributions), but are remarkably similar to the 
majority of the other approaches, despite representing the 
entire selection of pathway BMDts rather than the most sta-
tistically significant, or lowest BMDts. It was not possible 
to apply Approach 1 or 2 to HZB at the 5-day time point 
because there were no pathways that were significantly 
enriched in IPA, indicating a limitation of this approach. 
Approach 4, based on the 20 genes with the greatest fold 
changes, tended to have lower BMDts than the other 
approaches. We note that coefficient of variation (CV) val-
ues (Tables S25, S26) were below 0.2 for all approaches 
except 9, which indicates relatively low dispersion of data 
points around the mean BMDt of these approaches. Over-
all, visual inspection suggests that the majority of the 
approaches yield comparable BMDt values, within ten-
fold of the corresponding BMDa, that are largely consist-
ent with the various PODs derived from apical endpoint 
analysis. Below we explore the relationship of the BMDts 
derived in each of the approaches to BMDas in more detail.

Relationship between transcriptional and apical 
endpoint BMDs

The BMDts derived from each approach were divided 
by the POD values (NOAEL, LOAEL, lowest BMDa at 
matched time point, and lowest BMDa overall) for each 
chemical to explore the relationship between transcrip-
tomic-based PODs derived from each approach to apical 
PODs (Figs. 3, S5–S8). From Fig. 3, it is evident that the 

majority of BMDts fall within threefold of the NOAEL 
and LOAEL (Fig. 3a, b). We compared the BMDt at 5 days 
to the lowest overall BMDa to see how predictive early 
BMDts would be for later apical effects (Fig.  3a, b). It is 
worth noting that the BMDas generally decline over time 
(Figure S9), and the BMDa at day 5 is always greater than 
the lowest BMDa across all times as expected (Figure S10). 
We find that the BMDts across all time points are somewhat 
higher than the lowest BMDa from the target tissue across 
all time points, but, nonetheless, are generally still within 
tenfold.

The correlation between log-transformed BMD(L)ts 
derived from each of the approaches and the log-trans-
formed apical POD values (including lowest BMDa, 
NOAEL, LOAEL, and the time-point-matched lowest 
BMDas) were also calculated to determine coefficient cor-
relations (r) and linear significance (p values) in order to 
determine the extent of correlation between transcriptional 
and apical data. Figure S11 shows the 5-day time point for 
this correlation analysis; the other time points are shown 
in Figures S12, S13, and S14; Tables  5, S27 and S29. 
The linear relationship between the apical POD values 
and BMD(L)ts for the 11 approaches was tested to assess 
whether it approached a 1:1 relationship using the likeli-
hood ratio test (Tables  5, S27–S29). Overall, we found 
strong correlations between BMD(L)t values derived from 
each approach and apical POD values. The r values for 
all approaches (264 r values were derived) were within 
the range of 0.54–0.99 across the dataset (67, 67, 84, and 
18% of the correlations were statistically significant at 
5, 14, 28, and 90  days, respectively). Assessment of the 
BMD(L)t values derived from the 11 approaches clearly 
showed that the transcriptional data were closely aligned 
with LOAELs, followed by NOAELs, and then the time-
point-matched lowest BMDas. The linear regression mod-
els for most of the transcriptional approaches were not sig-
nificantly different from a 1:1 relationship with the apical 
data.

We applied three criteria to assess the effectiveness of 
the approaches in identifying a relevant POD. For simplic-
ity, because of the size of the dataset, we have focussed on 
presenting the results from the 5-day time point for each 
chemical in more detail and place these findings in the con-
text of the other time points (Table 5). The complete results 

Fig. 2   Box and whisker plots of the BMDt means for all approaches 
for all chemicals at the 5-, 14-, 28-, and 90-day time points. Colored 
horizontal lines represent the NOAEL (blue line), LOAEL (red line), 
lowest time-point-matched BMDa value (gray line), the lowest over-
all BMDa values (i.e., any time) across all time points (green line), 
and cancer (black line). The box boundaries and lines represent the 
interquartile ranges and means, respectively. The whiskers represent 
10 and 90 percentiles (color figure online)

▸
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Fig. 3   BMD(L)ts relative to 
apical PODs for the 5-day time 
point. Threefold and tenfold 
ranges from the apical POD 
are within the shaded area and 
the dashed horizontal lines, 
respectively. a The BMDts 
derived from each approach 
were divided by the correspond-
ing apical POD values for every 
chemical; b data from a shown 
separately for each chemical; 
c the BMDLts derived from 
each approach were divided by 
NOAEL and LOAEL; d data 
from c shown separately for 
each chemical
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obtained from 14-, 28-, and 90-day time points are found in 
the supplementary materials (Tables S27–29).

