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The mouse major urinary proteins (Mups) are encoded by a
large family of highly related genes clustered on chromosome 4.
Mups, synthesized primarily and abundantly in the liver and
secreted through the kidneys, exhibit male-biased expression.
Mups bind a variety of volatile ligands; these ligands, and Mup
proteins themselves, influence numerous behavioral traits.
Although urinary Mup protein levels vary between inbred
mouse strains, this difference is most pronounced in BALB/cJ
mice, which have dramatically low urinary Mup levels; this
BALB/cJ trait had been mapped to a locus on chromosome 15.
We previously identified Zhx2 (zinc fingers and homeoboxes 2)
as a regulator of numerous liver-enriched genes. Zhx2 is located
on chromosome 15, and a natural hypomorphic mutation in the
BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression.
Based on these data, we hypothesized that reduced Zhx2 levels
are responsible for lower Mup expression in BALB/cJ mice.
Using both transgenic and knock-out mice along with in vitro
assays, our data show that Zhx2 binds Mup promoters and is
required for high levels of Mup expression in the adult liver. In
contrast to previously identified Zhx2 targets that appear to be
repressed by Zhx2, Mup genes are positively regulated by Zhx2.
These data identify Zhx2 as a novel regulator of Mup expression
and indicate that Zhx2 activates as well as represses expression
of target genes.

Mups4 are 18- to 19-kDa proteins of the lipocalin superfamily
that, as their name implies, are secreted in the urine at high
concentrations (1, 2). As with other lipocalin proteins, Mups

have the ability to bind small organic molecules such as phero-
mones. Although these small molecules have the ability to
influence sexual and social behavior, including male aggression,
Mup proteins themselves can also influence behaviors in
rodents (3– 6).

In mice, Mups are encoded by a multigene family comprised
of 21 genes and 21 pseudogenes that are tightly clustered on
chromosome 4 (7–9). Mup genes can be separated into two
classes: six class A Mup genes that are 84 –92% identical to each
other at the DNA level and 15 highly related class B Mup genes
that exhibit �97% identity (9). Mup genes are transcribed
abundantly in the liver and at somewhat lower levels in secre-
tory tissues, including the salivary, lachrymal, and mammary
glands (10). They are also transcribed at higher levels in males
and, as with other genes that exhibit this sex-biased expression,
are influenced by testosterone, growth hormone and thyroxine
(1, 11, 12). Although Mup genes are among the most highly
expressed genes in the mouse liver, the factors that regulate
Mup transcription are not known.

The zinc fingers and homeoboxes 2 (Zhx2) gene belongs to a
small gene family found only in vertebrates that also includes
Zhx1 and Zhx3 (13–15). All three Zhx genes have the same
unique structure, with the entire coding region on an unusually
large third exon (16). The proteins encoded by these genes are
predicted to contain two C2-H2 zinc fingers and four (or five)
homeodomains; these domains suggest that Zhx proteins are
involved in DNA binding (16). The initial phenotype associated
with the mouse Zhx2 gene was a mouse strain-specific differ-
ence in adult liver �-fetoprotein (AFP) levels. The AFP gene is
expressed abundantly in the fetal liver, normally silenced at
birth, and remains off in the adult liver but can be reactivated
during liver regeneration and in hepatocellular carcinoma
(HCC) (17, 18). A unique feature of AFP expression is seen in
BALB/cJ mice, in which adult liver AFP mRNA levels are
roughly 10- to 20-fold higher than what is seen in other strains,
including other highly related BALB/c substrains (18, 19). This
persistent AFP expression in BALB/cJ mice is due to a hypo-
morphic mutation in the BALB/cJ Zhx2 gene (20, 21), which is
located on chromosome 15 (22, 23). This mutation in BALB/cJ
mice is due to the insertion of a mouse endogenous retroviral
element into Zhx2 intron 1 that dramatically reduces Zhx2
mRNA levels (20, 21). Several other developmentally silenced
genes, including H19, Glypican 3 (Gpc3), and Lipoprotein
lipase, are also targets of Zhx2 based on their elevated expres-
sion in the adult liver of BALB/cJ mice compared with other
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strains (24 –26). These in vivo data, as well as in vitro studies,
indicate that Zhx2 represses target gene expression in the adult
liver (23, 27, 28).

Variation in Mup protein levels is observed in different
strains of mice (29). This difference is most pronounced in
BALB/cJ mice, which express Mups at considerably lower levels
than what is seen in other strains, including other BALB/c sub-
strains (30). This reduced Mup expression in BALB/cJ mice was
mapped to a locus on mouse chromosome 15 (30). The dra-
matic reduction in urinary Mup levels in BALB/cJ mice led us to
investigate whether this trait was due to the Zhx2 mutation.
Using BALB/c substrains, transgenic models, and recently
developed Zhx2 knock-out mice, our data indicate that a num-
ber of Mup genes in the liver are targets of Zhx2 regulation.
However, in contrast to previous Zhx2 targets, which are ele-
vated when Zhx2 levels are reduced, Mup expression decreases
when Zhx2 levels are lower. Using transient transfections and
ChIP, we show that Zhx2 directly binds and activates Mup pro-
moters and that this activation is governed primarily through
the Zhx2 homeodomain region. These data provide further
insight into Mup expression during liver development and
expand our understanding of Zhx2 regulation of target genes in
the adult liver.

