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Abstract

A picture is emerging that preverbal nonsymbolic numerical representations derived from the 

approximate number system (ANS) play an important role in mathematical development and 

sustained mathematical thinking. Functional imaging studies are revealing developmental trends in 

how the brain represents number. We propose that combining behavioral and neuroimaging 

techniques with cognitive training approaches will help identify the fundamental relationship 

between the ANS and symbolic mathematics. Understanding this relationship should ultimately 

benefit educators by providing ways to harness the ANS and hopefully improve math readiness in 

young children.

Introduction

The human mathematical mind is unique in its ability to accomplish feats such as calculating 

the trajectory of a rocket to mars, proving the Pythagorean Theorem, or counting the precise 

number of butterflies in a picture book. Mathematical ability is complex and multifaceted 

and relies on many component skills including but not limited to working-memory [1], 

executive function [2], and language [3]. The approximate number system (ANS) may serve 

as another critical foundation for mathematics [4,5]. The ANS supports our ability to 

roughly estimate the number of objects in a set (e.g. nonsymbolic quantity representation) 

without relying on verbal counting [5]. Here, we review both behavioral and neuroimaging 

data that examine the relationship between the ANS and symbolic mathematical abilities and 

argue that primitive numerical abilities scaffold symbolic math representations. We propose 

that the tools of cognitive neuroscience and educational psychology may together uncover 

the mechanisms by which this scaffolding takes place.
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A foundational building block for mathematics: the approximate number 

system

The ANS is present in a wide variety of animal species [5]; it emerges early in human 

development [6], and it continues to function throughout adulthood [7]. ANS representations 

are much like representations of other fundamental perceptual continua such as brightness or 

size in that they follow Weber’s law whereby reaction time and error rates decrease as the 

ratio or distance between to-be-compared quantities increases [8]. Although nonhuman 

animal and human infant numerical abilities are limited to imprecise enumeration supported 

by the ANS, adult educated humans are capable of representing exact symbolic numbers 

(e.g. ‘16′ or ‘sixteen’), and this forms the basis of mathematical operations. There is debate 

over the nature of the initial preverbal representations that ground children’s first number 

words. One proposal is that the ANS scaffolds the acquisition of exact symbolic numerals 

and subsequent math skills over development and remains tied to symbolic math faculties 

into adulthood [4]. However, alternative hypotheses suggest that ANS representations are 

only mapped onto number words later in development and are not involved in symbol 

grounding [9].

The association between the ANS and math achievement

A key source of evidence that the ANS scaffolds symbolic math is that ANS acuity and 

symbolic math achievement are correlated across the life span [e.g. 7,10–12]. Individuals 

with greater precision in discriminating between approximate numerical magnitudes tend to 

have higher scores on standardized measures of math achievement (see [13] for a meta-

analysis). In fact, the association between ANS and symbolic math may be strongest in 

preschool aged children [14,15•,16]. ANS acuity measured before children enter formal 

school predicts later math abilities [17,18] suggesting that strengthening the ANS might 

improve children’s readiness to learn math upon school entry. ANS acuity is also lower in 

children with dyscalculia (severe math difficulties) [19,20], see also [21]. Although these 

findings suggest a relationship between ANS and symbolic math, recent meta-analyses have 

shown this relationship to be relatively weak [13,15•,22] and a substantial number of studies 

have failed to find this correlation [e.g. 23–26]. There are a number of possible explanations 

for these conflicting results such as diverse dependent measures in both nonsymbolic 

comparison tasks and standardized tests of math achievement, poor reliability for measures 

of ANS acuity [27,28, but see 29], true age-dependent differences in the relationship 

between ANS and math, or the involvement of perceptual processes and inhibitory control 

related to nonsymbolic discrimination [25,26,30,31] (see [32–35] for detailed reviews of the 

correlational research). A recent study that failed to find a behavioral correlation between 

ANS acuity and math performance nevertheless found that individual differences in the size 

of the neural ratio effect in the bilateral IPS during nonsymbolic comparison correlated with 

standardized scores of math achievement [36••]. This finding suggests that the relationship 

between ANS and math may be better revealed by neuroimaging than behavioral indices.
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Causal relationship between the ANS and math achievement

Cognitive training studies provide an avenue to move beyond correlations and address the 

potential causal relationship between ANS acuity and symbolic math ability. Park and 