BMD(L)ts compared to the NOAEL for apical effects

On day 5, the maximal differences between BMDt val-
ues for each chemical and the NOAEL derived from 

analysis of apical endpoints were less than tenfold for 61 of 
the 64 datasets (11 approaches × 6 chemicals − 2* = 64; 
*Approaches 1 and 2 could be performed for five chemi-
cals only); analysis of TCP using Approaches 3, 10, and 11 
yielded BMDts that were greater than tenfold the NOAEL 
(Fig. 3a, b). Indeed, the BMDt/NOAEL ratios for the major-
ity of the approaches (42 out of 64 data points) were smaller 

Table 5   Average of the BMDt/POD ratios, Pearson’s correlation coefficient r with p value for transcriptional BMD(L)t versus apical PODs, and 
likelihood ratio Chi-square and p value for the 11 transcriptional approaches at the 5-day time point

panel A - BMDt vs. lenapLEAON C - BMDt vs. lowest apical BMDa (�me point matched)

approach mean ra�o r p-value Chisq p-value approach mean ra�o r p-value Chisq p-value
1 2.7 0.93 0.02 6.6 0.04 1 1.0 0.95 0.01 2.6 0.27
2 3.0 0.96 0.01 10.1 0.01 2 1.2 0.91 0.03 1.0 0.61
3 3.2 0.72 0.11 1.8 0.41 3 0.9 0.92 0.02 2.6 0.28
4 2.0 0.84 0.04 1.2 0.55 4 0.7 0.92 0.03 3.5 0.17
5 3.1 0.88 0.02 7.1 0.03 5 1.2 0.95 0.01 3.4 0.18
6 3.2 0.92 0.01 7.1 0.03 6 1.2 0.88 0.05 1.0 0.61
7 2.8 0.90 0.01 6.8 0.03 7 1.1 0.93 0.02 1.4 0.49
8 2.6 0.87 0.02 6.8 0.03 8 1.1 0.91 0.03 1.2 0.55
9 2.2 0.65 0.16 0.2 0.90 9 0.7 0.81 0.10 3.2 0.20
10 4.3 0.75 0.09 4.2 0.12 10 1.3 0.98 0.00 8.3 0.02
11 4.3 0.74 0.09 4.2 0.12 11 1.4 0.98 0.00 8.4 0.02

panel B - BMDt vs. lenapLEAOL D - BMDt vs. lowest apical BMDa across any �me point

approach mean ra�o r p-value Chisq p-value approach mean ra�o r p-value Chisq p-value
1* 1.3 0.94 0.02 3.5 0.17 1 5.2 0.92 0.03 10.1 0.01
2* 1.5 0.97 0.01 6.6 0.04 2 6.0 0.95 0.01 12.9 0.00
3 1.4 0.73 0.10 0.2 0.89 3 6.8 0.55 0.26 3.6 0.17
4 0.9 0.88 0.02 1.0 0.61 4 4.0 0.85 0.03 5.3 0.07
5 1.5 0.88 0.02 4.2 0.13 5 5.9 0.86 0.03 12.5 0.00
6 1.5 0.92 0.01 3.8 0.15 6 5.7 0.96 0.00 18.8 0.00
7 1.3 0.91 0.01 3.7 0.16 7 5.3 0.90 0.01 13.3 0.00
8 1.2 0.87 0.02 3.9 0.14 8 5.0 0.86 0.03 14.6 0.00
9 1.0 0.65 0.16 0.9 0.65 9 4.7 0.40 0.44 1.8 0.41
10 1.9 0.76 0.08 1.4 0.49 10 8.7 0.66 0.15 6.3 0.04
11 1.9 0.75 0.08 1.4 0.49 11 8.8 0.66 0.15 6.3 0.04

panel E - BMDLt vs. lenapLEAON F - BMDLt vs. LOAEL

approach mean ra�o r p-value Chisq p-value approach mean ra�o r p-value Chisq p-value
1 1.9 0.91 0.03 3.5 0.18 1 0.9 0.94 0.02 3.8 0.15
2 2.1 0.95 0.02 6.4 0.04 2 1.0 0.97 0.01 5.1 0.08
3 2.2 0.70 0.12 0.4 0.84 3 1.0 0.72 0.10 1.0 0.61
4 1.3 0.82 0.05 0.2 0.88 4 0.6 0.86 0.03 4.7 0.09
5 2.1 0.89 0.02 4.0 0.14 5 1.0 0.90 0.02 3.4 0.18
6 2.3 0.92 0.01 4.5 0.11 6 1.1 0.93 0.01 3.3 0.19
7 2.0 0.90 0.01 3.5 0.17 7 0.9 0.92 0.01 2.8 0.25
8 1.7 0.87 0.02 3.6 0.16 8 0.8 0.88 0.02 4.4 0.11
9 1.4 0.56 0.25 0.2 0.89 9 0.6 0.55 0.26 2.5 0.28
10 3.0 0.75 0.09 2.3 0.32 10 1.3 0.77 0.08 0.4 0.84
11 3.0 0.74 0.09 2.3 0.32 11 1.3 0.76 0.08 0.4 0.83