Results

Reduced hepatic Mup gene expression in BALB/cJ mice is due
to the Zhx2 mutation

Urinary Mup levels in BALB/cJ male mice are dramatically
lower than in other mouse strains (30). Another trait unique to
the BALB/cJ substrain is elevated AFP expression in the adult
liver, which, as we showed previously, is due to a hypomorphic
mutation in the BALB/cJ Zhx2 gene (20). To test whether the
BALB/cJ Zhx2 mutation is responsible for reduced Mup pro-
tein levels, the expression of several Mup genes was analyzed by
RT-qPCR in the adult male liver of the BALB/c substrain, which
have a wild-type Zhx2 gene, and the BALB/cJ substrain. Studies
were performed in male mice because Mups are synthesized at
much higher levels in male than in female mice. Of the 21 Mup
genes, we focused our analysis on the class A Mup20 and Mup3
and class B Mup7, Mup10, and Mup19 genes (using Mouse

Genome Informatics nomenclature) because these exhibit the
highest expression in the liver (9). Zhx2 mRNA levels in
BALB/cJ mice were roughly 4% of that seen in BALB/c mice,
and, as expected, AFP mRNA levels were over 6-fold higher
(Fig. 1A). Mup20 mRNA levels were dramatically lower in
BALB/cJ, being only �1% of the level in age-matched adult
BALB/c liver. In contrast to Mup20, expression of the class A
Mup3 gene was not affected by the Zhx2 mutation. Expression
of the highly related class B Mup genes in BALB/cJ was reduced
to 0.3% of the levels seen in BALB/c mice (Fig. 1B).

To confirm that reduced Mup expression in BALB/cJ mice
was due to the Zhx2 mutation, we analyzed Mup expression in
TTR-Zhx2 transgenic BALB/cJ mice, which express Zhx2 spe-
cifically in hepatocytes. Hepatic Zhx2 and AFP mRNA levels in
these transgenic mice are found at roughly the same levels as
seen in BALB/c mice, consistent with previous studies (Fig. 1A)
(20). The presence of the TTR-Zhx2 transgene in BALB/cJ mice
restored Mup20 and class B Mup expression to levels that were
roughly 45% and 86% of that seen in BALB/c mice, respectively,
whereas Mup3 mRNA levels were not substantially affected by
the TTR-Zhx2 transgene (Fig. 1B). Because Mups are synthe-
sized primarily in the liver, these data indicate that the low
urinary Mup levels seen previously in BALB/cJ mice are due to
reduced hepatic Mup20 and class B Mup mRNA levels. The
dramatic reduction in Mup expression in BALB/cJ mice and
restoration of near wild-type Mup mRNA levels in TTR-Zhx2
BALB/cJ mice demonstrate that Zhx2 is required for normal
Mup expression in the adult liver. In contrast to previously
identified Zhx2 targets that are negatively regulated by Zhx2,
Mup20 and class B Mup mRNA levels are positively regulated
by Zhx2.

Mup expression is reduced in Zhx2 knock-out mice

Our studies in BALB/c substrains indicated that Zhx2 is
required for normal Mup expression in the adult liver. Studies
were also performed in Zhx2 knock-out mice in which the
entire Zhx2 protein-coding region in exon 3 is flanked by loxP
sites; Cre-mediated excision therefore removes the entire Zhx2
reading frame (31). These mice were bred to E2a-Cre and Alb-
Cre transgenic mice to obtain whole-body (Zhx2KO) and hepa-

Figure 1. Low Mup expression in BALB/cJ liver is corrected in hepatocyte-specific Zhx2 transgenic mice. Livers were removed from age-matched adult
male mice (4 – 6 mice/group). Total RNA was prepared, and mRNA levels were analyzed by RT-qPCR using primers described in supplemental Table 2. Zhx2, AFP,
and Mup transcript levels were normalized against ribosomal L30 protein mRNA. A, hepatic Zhx2 levels are dramatically reduced in BALB/cJ mice compared
with BALB/c mice (Zhx2�) and restored to wild-type levels in BALB/cJ mice expressing a hepatocyte-specific TTR-Zhx2 transgene (BALB/cJ � Zhx2 TG). AFP is
derepressed in BALB/cJ mice but restored to near wild-type levels in TTR-Zhx2 transgenic mice. Zhx2 and AFP levels in BALB/c mice were set at 1. B, the mRNA
levels for Mup20 and class B Mups (using a primer pair that detects all three liver-expressed class B Mups) are dramatically reduced in BALB/cJ mice but found
at similar levels in BALB/c and Zhx2 TG� mice. Mup3 mRNA levels are not affected by changes in Zhx2 expression. Data are presented as mean � S.D. **, p �
0.01; ***, p � 0.001.
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tocyte-specific (Zhx2�hep) Zhx2 deletion, respectively. Zhx2
mRNA levels in Zhx2�hep mice were 3% the levels found in
Zhx2fl mice controls and were undetectable in Zhx2KO mice
(Fig. 2A). We showed previously by immunofluorescence stain-
ing that the higher Zhx2 levels in Zhx2�hep mice compared with
Zhx2KO mice is due to Zhx2 expression in non-parenchymal
cells (31). This was confirmed by RT-qPCR analysis in purified
parenchymal and non-parenchymal cells (supplemental Fig. 1).
As expected, AFP levels increased 6- to 7-fold in Zhx2�hep and
Zhx2KO mice compared with age-matched Zhx2fl controls (Fig.
2B). Mup expression was decreased in the knock-out mice sim-
ilarly to what was observed in BALB/cJ mice. Mup20 levels were
reduced to 41% and 2% in Zhx2�hep and Zhx2KO mice, respec-
tively, compared with Zhx2fl controls. A similar reduction was
seen with class B Mup genes. Using gene-specific primers for
the hepatic class B Mups, we found that Mup 7, Mup 10, and
Mup 19 levels were reduced to 23%, 23%, and 21%, respectively,
in Zhx2�hep livers, and all were reduced to 6% in Zhx2KO livers
compared with Zhx2fl controls. In contrast, Mup3 expression
was affected to a lesser extent in that no significant change was
seen in Zhx2�hep mice whereas Mup3 expression in Zhx2KO