Brannon (2013) first demonstrated that computerized approximate arithmetic training 

enhanced symbolic arithmetic skills. In their study, adults were trained to approximately add 

and subtract sets of dots over the course of 10 days (e.g. 30 + 16 dots is 46 dots or 60 dots — 

see Figure 1a). Following this approximate arithmetic training, participants showed specific 

improvements in performing complex symbolic arithmetic problems, whereas no 

improvements were observed for a group of participants in a no-contact control condition or 

a fact training condition [37]. In a follow-up study, Park and Brannon replicated these results 

and further demonstrated that training approximate arithmetic resulted in greater gains in 

symbolic arithmetic skills in comparison to training visuo-spatial short-term memory, 

approximate number comparison, and symbolic ordering [38••] (see Figure 1b). The fact that 

participants in the symbol ordering and numerical comparison conditions did not show 

improvements on symbolic addition and subtraction argues against the idea that the effect 

was driven by expectations that number related exercises would improve performance [39] 

see also [40••]. Together these findings suggest that the manipulation of approximate 

quantities required by arithmetic is driving the transfer effect. One study in young children 

suggests that training approximate arithmetic may be effective early in development [41••]. 

Although more studies are necessary to explore the efficacy of training approximate 

arithmetic in pre-school aged children and children with mathematical difficulties using pre 

and post-test designs, if successful this approach could have important educational 

implications. Given that approximate arithmetic games do not require recognition of Arabic 

numerals or mastery of the verbal counting system this type of training has the potential to 

improve math readiness in preschool children at risk for math difficulties.

The relationship between the ANS and symbolic number in the brain

Dehaene proposed that the construction of the uniquely human mathematical mind through 

culture and education is made possible by co-opting brain systems that evolved to represent 

nonsymbolic quantity [42,43]. This hypothesis rests partly on the finding from functional 

magnetic resonance imaging (fMRI) studies that the bilateral intra-parietal sulcus (IPS) is a 

key neural substrate of both nonsymbolic and symbolic quantity processing [42,44–47]. For 

example, when adults compare the numerical magnitude of Arabic numerals, activity within 

the bilateral IPS is modulated by distance [47] consistent with behavioral ratio effects. 

Similar distance related changes in activity have been found in the bilateral IPS when 

participants are presented with a deviant stimulus that differs in numerosity following 

adaptation to a steady stream of nonsymbolic quantities (arrays of dots) [45]. These findings 

have been taken as indirect evidence that there is a common neural code within the bilateral 

IPS for representing symbolic and nonsymbolic quantities (but see [48] for an alternative 

view).

There is also evidence that the left IPS becomes specialized for symbolic number. Symbolic 

and nonsymbolic quantities activate overlapping parietal regions partially lateralized to the 

right IPS [49,50]. By contrast, there is greater association of the left parietal cortex for exact 
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symbolic compared to approximate nonsymbolic tasks [44,50]. Specifically, using cross 

format fMRI adaptation, Piazza and colleagues found evidence that the left IPS contained 

sharper neural tuning curves for symbolic numerals compared to the right IPS. Consistent 

with these findings, Holloway et al. (2010) found that the right IPS was activated for both 

symbolic and nonsymbolic number comparison, but found specific activity in the left 

angular gyrus for symbolic comparison.

Developmental studies are uniquely suited to investigate the emergence of symbolic 

representations. Indeed, the neural signatures of the ANS are evident in the right IPS in 

infants [51•,52] and young children [53]. Number representation becomes more lateralized 

to left IPS over the course of development and may be driven by acquisition of the symbolic 

number system [54] (see Figure 2a). In direct support of this idea, Emerson and Cantlon 

found that activation in the right IPS during a dot to numeral matching task was stable in 

children between four and nine years of age across two fMRI sessions; however, numeral 

matching acuity was positively correlated with longitudinal increases in left IPS activity 

[55••]. Comparably, Vogel and colleagues (2015) found age related changes in ratio 

dependent neural recovery following adaptation to symbolic numerals in the left IPS; 

however, activity in the right IPS was invariant across all ages (age 6–14 years) [56••]. 

Furthermore, children with a stronger neural ratio effect in the left IPS during symbolic 

number processing exhibited higher arithmetic scores [57•].

Another proposed developmental trend in the neural bases of numerical representation is a 

fronto-parietal developmental shift. When children and adults perform nonsymbolic and 

symbolic number comparison, neural distance effects are found in both the IPS and the 

prefrontal cortex. Adults, however, show larger neural distance effects in the IPS in 

comparison to children [58–60]. Relatedly, Rivera and colleagues (2005) found age was 

positively correlated with activity in the left parietal cortex, such as the left supramarginal 

gyrus, left IPS, as well as the left lateral occipital temporal cortex during addition and 

subtraction. By contrast, young children exhibited greater activity in the prefrontal cortex 

including bilateral superior and middle frontal gyri, left inferior frontal gyrus, and the left 

hippocampus [61] (see Figure 2b).