correla�on closeness to 1:1 correla�on closeness to 1:1

correla�on closeness to 1:1 correla�on closeness to 1:1

correla�on closeness to 1:1 correla�on closeness to 1:1

Check marks (√) and exclamation marks (!) indicate whether an approach met or failed to meet the criteria, respectively
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than 3. Analysis of the average of this ratio across all of the 
chemicals for every approach revealed that the BMDt mean 
derived using Approach 4 was closest to the NOAEL (two-
fold greater than the NOAEL; Fig. 3a). In addition, a sig-
nificant correlation between the BMDt mean values derived 
using Approach 4 and the NOAEL (r = 0.84, p < 0.05) was 
found (Figure S11; Table  5—panel A). Moreover, BMDts 
derived using Approach 4 plotted against apical NOAEL 
values was not significantly different from the 1:1 (ideal) 
line (Table 5—panel A; Figure S11). Based on the three cri-
teria, Approach 4 is thus the most effective at predicting the 
NOAEL at the 5-day time point, followed by Approaches 1, 
2, 7, 8, and 9 that meet two criteria each.

The results for the other time points were largely consist-
ent with the results at 5 days. The majority of BMDts were 
within tenfold, and generally within threefold, of the api-
cal NOAELs (Figures S5, S6). Approaches 10 and 11 were 
again marginally higher than the other approaches for a few 
data points, and Approaches 4 and 9 were generally closest 
to the NOAEL. The specific number of data points (e.g., for 
each chemical and each approach = 66 data points) within 
threefold at 14, 28, and 90  days were 48/66, 45/66, and 
47/66, respectively. Average correlation coefficients for all 
approaches in the 14, 28, and 90  day datasets were 0.85, 
0.82, and 0.77, respectively, similar to average r values for 
5-day time points (r = 0.83). Based on our three criteria, 
Approaches 1, 4, 5, 6, and 7 at 14 days, Approaches 1, 7, 
and 9 at 28 days, and Approach 4 at 90 days were effective 
in predicting NOAELs.

Overall, the BMDLt mean values were closer to the 
NOAEL than the BMDt values (Tables S27–S29; Fig-
ures S7 and S8). All of the approaches in all time points 
yielded BMDLts within tenfold of the NOAEL, and 
the averages of the BMDLt/NOAEL ratios for the six 
chemicals were <3 in all approaches. The number of 
data points within threefold of their associated NOAELs 
in the 5-, 14-, 28-, and 90-day time point datasets was 
42/64, 51/66, 42/66, and 49/66, respectively (Figures S7 
and S8). BMDLts derived from all approaches were very 
highly correlated with their apical endpoint NOAELs in 
5-, 14-, 28-, and 90-day time point datasets, and aver-
age r values for all approaches were 0.82, 0.84, 0.80, and 
0.76, respectively (Table  5—panel E; Tables S27–S29). 
The BMDLt-derived approaches that met the three cri-
teria were Approaches 1, 4, 5, 6, 7, and 8 for the 5-day 
datasets; Approaches 1, 2, 5, 6, 7, and 8 for 14  days; 
Approaches 2, 3, 6, 7, 9, 10, and 11 for 28  days; and 
Approaches 4, 5, and 8 for 90 days.

BMD(L)ts compared to the LOAEL for apical effects

At the 5-day time point, the BMDt values for all of the 
approaches for all six of the chemicals were within 

threefold of LOAEL values, and predominantly within 
threefold of the LOAELs as well. Only 8 of the 64 data 
points were outside of the threefold range (Fig.  3a, b). 
In general, the average BMDts were remarkably similar 
to the LOAELs across all of the approaches. The aver-
age BMDts for Approaches 4 and 9 were slightly below 
the LOAEL. Indeed, the BMDt mean values for all data 
points in Approaches 1, 2, 7, and 8 for all chemicals were 
within threefold of the LOAEL (Fig.  3). The averages of 
the BMDt/LOAEL ratios for the six chemicals were very 
close to 1 in all cases, with Approach 9 having the largest 
divergence from 1 (ratio = 1.0; CV = 0.318). In general, 
all approaches except 3, 9, 10, and 11 were significantly 
correlated with the LOAEL (Pearson’s correlation). The 
largest and smallest correlation coefficients were found for 
Approach 2 (r =  0.97; p value =  0.005) and Approach 9 
(r =  0.65; p value =  0.16), respectively (Table  5—panel 
B; Figure S11). The likelihood ratio test results showed 
transcriptional-to-LOAEL linear regression models for 
all approaches were not significantly different from 1:1, 
except for Approach 2. Based on the three criteria, BMDt 
values derived from Approaches 1, 4, 5, 6, 7, and 8 most 
accurately predict the LOAEL at the 5-day time point 
(Tables 5—panel B, 6—panel B).