mice was 34% of levels in Zhx2fl controls (Fig. 2C). To test
whether Mup protein levels correlated with reduced hepatic
Mup mRNA, Mup proteins in the liver were analyzed. Western-
blotting analysis with a pan-Mup antiserum indicated that Mup
protein levels were reduced in both Zhx2�hep and Zhx2KO adult
male livers, although the reduction was most dramatic in
Zhx2KO livers (Fig. 3A). A similar pattern was seen when West-
ern-blotting analysis was performed with urine samples (Fig.
3B). In contrast to liver, the anti-Mup antibodies recognized
two Mup isoforms in urine; the abundant, slower-migrating
band had the same molecular weight as the band seen in the
liver and was most responsive to changes in Zhx2. Based on
previous studies, the low-abundance, faster-migrating band is
likely encoded by the atypical Mup17 gene (29). Coomassie
staining of whole urine (Mups account for a vast majority of
urinary proteins in healthy male mice (32)) demonstrated that
the predominant urinary Mup isoform is reduced in both hep-

atocyte-specific and whole-body knock-out mice, with a greater
reduction seen in Zhx2KO urine (Fig. 3C). The slower-migrating
protein (Fig. 3C, asterisk) found in the urine did not react with
the Mup antiserum but served as a control for uniform loading.

Mup expression is developmentally activated in the postnatal
liver

Previously identified Zhx2 targets are expressed abundantly
in the fetal liver and repressed within the first 4 weeks after

Figure 2. Hepatic Mup mRNA levels are reduced in Zhx2 knock-out mice compared with Zhx2fl mice. Livers were removed from age-matched adult male
mice (4 – 6 mice/group). Total RNA was prepared, and mRNA levels were analyzed by RT-qPCR using primers shown in supplemental Table 2. Zhx2, AFP, and
Mup transcript levels were normalized against ribosomal L30 protein mRNA. A, hepatic Zhx2 levels are dramatically reduced in Zhx2�hep mice and not
detectable in Zhx2KO mice. B, AFP mRNA levels are increased similarly in the livers of both Zhx2�hep mice and Zhx2KO mice. C, Mup20 and class B Mup (Mup7,
Mup10, and Mup 19) mRNA levels are reduced to a greater extent in Zhx2KO mice than in Zhx2�hep mice, whereas a reduction in Mup3 levels is only seen in
Zhx2KO mice. Data are presented as mean � S.D. **, p � 0.01; ***, p � 0.001.

Figure 3. Zhx2 positively regulates Mup protein levels. Livers and urine
were obtained from age-matched adult male mice that were homozygous for
the Zhx2fl, Zhx2�hep, or Zhx2KO alleles (4 mice/group, each lane represents a
single mouse). A and B, liver cell lysates (A) and urine (B) were analyzed by
Western blotting using a pan-Mup antiserum. Hepatic Mup protein levels are
moderately reduced in Zhx2�hep livers and dramatically reduced in Zhx2KO

livers. Blots were reprobed for �-actin to control for variations in protein load-
ing. The predominant urinary Mup proteins showed a reduction in Zhx2�hep

and Zhx2KO mice that was similar to that seen in liver. The faster-migrating,
lower-abundance Mup protein (encoded by the divergent Mup17 gene) was
found in urine and not responsive to changes in Zhx2 levels. C, total urine was
collected and clarified, and urinary proteins were separated by 15% SDS-
PAGE and stained with LabSafe Gel Blue. Levels of the predominant urinary
Mup proteins were reduced in Zhx2�hep mice and, to a greater extent, in
Zhx2KO mice. The slower-migrating band (asterisk) served as a loading control.
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birth. Because Mup genes appear to be positively regulated by
Zhx2, we predicted that Mup expression would increase during
postnatal liver development. Steady-state Mup20, Mup3, and
class B Mup mRNAs are barely detectable at embryonic day
17.5 (E17.5) and remain at very low levels up to postnatal day 14
(P14; Fig. 4 and supplemental Table 1). Expression of all these
Mups sharply increase at P21. By 8 weeks after birth, expression
of all Mups analyzed had increased 105-fold over embryonic
levels. During this same time, AFP mRNA levels decrease 105-
fold, consistent with previous studies (18), whereas Zhx2
mRNA levels increase �35-fold (Fig. 4 and supplemental Table
1). Interestingly, Mup20 and the class B Mup genes exhibit a
substantial increase between P28 and P56, the same period
when Zhx2 shows the greatest increase.

Zhx2 activates Mup expression in vitro

The in vivo mouse data indicate that Zhx2 positively regu-
lates Mup expression in the adult liver. We asked whether this
regulation could be observed in vitro, which would provide a
system to mechanistically explore how Zhx2 controls Mup
expression. To determine whether Zhx2 can activate endoge-
nous Mup genes, we transiently expressed a Zhx2-GFP fusion
protein in the AML12 mouse hepatocyte cell line. After 48 h,
cells were visualized by fluorescence, and total RNA was
extracted. Fluorescence microscopy indicated that roughly
30 – 40% of transfected cells expressed Zhx2-GFP and that the
fusion protein was localized to the nucleus (supplemental Fig.
2), as had been observed previously (14, 28). RT-qPCR shows
that endogenous Mup20, Mup3 and class B Mup mRNA levels
increase in Zhx2-GFP-transfected cells compared with control
empty vector (pcDNA3.1 alone)-transfected cells (Fig. 5). In
contrast, expression of Transthyretin (TTR), which is not
affected by the loss of Zhx2 in BALB/cJ mice (24), does not
change in Zhx2-GFP-transfected AML12 cells (Fig. 5).