Thus, the emerging picture is that the right IPS processes nonsymbolic magnitudes at birth 

and remains stable over development supporting the acquisition of symbolic representations 

in the left IPS. Changes in the left IPS reflect experience-dependent refinement of symbolic 

representations as a consequence of increasing fluency with numbers [55••,56••]. As 

symbolic numbers are introduced they activate the IPS with preferentially encoding in the 

left hemisphere (see Figure 2a). The fronto-parietal shift may thus reflect the fact that 

children initially recruit prefrontal areas associated with working memory and attention 

resources when attempting to solve arithmetic problems and learn symbolic numerals. 

Subsequently, as they develop stronger more automatic associations between symbols and 

the quantities they represent, activation shifts to the left IPS [54]. Under this scenario, the 

prefrontal cortex might play a key role in learning semantic associations, but the associations 

themselves are instantiated in IPS. After the associations are fully automatized the IPS is 

recruited by both symbolic and nonsymbolic number and prefrontal activity decreases (see 

Figure 2b) [62].
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Overlapping neural activity for symbolic and nonsymbolic numerical processing tasks has 

been taken as evidence that the ANS scaffolds symbolic mathematical development [44,63]. 

However, neural overlap between symbolic and approximate numerical representations does 

not necessitate that the two are causally related [64]. In fact, recent studies using multi-voxel 

pattern analyses in adults have in some cases uncovered dissimilar patterns of activity in the 

bilateral IPS for approximate and symbolic number processing [65,66•]. These results show 

that despite overlapping activation in the IPS for symbolic and approximate numerical 

processing, the underlying representational structure is highly format dependent. Thus, an 

alternative possibility is that distinct symbolic representations in the IPS (left IPS) are 

constructed independent of the ANS [9,54,67]. It will be important to conduct similar fMRI 

studies with young children because one possibility is that numerical representations are 

format independent early in development and diverge with numerical experience into 

adulthood.

Future directions: using training studies to uncover how the human 

mathematical mind develops

As discussed above, longitudinal studies using fMRI and other non-invasive neuroimaging 

tools are revealing developmental trends in brain development that coincide with changes in 

numerical cognition. However, it is difficult to know which brain changes are related to math 

development and which are related to other concurrent cognitive development. We propose 

that brain imaging before and after cognitive training is a promising tool that can help 

differentiate the specific developmental brain changes that underlie a child’s acquisition of 

the symbolic number system and map the emergence of the mathematical mind. FMRI 

training studies as cartooned in Figure 3, should provide fundamental insights into the 

relationship between the approximate arithmetic and symbolic math, which can be used as a 

model to evaluate behavioral and neural changes as a function of different types of ANS 

training programs.

Indeed, pre-test and post-test functional neuroimaging studies have already begun to uncover 

important neural changes associated with math interventions in participants with dyscalculia 

[68•,69], math anxiety [70•], and Turner syndrome (a genetic condition associated with 

deficits in math skills) [71•]. For example, Iuculano and colleagues found that children with 

DD exhibited aberrant widespread neural activity in prefrontal cortex, the bilateral IPS, 

regions in the ventral temporal-occipital cortex, and right hippocampus when performing an 

addition verification task in comparison to typically developing controls. Following an eight 

week one-on-one tutoring program that focused on building procedural and conceptual 

knowledge of basic arithmetic, children with DD showed normalization of brain activity. 

Specifically, regions that showed atypical activation before receiving tutoring, no longer 

differentiated children with DD and typically developing children at post-test. Furthermore, 

training induced functional plasticity, characterized by individual change in neural activity 

between pre and post-test scans, predicted gains in arithmetic performance following 

tutoring with greater sensitivity than behavioral measures. These results reveal that a 

network of brain regions associated with visuo-spatial processing, attention, working 

memory and basic numerical processes were remediated by the one-on-one tutoring program 
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[68]. Furthermore, children with Turner Syndrome, who received general number sense and 

executive function training showed significantly increased activity in the parietal cortex and 

decreased activity in regions located in the prefrontal cortex, hippocampus, and amygdala 

during complex arithmetic problems following training [71•]. These preliminary findings 

reveal neural changes in the fronto-parietal network associated with improvements for 

complex arithmetic and suggest that the fronto-parietal shift may be a significant indicator of 

math fluency and remediation efficacy; however, the specificity of these findings needs to be 

further examined with relevant control groups.