The results for the other time points were largely con-
sistent with the results at 5 days (Figures S5, S6). All of the 
BMDts were within tenfold of the LOAELs, and generally 
within threefold of the LOAELs. The number of data points 
within threefold of LOAELs for the 14-, 28- and 90-day 
datasets was 55/66, 60/66, and 50/66, respectively. Indeed, 
at 14, 28, and 90  days the means of the BMDt/LOAEL 
ratios for all approaches were very close to 1. The maxi-
mum and minimum correlation coefficients between the 
approaches and their matched LOAELs were 0.91 and 0.77 
in the 14-day datasets, 0.87 and 0.77 in the 28-day datasets, 
and 0.88 and 0.70 in the 90-day datasets. The likelihood 
ratio test results showed transcriptional-to-LOAEL linear 
regression models for all approaches in the 14-, 28-, 90-day 
time points were not significantly different from 1:1. Our 
results show that seven, ten, and three of the approaches 
met our three criteria and may be recommended for pre-
dicting the LOAEL for the 14-, 28-, and 90-day time points 
(Tables 5—panel B, 6—panel B, S27–S29).

For the 5-day time point, the BMDLt values for all 
approaches were within tenfold of the LOAEL (except for 
NDPA, Approach 9), and only 10 of the 64 data points were 
outside of the threefold range (Figures S7, S8). All of the 
data points from Approaches 1, 2, 5, 6, and 7 were within 
threefold of the LOAEL. All approaches were highly cor-
related with the LOAEL (Table  5—panel F). Similar to 
the BMDt analysis, the BMDLt values for Approaches 2 
(r = 0.97; p value = 0.001) and 9 (r = 0.55; p value = 0.25) 
had the highest and lowest correlation coefficients with 
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apical data. The BMDLt values for Approaches 2, 3, 5, 6, 
7, and 8 were closest to the LOAEL (Figures S7, S8). The 
likelihood ratio test results showed no significant difference 
from the 1:1 line for any of the approaches in the 5-day 
datasets (Table 5—panel F).

Similar results were found in our analysis of BMDLts 
for the other time points. All approaches (except Approach 
4 at 14 and 28  days, and Approaches 1, 6, 7, and 9 at 
90 days) were within tenfold of the LOAEL, and there were 

11/64, 8/66, and 18/66 data points outside the threefold 
range in the 14-, 28-, and 90-day time points, respectively. 
The BMDLts values for all approaches and time points 
were generally highly correlated with the LOAELs. Out 
of the 11 approaches, BMDLts from seven, nine, and three 
of the approaches in the 14-, 28-, and 90-day time point 
datasets, respectively, were significantly (p  <  0.05) cor-
related with their respective LOAELs. The maximum and 
minimum r values were 0.90 and 0.72 at 14 days, 0.87 and 

Table 6   Assessment of each 
approach against the three 
criteria for predicting apical 
PODs at the 5-, 14-, 28-, and 
90-day time points

Check marks (√) and exclamation points (!) indicate whether an approach met or did not meet the three 
criteria, respectively

Approach 5 day 14 day 28 day 90 day Approach 5 day 14 day 28 day 90 day

Panel A—BMDt versus NOAEL Panel C—BMDt versus lowest apical BMDa 
(time-point-matched)

 1 ! √ √ !  1 √ √ ! !

 2 ! ! ! !  2 √ √ ! !

 3 ! ! ! !  3 √ √ ! !

 4 √ √ ! √  4 √ √ √ √
 5 ! √ ! !  5 √ √ ! !

 6 ! √ ! !  6 √ √ ! !

 7 ! √ √ !  7 √ √ ! !

 8 ! ! ! !  8 √ √ ! !

 9 ! ! √ !  9 ! ! ! !

 10 ! ! ! !  10 ! ! ! !

 11 ! ! ! !  11 ! ! ! !

Panel B—BMDt versus LOAEL Panel D—BMDt versus lowest apical BMDa 
across any time point

 1 √ √ √ !  1 ! ! ! !

 2 ! √ √ !  2 ! ! ! !

 3 ! ! √ !  3 ! ! ! !

 4 √ √ ! √  4 ! ! √ !

 5 √ √ √ √  5 ! ! ! !

 6 √ √ √ !  6 ! ! ! !

 7 √ √ √ !  7 ! ! ! !

 8 √ √ √ √  8 ! ! ! !

 9 ! ! √ !  9 ! ! ! !

 10 ! ! √ !  10 ! ! ! !

 11 ! ! √ !  11 ! ! ! !