To determine whether Zhx2 activated expression through
the Mup promoter region, a 1.4-kb region containing the

Mup20 promoter (�1373 to �32) was inserted into the
pGL4.14[luc2/Hygro] luciferase reporter gene to generate
Mup20p-luc. Plasmids encoding Zhx2 and Mup20p-luc were
co-transfected into AML12 cells and HepG2 human hepatoma
cells along with a Renilla luciferase vector to control for varia-
tions in transfection efficiency. The control pGL4.14 plasmid
was not affected by Zhx2. However, co-transfected Zhx2
increased luciferase levels 2.3-fold and 1.5-fold from Mup20p-
luc in HepG2 and AML12 cells, respectively (Fig. 6A). To fur-
ther investigate the region(s) of the Mup20 promoter respon-
sive to Zhx2, a series of promoter deletion constructs were
inserted into pGL4.14 and co-transfected with Zhx2 in HepG2

Figure 4. Mup genes are developmentally activated in the postnatal liver. Livers were removed from male mice at E17.5 and various postnatal time points
up to 8 weeks (P1-P56). Total RNA was prepared and analyzed by RT-qPCR. Levels of Zhx2, AFP, and Mup transcripts were normalized against ribosomal L30
protein mRNA. AFP levels decreased �105-fold during this period. Zhx2 mRNA levels increased gradually between E17.5 and P28 and then increased �6.5-fold
between P28 and P56. Mup mRNA levels also increased postnatally, with the most dramatic increase occurring between P14 and P21. Overall, the increase in
expression of Mup genes was �105-fold, which was roughly equivalent to the -fold decrease in AFP levels (supplemental Table 1). Data are presented as
mean � S.D. *, p � 0.05; **, p � 0.01; ***, p � 0.001 relative to E17.5.

Figure5.EndogenousMupexpressionisincreasedinZhx2-GFP-transfected
AML12 cells. The mouse hepatocyte AML12 cell line was transfected with the
pcDNA3.1 E.V. control or pcDNA3.1 encoding a Zhx2-GFP fusion protein (Zhx2-
GFP) and analyzed after 48 h. Levels of endogenous transcripts in transfected
cells were analyzed by RT-qPCR. Mup20, Mup3, and class B Mups were activated
by Zhx2. Expression of TTR was not affected by increased Zhx2 expression. Data
are presented as mean � S.D. *, p � 0.05; **, p � 0.01.
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cells. Promoter fragments extending �1.4 and 1.0 kb upstream
of Mup20 exon 1 were activated by Zhx2, whereas further dele-
tions resulted in non-responsiveness to Zhx2 (Fig. 6B). This
indicates that the Zhx2-responsive element of the Mup20 pro-
moter region resides between �1000 and �787.

Zhx2 activates the Mup20 promoter through the
homeodomain region

Zhx2 is generally considered to be a transcriptional repres-
sor. However, our transfection data indicate that Zhx2 can acti-
vate the Mup20 promoter. This positive regulation of Mup

genes is consistent with our mouse studies showing decreased
Mup levels when Zhx2 is reduced. To further explore this reg-
ulation, the Gal4 DNA binding domain was fused to the entire
Zhx2 coding region to generate Gal4DBD-Zhx2; the Gal4DBD
will tether Zhx2 to Gal4 binding sites (UAS). This fusion pro-
tein was co-transfected into HEK293 cells with Mup20p-luc or
Mup20p-luc fused to 5 tandem Gal4 binding sites (UAS). As
controls, luciferase expression vectors containing the SV40
promoter, with or without the UAS, were also co-transfected
with Gal4DBD-Zhx2. The presence of the UAS increased the
responsiveness of the Mup20 promoter to Gal4DBD-Zhx2
nearly 3-fold, consistent with Mup20 promoter activation by
Zhx2 (Fig. 7). In contrast, the presence of the UAS led to a
�3.4-fold repression of the SV40 promoter by Gal4DBD-Zhx2
(Fig. 7).

Zhx proteins, including Zhx2, contain two amino-terminal
zinc finger motifs and multiple (4 –5) predicted C-terminal
homeodomains. To begin to localize the Zhx2 region responsi-
ble for Mup activation, we created hybrid proteins in which the
zinc finger and homeodomain regions of Zhx1 and Zhx2 were
swapped (Fig. 8A). These hybrid proteins, as well as Zhx2 and
Zhx1, were co-transfected with Mup20p-luc into HEK293 cells
(Fig. 8). As seen previously, Zhx2 activates Mup20p-luc roughly
2.3-fold. In contrast, Zhx1 did not activate Mup20p-luc. The
hybrid Zhx protein containing Zhx2 homeodomains signifi-
cantly activated Mup20p-luc, indicating that this region, rather
than the zinc-finger region, is primarily responsible for activat-
ing the Mup20 promoter (Fig. 8).