Cognitive training studies, such as those conducted by Park and Brannon [37,38••], lay the 

foundation for exploring multiple neural mechanistic hypotheses for the relationship 

between approximate arithmetic training and symbolic mathematics. First, approximate 

arithmetic training may increase the association between symbolic representations of 

numbers and the quantities they represent. If approximate arithmetic training indeed 

increases the precision of the ANS, and processing symbolic numerals involves accessing 

their corresponding ANS representations, then increasing ANS precision may facilitate 

symbolic numeral processing. One potential brain corollary of this change might be 

increased lateralization of symbolic representations to the left IPS similar to the changes 

observed over development [55••,56••], or increased functional connectivity between right 

and left IPS. Alternatively, approximate arithmetic may benefit symbolic arithmetic due to 

the shared cognitive operations of addition and subtraction rather than any associated 

increase in ANS precision. If this is the case we might expect changes in a broader network 

of prefrontal and parietal areas as a function of approximate arithmetic training (see Box 1 

for open empirical questions for future research). Relatedly, some research has suggested 

that the relationship between ANS acuity and symbolic math is driven by inhibitory control 

mechanisms necessary to suppress information from visual perceptual cues to make 

discriminative judgments based on quantity [25,26,31]. For example, a recent training study 

with low income preschool children has shown that ANS acuity training using nonsymbolic 

comparison reduces the effect of irrelevant visual perceptual cues on performance during 

comparison tasks at post-test [72]. Thus, one possibility is that approximate arithmetic 

training improves inhibitory control comparable to nonsymbolic discrimination training and 

thus may result in changes in neural networks in prefrontal cortex associated with executive 

function. Another brain area that may play a special role in arithmetic is the hippocampus, 

where decreasing activation correlates with improving arithmetic skills [61,73]. Increases in 

functional connectivity between the hippocampus and bilateral dorsolateral prefrontal cortex 

and the left IPS has been found to be associated with longitudinal improvements in fact 

retrieval fluency [73]. One intriguing possibility is that approximate arithmetic affects 

hippocampal activity by improving the conceptual understanding of basic arithmetic that 

might facilitate automatic coding of arithmetic facts. Neuroimaging tools in combination 

with pre-test and post-test behavioral training designs in both adults and children should 

yield answers to these exciting questions, and provide an important bridge between 

neuroscience, cognitive science, and education. However, there are many open empirical 

questions pertaining to the role of the ANS (or approximate arithmetic) in developing 

symbolic numerical representations and subsequent math skills (see Box 1) that warrant 

further investigation before this work can be directly translated to the classroom. 
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Furthermore, by combining different analytical tools to study how individual differences in 

sensitivity to training are linked with brain changes we may ultimately come to a better 

understanding of how to tailor interventions to students.

Box 1

Open empirical questions

• Does training approximate numerical abilities have enduring effects on 

symbolic math performance? Are the effects dose-dependent?

• At what age or mathematical skill level would approximate arithmetic training 

provide the greatest benefit for mathematical improvement? Can approximate 

arithmetic training be useful to increase math readiness in preschool children?

• What cognitive and neural mechanistic processes subserve positive transfer 

effects to symbolic arithmetic skills? Can studying how the brain changes as a 

function of training provide insight into the mechanism of transfer?

• Does approximate arithmetic training induce structural or functional changes 

in the bilateral IPS?

Conclusions

There remain many unanswered questions about the precise nature of the relationship 

between the ANS and symbolic mathematical abilities. Behavioral training studies provide 

strong support for the proposal that the uniquely human mathematical mind builds upon the 

evolutionarily ancient ANS. Developmental cognitive neuroscience is uncovering trends in 

brain development associated with the emergence of the uniquely human mathematical 

abilities. By combining functional brain imaging methods with cognitive training designs, 

we will be able to identify the neural networks that change as children become symbolic 

processors. Ultimately, we hope this endeavor will uncover the true nature of the relationship 

between the ANS and symbolic math and allow the development and design of interactive 

and engaging training tools for improving math skills in both typically and atypically 

developing children at home or in the classroom.
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Figure 1. 
(a) During an addition trial of the approximate arithmetic training task, an array of dots 

moves behind a screen followed by a subsequent an array of dots. Participants are then asked 

to select the dot array that matches the sum. On other trials participants had to make a 

greater-or-less-than comparison between the sum and a single array. (b) The approximate 

arithmetic training was shown to improve performance on complex addition and subtraction 

compared to a vocabulary task to a greater extent than approximate number comparison, 

short-term memory, and symbolic ordering training. A portion of the data replotted from 

[38].
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Figure 2. 
An illustration of the developmental changes in brain activity for numerical and arithmetic 

tasks. (a) A cartoon depiction of the developmental specialization of the left IPS. (b) Fronto-

parietal shift over the course of development. IPS: intraparietal sulcus, SFG: superior frontal 

gyrus, MFG: middle frontal gyrus, IFG: inferior frontal gyrus, PreC: precentral gyrus, SMG: 

supramarginal gyrus.
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Figure 3. 
A schematic illustration of a neuroimaging pre-test and post-test training design. Neural 

analytical tools can be used to identify both functional and structural neuro-markers, as well 

as behavioral performance can be used to either predict individual differences in training 

gains and/or uncover the relationship between approximate arithmetic and symbolic math. 

The schematic of the approximate arithmetic represents one trial, however, in the true task, 

the dot arrays are not displayed simultaneously as depicted.
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