Panel E—BMDLt versus NOAEL Panel F—BMDLt versus LOAEL

 1 √ √ ! !  1 √ √ √ !

 2 ! √ √ !  2 √ √ √ !

 3 ! ! √ !  3 ! ! √ !

 4 √ ! ! √  4 √ ! ! !

 5 √ √ ! √  5 √ √ √ √
 6 √ √ √ !  6 √ √ √ !

 7 √ √ √ !  7 √ √ √ !

 8 √ √ ! √  8 √ √ ! √
 9 ! ! √ !  9 ! ! √ !

 10 ! ! √ !  10 ! ! √ !

 11 ! ! √ !  11 ! ! √ !
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0.69 at 28 days, and 0.87 and 0.57 at 90 days (Tables S27–
S29). No significant difference from the 1:1 line (BMDt 
vs. LOAEL) was found, with the exception of Approach 
4 (14  days) and Approaches 4 and 9 (90  days). Overall, 
seven, seven, nine, and two of the approaches in the 5, 14, 
28, and 90 day datasets (respectively) met the three criteria 
and thus may be recommended for predicting the LOAEL 
(Tables 5—panel F, 6—panel F, S27–S29).

BMDts compared to time‑point‑matched lowest BMDa

The results of current study show that BMDt values derived 
from transcriptomic data for most of the approaches were 
remarkably close to the lowest BMDa at 5 days. The aver-
age ratios of BMDt-to-BMDa values at the 5-day time point 
for all approaches were <1.5, with Approach 9 having 
the largest divergence from 1 (Table 5—panel C; Fig.  3). 
BMDts for all approaches on day 5, with one exception 
(Approach 9, NDPA), were within threefold of the lowest 
BMDa at the 5-day time point (Fig. 3). These results sug-
gest that at the 5-day time point similar doses are required 
to trigger both transcriptional and apical responses. The 
BMDts for all approaches, except Approach 9, were sig-
nificantly correlated with the lowest BMDas at 5 days. The 
maximum and minimum correlation coefficients were 0.98 
(p < 0.01) for Approaches 10 and 11, and 0.81 (p =  0.1) 
for Approach 9 (Table 5—panel C; Fig. 3). There were no 
significant deviations from the 1:1 line for transcriptional-
to-apical comparisons, except for Approaches 10 and 11 
(Table 5—panel C). Thus, all approaches except 9, 10, and 
11 meet the criteria and are effective predictors of time-
point-matched BMDas (Table 6—panel C).

Analysis of the other time points was largely consistent 
with the results at 5 days (Figures S5, S6). The overwhelm-
ing majority of BMDts at 14 days were within tenfold and 
generally within threefold of the lowest time-matched 
BMDa, with no greater than a 2.6-fold mean BMDt/BMDa 
ratio for any approach. For the 28- and 90-day time points, 
the mean BMDt/BMDa ratios for all 11 approaches were 
>3, with the exception of Approach 4. BMDts for 51 of 
the 55 and 55 of the 66 approaches were within tenfold of 
BMDas at the 28- and 90-day time points, respectively. It 
should be noted that all BMDt/BMDa ratios that yielded a 
value >10 were derived from TCP. These results indicate 
(for the current chemicals) that gene alterations and api-
cal effects occurred at similar doses on day 5; however, 
at later time points, time-matched apical responses gener-
ally occurred at somewhat lower doses than transcriptional 
responses (Tables S27–S29). However, we note that the 
vast majority of the BMDts even at the 90-day time point 
were within tenfold of apical PODs, suggesting their utility 
even at 90 days. Similar to 5 days, all approaches except 9, 
10, and 11 meet the criteria for day 14 datasets. However, 

only Approach 4 met all three criteria at the 28- and 90-day 
time points (Table 6—panel C).

Thomas et al. (2013a, b) proposed the use of the low-
est pathway BMDt for prediction of BMDas. Using this 
approach, a strong correlation (r  >  0.90) was found 
between BMDts and the lowest time-point-matched BMDa 
values for adverse apical endpoints at 5-, 14-, 28-, and 
90-day time points for these same six chemicals (Thomas 
et  al. 2013a). In the current study, two main modifica-
tions were made to this method (Approach 9). The modi-
fications were to: (1) apply the analysis only to ANOVA 
pre-filtered genes (p  <  0.05 in at least one dose group); 
and (2) to remove pathways that were not significantly 
enriched following BMDt analysis (Fisher’s exact test; 
p ≤ 0.05). We directly compared our BMDts to those pub-
lished in Thomas et al. (2013a, b) (Figure S15) and found 
that they were highly comparable. Specifically, our results 
were similar to those of Thomas et al. (2013a, b) at the 5-, 
14-, and 28-day time points (r = 0.81, 0.81, 0.97, respec-
tively), but not at 90 days (r = 0.61). These results sug-
gest that addition of a Fisher’s exact test to this Approach 
did not improve relationships with BMDas. Indeed, the 
linear relationship between BMDts derived from the low-
est transcriptional pathway and its time-point-matched 
apical endpoint decreased due to this additional filtering. 
Because the lowest pathway BMDt may in certain cases 
be based on only a handful of genes (depending on the 
minimum number of genes required in a pathway for 
BMDt consideration that is applied), we felt this addi-
tional filtering ensured a more robust and responsive set 
of genes for this application. Thus, despite the weaker 
correlation, we advise the application of this filter should 
this approach be applied.