Figure 6. A region of the Mup20 promoter between �787 and �1000 is
responsive to Zhx2. A, HepG2 cells and AML12 cells were transfected with
pGL4 control or Mup20p-Luc reporter genes along with pcDNA3.1 E.V. or the
Zhx2 expression vector; Renilla luciferase was also included to control for
variations in transfection efficiency. After 48 h, cells were harvested, and
lysates were analyzed for firefly/Renilla luciferase. pGL4 was not responsive to
Zhx2, whereas the Mup20 promoter was activated by Zhx2 in both HepG2
and AML12 cells. B, a series of Mup20 promoter deletion constructs were
transfected with E.V. or Zhx2 in HepG2 cells and analyzed as described in A.
Mup20 promoter fragments extending to �1373 and �1000 were respon-
sive to co-transfected Zhx2, whereas fragments extending to �787, �588,
�365, and �181 were no longer responsive. Data are presented as mean �
S.D. *, p � 0.05; **, p � 0.01; ***, p � 0.001.

Figure 7. Gal4DBD-Zhx2 activates the Mup20 promoter and represses
the SV40 promoter when tethered by UAS motifs. HEK293 cells were co-
transfected with Gal4DBD-Zhx2 along with luciferase expression vectors con-
taining the Mup20 promoter (Mup20p), Mup20p and 5	 UAS copies (UAS-
Mup20p), SV40 promoter (SV40p), or SV40p and 5	 UAS copies (UAS-SV40p).
After 48 h, cells were harvested, and lysates were analyzed for firefly/Renilla
luciferase. The presence of the UAS increased Gal4DBD-Zhx2 responsiveness
of Mup20p nearly 3-fold and repressed SV40p roughly 3.4-fold. Data are pre-
sented as mean � S.D. **, p � 0.01; ***, p � 0.001.
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Zhx2 binds directly to the Mup20 and class B Mup promoters in
vivo

To determine whether Zhx2 directly binds Mup promoters
in vivo, ChIP was performed using livers from Zhx2fl and
Zhx2KO adult male mice. We focused on Mup20 because our
transfections localized Zhx2 binding to a region between
�1000 and �787 (Fig. 6B). The TTR promoter was used as a
control because the TTR gene is not a Zhx2 target. Although the
Zhx2 ChIP signal for the TTR promoter was �2-fold higher
than the IgG controls, this binding was the same in Zhx2fl and
Zhx2KO liver and thus considered background (Fig. 9). How-
ever, using primers that span the �884 to �759 region of the
Mup20 promoter, an �4.4-fold enrichment of Zhx2 binding to
the Mup20 promoter was observed in Zhx2fl liver compared
with the Zhx2KO liver (Fig. 9). A similar pattern was observed
using primers for the class B Mup promoters (the primers will
amplify Mup7, Mup10, and Mup19 promoters; data not
shown). These data indicate that Zhx2 can directly bind Mup
promoters in vivo.

Discussion

The Mup multigene family is ideal to study aspects of mam-
malian gene regulation, including coordinated control of mul-

tiple related genes, sex-biased expression, and tissue-specific
expression. Most mammalian species have a single Mup gene
(humans have only a single non-functional Mup pseudogene),
whereas mice and rats have 21/21 and 9/13 clustered Mup
genes/pseudogenes, respectively (9). In mice, Mups are ex-
pressed primarily in males. Although different Mups are
expressed in different tissues and at different levels, the liver is
the primary site of Mup synthesis. In fact, Mups are among the
most highly expressed genes in the adult male mouse liver, with
�5% of the total mRNA being transcribed from this gene family
(11). However, the basis for Mup expression in the liver or other
organs is poorly understood. Here we show that Zhx2 is
required for robust Mup expression in the adult male liver,
although the liver-enriched Mup genes (Mup20, Mup3, and the
class B Mup7, Mup10, and Mup19) exhibit differential respon-
siveness to Zhx2. Mup20 mRNA levels in BALB/cJ and Zhx2KO

mice are 1–2% the levels of age-matched wild-type controls. A
similar pattern is seen with hepatic class B Mups; mRNA levels
are less than 4% in BALB/cJ and Zhx2KO mice compared with
control mice. Mup3 expression appears to be less responsive to
changes in Zhx2; no difference in hepatic Mup3 mRNA levels
were seen in BALB/cJ and BALB/c livers, whereas a modest
reduction was seen in Zhx2KO mice. Curiously, in contrast to
the in vivo data, Mup3 is equally, if not more responsive, than
Mup20 and class B Mups in Zhx2-transfected AML12 cells.
One possible explanation for this differential response is that
the chromatin (histone modification, DNA methylation) of
Mup3 in the intact liver and AML12 cells is different. A second
possibility is that Mup3 is expressed in non-parenchymal cells
(i.e. non-hepatocytes) in the liver. Along these lines, all Mup
genes examined were reduced to a greater extent in Zhx2KO

livers than in Zhx2�hep livers, suggesting that Mup genes might
be expressed in non-parenchymal cells or that these cells influ-
ence Mup expression in hepatocytes. Although our analysis has
focused on the liver, which is the major site of Mup synthesis,
certain Mups are expressed in other mouse tissues, including
the lachrymal, salivary, and mammary glands (10). Zhx2 is also
ubiquitously expressed (20). The role of Zhx2 in controlling
expression of Mups and other target genes in these glands and
other non-hepatic tissues is ongoing.

Figure 8. The homeodomain region of Zhx2 is primarily responsible for
activation of the Mup20 promoter. A, diagram showing Zhx2 and Zhx1 with
zinc fingers (z) and homeodomains (1–5) are shown. Hybrid proteins in which
the zinc finger region of Zhx1 is fused to the homeodomain region of Zhx2
(ZF1HD2) or the zinc finger region of Zhx2 is fused to the homeodomain
region of Zhx1 (ZF2HD1) were generated at a conserved KRNNQTV site just
downstream of the zinc finger domain region. B, HEK293 cells were co-trans-
fected with Mup20p-Luc and Zhx expression vectors or pcDNA3.1 E.V. Renilla
luciferase was also included to control for variations in transfection efficiency.
After 48 h, cells were harvested, and lysates were analyzed for firefly/Renilla
luciferase. Zhx2 and ZF1HD2, but not ZF2HD1 or Zhx1, significantly activated
Mup20p-Luc. Data are presented as mean � S.D. *, p � 0.05; **, p � 0.01.