BMDts compared to the lowest BMDa across all time points

At the 5-day time point, the ratio of the BMDts to the low-
est overall BMDa (across all time points) tended to be high. 
However, the majority of the BMDts were within tenfold of 
the lowest BMDas at the 5-day time point (Fig. 3); of the 64 
data points, only five were below 1. Seven ratios were >10, 
but these were spread across approaches and were all for the 
chemical TCP (Fig. 3b). The correlations between the mean 
BMDts for Approaches 1, 2, 4, 5, 6, 7, and 8 and the low-
est overall BMDas were significant (p < 0.05), with r > 0.86 
(Figure S11). The results of the likelihood ratio test showed 
that at the 5-day time point there were no significant differ-
ences between the 1:1 line and transcriptional-to-apical lines 
for Approaches 3, 4, and 9 (Table 5—panel D). However, no 
approach met all three of our selection criteria at the 5-day 
time point (Tables 5—panel D, 6—panel D). Thus, BMDts 
are the least effective in predicting the lowest BMDa relative 
to all of the other apical PODs assessed on day 5.



2061Arch Toxicol (2017) 91:2045–2065	

1 3

Analyses of the other time points were similar to the 
above. Unsurprisingly, the ratios tended to be larger than 
1 for BMDts relative to the lowest BMDa, although the 
BMDts across all approaches were predominantly within 
tenfold of the BMDa. The maximum and minimum cor-
relation coefficients (r value) were 0.94 and 0.71 for 
14 days, 0.94 and 0.84 for 28 days, and 0.76 and 0.63 for 
90  days (Tables S27–S29). There was no significant dif-
ference between a 1:1 line and the transcriptional-to-api-
cal lines for Approach 9 (14 days), Approach 4 (28 days), 
and Approaches 1, 3, 4, 7, and 9 (90  days). However, 
only Approach 4 (28  days) met all three of our criteria 
for prediction of the lowest BMDa across all time points 
(Tables 5—panel D, 6—panel D, S27–S29).

Overall, we found that while the majority of the 
approaches were effective predictors of apical PODs at 
the 5-, 14-, and 28-day time point, only three approaches 
(Approaches 4, 5, and 8) met our three criteria at the 90-day 
time point (Table 6). Approaches 9, 10, and 11 only met the 
three criteria at the 28-day time point to estimate NOAEL 
and LOAEL. Approach 9 tended to have larger variation 
than the other approaches, and Approaches 10 and 11 (mean 
and median overall pathway BMDts, respectively) tended to 
overestimate POD as expected. Across the entire dataset, the 
BMDts were best at predicting the LOAEL and the lowest 
time-point-matched BMDa, whereas BMDLts were relatively 
equal in being effective predictors of LOAEL and NOAEL.

Overall comparison between transcriptional BMD(L)ts 
and apical PODs

We estimated the potential ability of the approaches to pre-
dict apical POD at each time point based on the sum of the 

criteria met by BMDt- or BMDLt-derived for each approach 
against apical PODs (Table  7). These results suggest that 
Approach 7 followed by 1 was the best predictor at 5, 14, 
and 28 days. At 90 days, however, Approach 4 was the best 
method to predict apical PODs. In addition, Approach 4 was 
the best on day 5 and yielded the highest score overall.

Transcriptional BMDts compared to the tumor responses

Tumor responses in thyroid, bladder, and liver, respectively, 
were reported in rodents following MDA, NDPA, and HZB 
exposure (NTP 1978, 1979a, b). Incidences of tumor devel-
opment were analyzed in a previous study to obtain cancer 
BMDa values (Thomas et al. 2013a). We found that BMDt 
values for all of the approaches at 5, 14, and 28 days (Fig-
ure S16-panel A) were within tenfold of the tumor response. 
BMDt values derived from the 11 approaches for MDA and 
NDPA were within threefold at these time points (Figure 
S16-panel B). The average ratios of BMDt-to-cancer BMDa 
values at the 90-day time point for all approaches were <3. 
While more carcinogenic chemicals are required to calcu-
late a correlation coefficient, based on the results derived 
from three chemicals in the current study the transcrip-
tomic-derived BMDt values at 90 days were slightly closer 
to cancer BMDa values than other time points.

Statistical filtering

BMDExpress is equipped with a built-in tool for filtering a 
dataset and selecting the probe set (Yang et al. 2007). This 
tool uses a one-way ANOVA together with a FDR correc-
tion for multiple comparisons (Benjamini and Hochberg 
2007), and the user is allowed to choose between FDR 

Table 7   Assessment of BMDt 
and BMDLt derived from each 
approach against the three 
criteria for predicting apical 
PODs at the 5-, 14-, 28-, and 
90-day time points

BMDt values were assessed for predicting four apical endpoints (NOAEL, LOAEL, lowest BMDa 
at matched time point of apical endpoints, lowest BMDa overall of apical data); BMDLt values were 
assessed for predicting two apical endpoint (NOAEL and LOAEL). Sum =  (three criteria ×  four apical 
PODs × four time points = 48) + (three criteria × two apical PODs × four time points = 24) = 72. The 
top approaches that met the three criteria are highlighted in bold (there was a three-way tie for second 
place)

Approach 5 days 14 days 28 days 90 days Sum %

1 15 16 14 10 55 76

2 13 15 14 9 51 71

3 11 11 13 10 45 63

4 17 15 13 15 60 83

5 14 16 13 12 55 76

6 13 16 14 8 51 71

7 15 16 15 9 55 76

8 15 15 12 11 53 74

9 11 10 15 8 44 61

10 9 9 12 8 38 53

11 9 9 12 8 38 53
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p value and p value. A previous study from our labora-
tory investigated the effects of using statistically filtered 
data on gene and pathway BMDts, and more specifically 
compared FDR p value with ANOVA unadjusted p value 
(Webster et  al. 2015a). The study showed that pre-filter-
ing data in BMDExpress significantly reduced the mean 
gene and pathway BMDts. Moreover, transcriptional data 
that were subjected to more stringent filtering produced 
BMDts that were closer to apical PODs. These results 
are not surprising since stringent filtering reduces false 
positives and ensures that only genes that truly respond 
to the treatment are considered. However, more stringent 
filtering methods also reduce the number of discoveries 
and increase the probability of not retaining a sufficient 
number of genes for BMDt modeling. For these reasons, 
Webster et  al. (2015a, b) recommended that at least an 
ANOVA p ≤  0.05 filter, which is less stringent than an 
FDR p value filter, is applied to the data prior to modeling 
in BMDExpress.

Our approaches also applied different statistical tests 
(MAANOVA FDR p  ≤  0.05 vs. ANOVA p  <  0.05) for 
analyzing and pre-filtering data. Significant genes were 
selected based on: (1) fold change and corrected p value 
cutoff (FC ≤1.5; FDR p value <0.05) using MAANOVA 
in Approaches 1, 2, 4, 5, 6, 7, and 8; and (2) p value 
≤0.05 using ANOVA in Approaches 3, 9, 10, and 11. 
Overall, BMD(L)t derived from our MAANOVA-filtered 
approaches, which applied an FDR correction and fold-
change cutoff, were better at predicting apical PODs (86 
out 168 approaches met the three criteria; 51%) than those 
approaches analyzed using ANOVA (15 out 96 approaches 
met the three criteria; 16%; Table  6). Thus, our results 
support more stringent pre-filtering of data for deriving 
BMDts.

Based on the three criteria we described above, the 
BMD(L)t from approaches that applied a more stringent 
MAANOVA FDR p value ≤0.05 and fold change ≥1.5 for 
gene expression changes were most effective in predict-
ing NOAEL and LOAEL at the 5-day time point. Moreo-
ver, all of the MAANOVA-analyzed approaches, as well as 
Approach 3 (the 20 lowest pathway BMDts), met the three 
criteria for predicting the most sensitive apical endpoint 
observed on day 5. However, no approach met the three 
criteria when analyzed against the lowest BMDa endpoint 
across all time points at 5 days.

Conclusions

We leveraged published Affymetrix DNA microarray data 
on well-designed time-series and dose–response experi-
ments in rats to evaluate 11 approaches to deriving a BMDt 
from groups of genes. We assessed the relationship between 

BMDts derived using these 11 approaches to PODs derived 
from apical data that might be used in a human health risk 
assessment. To evaluate the effectiveness of the approaches 
in predicting apical PODs, we used three criteria: (1) ratio 
of BMDt to apical endpoint POD <3; (2) correlation coeffi-
cient p value <0.05 for BMDt to apical POD; and (3) likeli-
hood ratio test p value >0.05 for deviation from the 1:1 line 
for BMDt versus apical POD. We found a very high degree 
of concordance between all of the approaches for deriv-
ing BMD(L)ts and apical PODs. Generally, in our opin-
ion, BMD(L)t values derived using the 11 approaches were 
remarkably aligned with different apical PODs that may be 
used in human health risk assessment. The vast majority 
of BMDts across all approaches were within tenfold of the 
various BMDas and were largely within threefold as well. 
In general, across the 5-, 14-, 28-, and 90-day time points, 
eight, eight, eleven, and three approaches met our three cri-
teria, respectively, and thus qualify as effective estimates of 
apical PODs.