Figure 9. Zhx2 binds the Mup20 promoter in vivo. ChIP was performed
using control IgG and anti-Zhx2 antibodies with livers from adult male Zhx2fl

and Zhx2KO mice. For both genes, levels of IgG in Zhx2fl mice were set to 1. The
data indicate that Zhx2 binds the Mup20 promoter. Although the anti-Zhx2
shows somewhat increased binding to the TTR promoter compared with the
IgG control, there is no difference between the Zhx2fl and Zhx2KO samples.
Data presented as mean � S.D. **, p � 0.01.

Zhx2 and hepatic Mup expression

6770 J. Biol. Chem. (2017) 292(16) 6765–6774



The mechanism by which Zhx2 controls target gene expres-
sion is not fully understood. A consensus Zhx2 binding site has
not been identified, and it is not known which of the genes that
are dysregulated in the absence of Zhx2 are direct or indirect
targets. However, Zhx2 binds to and represses the Cyclin A and
Cyclin E promoters (28), whereas the transfection and ChIP
data presented here show that Zhx2 binds directly to and acti-
vates Mup promoters. Deletion analysis indicates that a region
of the Mup20 promoter between �1000 and �787 is the target
of Zhx2 activation. Further analysis of this region should help
identify a specific Zhx2 binding site. It will be interesting to
determine whether this site is also found in other Zhx2 targets,
including those that are repressed by Zhx2. Having found that
the Zhx2 homeodomain region is responsible for Mup pro-
moter activation, studies with hybrid proteins can further local-
ize the activation domains within Zhx2.

The ability of Zhx2 to positively or negatively regulate target
genes is of particular interest to us. The initial analysis of
human ZHX2 utilized cell culture systems to analyze ZHX2
function (14). These studies included co-transfections with
Zhx2-Gal4DBD fusion proteins and SV40 promoter-luciferase
reporter constructs linked to UAS. These studies indicated that
Zhx2-Gal4DBD, when tethered to the UAS, could repress the
SV40 promoter (14). We repeated this experiment and ob-
tained the same result (Fig. 7). However, using this same sys-
tem, we found that the presence of the UAS increases
Gal4DBD-Zhx2 responsiveness of the Mup20 promoter nearly
3-fold over Zhx2 alone (Fig. 7). These data indicate that Zhx2
activation or repression of target promoters is context-depen-
dent, i.e. requires gene-specific interactions with other factors
and/or chromatin remodeling complexes. Although other fac-
tors that directly control Mup genes have not been identified,
expression of several Mups decreases dramatically in HNF4�
knock-out mice and decrease to a lesser extent in Stat5b-defi-
cient mice (33).

Interestingly, positively regulated Mups and genes that are
negatively regulated by Zhx2 exhibit similar but opposite
expression patterns under multiple conditions, including
development, liver regeneration, and in HCC. For example,
steady-state AFP mRNA levels in mouse liver decrease over
105-fold within the first 4 weeks after birth. In contrast, expres-
sion of hepatic Mups increases 104- to 105-fold during this same
period. AFP and other negatively regulated Zhx2 targets are
transiently activated in regenerating liver, whereas Mup
expression is decreased during this period.5 Because AFP and
all other previously identified Zhx2 targets are often activated
in HCC, we would predict that Mups would be repressed in
liver tumors. This possibility is supported by an earlier mouse
study (34). Our preliminary analysis also indicates that expres-
sion of some, but not all, Mups are lower in mouse HCC sam-
ples compared with normal adult liver.5

Our initial interest in Zhx2 regulation of Mup genes came
from the observation that urinary Mup levels are dramatically
reduced in BALB/cJ mice (30). Having shown a direct relation-
ship between Zhx2 and Mup expression raises the possibility

that Zhx2 might influence Mup-associated traits. Mups are
known to influence a variety of behaviors in mice, including
male-male aggression. Zhx2 is mutated in BALB/cJ but not in
other BALB/c substrains.6 BALB/cJ mice exhibit higher fight-
ing behavior compared with the highly related BALB/cN sub-
strain, and this trait is controlled by a single locus (35, 36). A
genome-wide analysis of loci associated with male-male aggres-
sion was performed using F2 offspring of a BALB/cJ (high
aggression) X A/J (low aggression) cross (37). This genetic
study identified three loci that influence aggression, including
one tightly associated with the D15Mit46 microsatellite marker,
which is also tightly linked to Zhx2 (23). Future studies can deter-
mine whether Zhx2 influences behavior in mice and whether
this influence is associated with altered Mup expression.