Consistency in the PODs derived from transcriptional 
endpoints with those derived from standard toxicity end-
points increases confidence in the use of transcriptional 
PODs in human health risk assessment. However, the rel-
evance of these specific gene expression perturbations to 
adverse effects is unclear, since they are not based on an 
MOA-centric approach. The approaches described assume 
that significant perturbations in gene expression in general 
may lead to an adverse outcome. Early thought in this field 
presumed that gene expression changes would occur at 
lower doses than adverse apical effects and thus would be 
overly conservative. In contrast, we demonstrate that mean 
transcriptional PODs from the approaches reviewed herein 
are generally higher than apical PODs, suggesting that this 
is not the case. Indeed, the mean transcriptional BMDs 
differ from the corresponding apical endpoints by less 
than1.5-fold for matched time points (Table  5—panel C) 
or are within tenfold across all time points (Table 5—panel 
D). These observations suggest that for these chemicals 
transcriptional changes do not occur at lower doses than 
apical responses, alleviating concerns that transcriptomics 
approaches in risk assessment would be overly protective.

Although additional studies using chemicals target-
ing different types of adverse effects are required to vali-
date our findings, our results suggest that transcriptional 
response can be used as an efficient alternative approach 
for POD selection in chemical risk assessment. Transcrip-
tional PODs were furthest from apical PODs at the 90-day 
time, suggesting that some dampening of transcriptional 
response may be occurring at later time points, and sup-
porting the use of earlier time points to identify doses that 
significantly impact transcriptional profiles along a trajec-
tory toward disease. Our results indicate that transcription-
ally derived POD estimation from a short-term study are 
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consistently within tenfold of PODs derived from apical 
endpoints from longer term studies. We also support pre-
vious findings that a more conservative statistical filter 
yields transcriptional PODs that are more aligned with 
apical PODs. However, our results suggest that any of the 
proposed approaches should produce transcriptional PODs 
that are within tenfold of the non-cancer and cancer BMDa 
in target tissues. While Approaches 7, 1, and 4 appear to 
be the best predictors of apical PODs, decisions on which 
approach is used could be determined based on the formu-
lated risk assessment question and/or any guidelines estab-
lished by the regulatory agency undertaking the evaluation 
if they exist (e.g., Bourdon-Lacombe et al. 2015). Overall, 
our paper suggests that transcriptional analyses produce 
highly robust BMDt metrics that are strong predictors of 
apical PODs within an acceptable measure of uncertainty 
(generally less than tenfold).

The integration of toxicogenomics into human health 
risk assessment is a relatively new area, and no interna-
tional guidelines on this have been established. Major chal-
lenges include selecting the most relevant genes or path-
ways to pathophysiological effects. Addressing this issue 
will assist the integration of genomic data into chemical 
risk assessment. Previous work from our and other labora-
tories have provided initial examples of how toxicogenom-
ics can be used to inform human health risk assessment, 
including both hazard identification and dose–response 
analysis (e.g., Andersen et al. 2010; Bercu et al. 2010; Bhat 
et al. 2013; Bourdon-Lacombe et al. 2015; Chepelev et al. 
2015a, b, 2016; Clewell et al. 2011; Cote et al. 2016; Jack-
son et  al. 2014; Moffat et  al. 2015; Thomas et  al. 2011, 
2012). It has been noted that toxicogenomics-guided elu-
cidation of MOA information is helpful, as it can guide 
the selection of MOA-relevant key events and hence iden-
tification of relevant toxicogenomics data that should be 
used in dose–response analyses (e.g., Moffat et  al. 2015). 
However, here we also support the previous contention that 
toxicogenomics data can be used for dose–response analy-
ses even without detailed MOA information, especially in 
the case of “non-selective” chemicals (i.e., those interact-
ing with multiple biological targets, and, hence, having the 
potential to contribute to several MOAs) (Thomas et  al. 
2013b). Indeed, identifying MOA from toxicogenomics 
data can be time-consuming, as compounds may operate 
through several mechanisms perturbing an array of bio-
logical effects (Bercu et  al. 2010). Therefore, it has been 
suggested that the lowest dose at which transcriptional per-
turbations become measurable (e.g., the lowest pathway 
BMDt) should be considered for risk assessment (Thomas 
et al. 2013b). In this study, we demonstrate that a variety of 
approaches are amenable to deriving a highly reproducible 
transcriptional POD, thus not requiring regulatory agencies 
to select a single approach.
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