The identification of Zhx2 began with the observation that
AFP (19) as well as other fetally expressed genes (24, 25) con-
tinue to be expressed in the postnatal BALB/cJ liver. Zhx2 also
controls the expression of hepatic genes that govern lipid
homeostasis, and altered Zhx2 expression leads to changes in
serum lipid levels (26). In this regard, it is interesting that two
human genome-wide association studies have identified SNPs
in Zhx2 that associate with carotid intima media thickness, a
subclinical measure of atherosclerotic lesions (38, 39). More
recently, we have found that female-biased Cyp genes are
repressed by Zhx2 in the male liver, demonstrating that Zhx2
contributes to sex-biased gene expression (31). However, many
of these previously identified targets exhibit modest changes in
expression in the absence of Zhx2. AFP levels are elevated �10-
fold in the absence of Zhx2 but still repressed about 104-fold
compared with what is found in the fetal liver. Female-biased
Cyps are expressed at higher levels in adult male Zhx2-deficient
livers but still expressed at significantly lower levels than what is
seen in adult female liver. In contrast, expression of Mup20 and
the class B Mup genes in the adult liver is highly dependent on
Zhx2. This strong association between Zhx2 and hepatic Mup
expression suggests that Mups will provide a more robust sys-
tem to explore the mechanism by which Zhx2 regulates target
gene expression.

In summary, the data presented here provide further evi-
dence that Zhx2 is an important regulator of gene expression in
the adult liver, including developmental regulation, sex-biased
expression, and changes in gene expression during liver disease,
including HCC. Many of the genes that are dysregulated in the
absence of Zhx2 are associated with metabolism. Although
Mups are most frequently associated with behavior, there is
evidence that Mups can regulate lipid and glucose metabolism
in mice (40). Because Zhx2 is expressed ubiquitously, it is likely
that it also regulates genes in other tissues.

Experimental procedures

Mice and treatments

All mice were housed in the University of Kentucky Division
of Laboratory Animal Research facility in accordance with
Institutional Animal Care and Use Committee-approved pro-
tocols. C3H/HeJ (C3H), BALB/cJ, and C57BL/6J (BL/6) mice

5 J. Jiang and B. T. Spear, unpublished observations. 6 M. Al-Kafajy and B. T. Spear, unpublished data.
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were purchased from The Jackson Laboratory; BALB/c mice,
which have a wild-type Zhx2 allele, were obtained from Charles
River. The TTR-Zhx2 transgenic mice (on a BALB/cJ back-
ground) express Zhx2 from a hepatocyte-specific transthyretin
promoter-enhancer cassette (41), were generated by the Uni-
versity of Kentucky Transgenic Mouse Facility, and were
described previously (20). To generate Zhx2 knock-out mice,
exon 3, which encodes the entire Zhx2 coding region, was
flanked by two loxP sites to generated a Zhx2 floxed allele
(Zhx2fl) in C57BL/6 mice (31). The Zhx2fl mice were crossed
with Alb-Cre mice (The Jackson Laboratory, 003574) to gener-
ate hepatocyte-specific Zhx2 knock-out mice (Zhx2�hep) or
crossed with E2a-Cre mice (The Jackson Laboratory, 003724)
to generate whole-body Zhx2 knock-out mice (Zhx2KO). For
developmental time point studies, female C3H mice were bred
to male BL/6 mice (both strains have wild-type Zhx2 alleles),
and female mice were monitored for vaginal plugs to estimate
the time of fertilization. For E17.5, pregnant females were killed
by CO2 asphyxiation at 17.5 days post-conception, and fetuses
were removed. For postnatal time points, mice were killed by
CO2 asphyxiation at the designated times after birth. Purifica-
tion of parenchymal hepatocytes and non-parenchymal cells is
described in the supplemental Experimental Procedures.

Cloning of reporter genes and expression vectors

The Mup20 promoter region (�1373 to �32) was amplified
from BL/6 mouse genomic DNA. The purified PCR product
was cloned into the pGEM-T Easy vector (Promega) and con-
firmed by sequencing. This �1.4-kb fragment was excised and
recloned into the pGL4.14[luc2/Hygro] luciferase vector (Pro-
mega). The resulting plasmid was designated Mup20p-luc.
Additional 5
 primers were used to generate Mup20 promoter
subfragments beginning at �1000, �787, �588, �365, and
�181; all subfragments ended at �32. A 210-bp fragment con-
taining the SV40 promoter was excised from pGL3-Luciferase
and inserted into pGL4.14[luc2/Hygro] to generate SV40p. The
Zhx expression vectors were constructed in our laboratory
using pcDNA3.1. Briefly, full-length Zhx2 and Zhx1 amplicons
with a 5
 FLAG epitope were amplified from BL/6 mouse
genomic DNA, cloned into pGEM-T Easy, sequenced, and
recloned into pcDNA3.1 to generate FLAG-Zhx2 (Zhx2) and
FLAG-Zhx1 (Zhx1), respectively. A full-length EGFP clone was
inserted in-frame 3
 of Zhx2 to generate the FLAG-Zhx2-GFP
plasmid (Zhx2-GFP). A fragment containing the 148-amino acid
DNA-binding domain of Gal4 was inserted in-frame 5
 of Zhx2 to
generate Gal4DBD-Zhx2. To generate UAS-Mup20p and UAS-
SV40p, a fragment containing five copies of the optimized Gal4
DNA-binding motif (42) was inserted upstream of Mup20p and
SV40p to generate UAS-Mup20p and UAS-SV40p, respectively.
The Gibson Assembly Cloning Kit (New England Biolabs, E5510S)
was used to generate Zhx1-Zhx2 hybrid proteins. The hybrid pro-
teins were fused at a conserved KRNNQT sequence located
between the zinc finger and homeodomain regions of Zhx1 and
Zhx2. Cloning details are available upon request.

Cell lines and transient transfections

AML12, a mouse hepatocyte cell line, HepG2, a human hep-
atoma cell line, and HEK293, a human embryonic kidney cell

line, were obtained from the ATCC (Manassas, VA). AML12
cells were cultured in a 1:1 mixture of DMEM and Ham’s F12
medium (DMEM/F12 medium) (Life Technologies) containing
1	 insulin-transferrin-selenium (Life Technologies), 40 ng/ml
dexamethasone, and 10% FBS (Life Technologies). HepG2 cells
were maintained in DMEM/F12 medium supplemented with
10% FBS and insulin (Sigma). HEK293 cells were cultured in
DMEM supplemented with 10% FBS. To examine the effect of
Zhx2 on endogenous Mup expression, 2.5 �g of Zhx2-GFP or
pcDNA3.1 empty vector control (E.V.) were transfected into
106 AML12 cells using the Neon Transfection System (Life
Technologies) and then seeded onto two wells of a 6-well plate.
After 48 h, when cells were near confluent, Zhx2-GFP expres-
sion was visualized using fluorescence microscopy to ensure
robust expression. Cells were harvested in RNAzol reagent and
frozen at �80 °C until RNA was prepared. All transfections
were done in duplicate and repeated three times. To test the
effect of Zhx2 on Mup20 promotor activity, HepG2 or AML12
cells were seeded at 105/well in 24-well cell culture plates. The
following day, 750 ng of expression plasmid (Zhx2 or E.V.) was
co-transfected with 250 ng of luciferase reporter plasmid (pGL4
or Mup20p-Luc) and 10 ng of Renilla luciferase vector (pRL,
Promega) into cells using Lipofectamine 2000 (Life Technolo-
gies) or TurboFect (Thermo Fisher Scientific) according to
the instructions of the manufacturer. To test the effect of
Gal4DBD-Zhx2 on Mup20p-luc and SV40p-luc with or without
UAS elements, HEK293 cells were seeded at 2 	 105/well in
24-well cell culture plates and transfected as described above.
Cell lysates were prepared after 48 h using the passive lysis
buffer (Promega). The firefly/Renilla luciferase levels were
determined in duplicate using the Dual-Luciferase reporter
assay system (Promega). All transfections were done in dupli-
cate and repeated three times.

RT quantitative real-time PCR

RNA was prepared from frozen tissues (�100 mg) or AML12
cells using RNAzol RT reagent (Molecular Research Center)
according to the instructions of the manufacturer. One micro-
gram of RNA was reverse-transcribed to cDNA using the
iScriptTM cDNA synthesis kit (Bio-Rad). qPCR reactions were
prepared with SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad) and amplified in a Bio-Rad CFX96 real-time PCR
system. Oligonucleotides were obtained from Integrated DNA
Technologies (Coralville, IA), and their sequences are shown in
supplemental Table 2. The qPCR Ct values were normalized
to ribosomal protein L30 levels and reported as normalized
expression of the indicated gene using the �Ct method (43).
L30 was used because we found that L30 mRNA levels remain
stable across different developmental time points (44). In all
cases, primers spanned introns so that amplicons from cDNA
and any contaminating genomic DNA would be of different
lengths and readily detected by melting curve analysis of com-
pleted PCR reactions.

Analysis of Mup protein levels in mouse liver and urine

Mup protein levels in liver and urine from Zhx2fl, Zhx2�hep

or Zhx2KO mice were analyzed by Western blotting. Liver pro-
tein lysates were prepared in radioimmune precipitation assay
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buffer, and protein concentrations of lysates were determined
using a Bradford protein assay reagent (Bio-Rad). Urine was
also collected from adult male Zhx2fl, Zhx2�hep or Zhx2KO mice
and clarified by centrifugation at 6700 	 g for 4 min. Total liver
protein or urine for each sample was resolved by electrophore-
sis using 15% SDS-PAGE and transferred to PVDF membranes.
After blocking with 5% dry milk, analysis of Mup proteins was
performed using a goat anti-mouse Mup polyclonal antiserum
(Cedarlane Laboratories, catalog no. GAM/MUP) and an
enhanced chemiluminescence kit (Pierce). For whole urinary
protein analysis, urinary proteins were separated by 15% SDS-
PAGE and stained by LabSafe Gel Blue reagent (G-Biosciences,
St. Louis, MO).

ChIP

Chromatin preparation was performed as described previ-
ously (45, 46) with minor changes. Mouse livers were harvested,
minced, cross-linked in 1.42% formaldehyde for 15 min fol-
lowed by quenching with a 1/10 volume of 1.25 M glycine solu-
tion for 5 min and washed twice with 1	 PBS containing pro-
teinase inhibitors. Nuclear extracts were prepared by Dounce
homogenization in cell lysis buffer (5 mM PIPES (pH 8), 85 mM

KCl, 0.5% Igepal, and proteinase inhibitors) followed by centrif-
ugation. Chromatin fragmentation was performed by sonica-
tion (Fisher Scientific sonic dismembrator, model 500) in
nucleus lysis buffer (50 mM Tris-HCl (pH 8), 10 mM EDTA,
0.5%SDS, and proteinase inhibitors). ChIP was performed
using antibodies (rabbit anti-Zhx2, made for us by Bethyl Labs)
and rabbit IgG with the Magna ChIP HiSens kit (Millipore)
following the instructions of the manufacturer. ChIP DNA
samples were analyzed by quantitative PCR using SsoAd-
vancedTM Universal SYBR Green Supermix (Bio-Rad) and a
Bio-Rad CFX96 real-time PCR system. Primers used for ChIP
are shown in supplemental Table 2.

Statistical analysis

All values within a group were averaged and plotted as
mean � S.D. p values were calculated between two groups using
Student’s t test. p � 0.05 was considered significant. Data were
graphed and analyzed using GraphPad Prism 6 software.
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