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ABSTRACT
The appropriate timing of flowering is crucial for the reproductive success of plants.
Hence, intricate genetic networks integrate various environmental and endogenous
cues such as temperature or hormonal statues. These signals integrate into a network
of floral pathway integrator genes. At a quantitative level, it is currently unclear how
the impact of genetic variation in signaling pathways on flowering time is mediated
by floral pathway integrator genes. Here, using datasets available from literature,
we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in
upstream signalling components with the expression levels of floral pathway integrator
genes in these genetic backgrounds. Our modelling results indicate that flowering time
depends in a quite linear way on expression levels of floral pathway integrator genes.
This gradual, proportional response of flowering time to upstream changes enables a
gradual adaptation to changing environmental factors such as temperature and light.

Subjects Bioinformatics, Computational Biology, Developmental Biology, Plant Science
Keywords Arabidopsis thaliana, Flowering time, Linear regression, Gene expression levels

INTRODUCTION
The reproductive success of flowering plants depends on flowering at the right moment.
Hence, plants have evolved genetic and molecular networks integrating various environ-
mental cues with endogenous signals in order to flower under optimal conditions (Srikanth
& Schmid, 2011). The signal transduction pathways that receive and transmit input signals
include the photoperiod pathway, the vernalization pathway, the ambient temperature
pathway, and the autonomous pathway (Andres & Coupland, 2012). The input from these
pathways is integrated by a core set of floral pathway integrator genes (Simpson & Dean,
2002). The regulation of flowering time by these various factors has been extensively studied
experimentally in the plant model species Arabidopsis thaliana. Substantial qualitative in-
formation is available about the factors involved and how these interact genetically, both for
the signal transduction pathways and the floral pathway integrator genes (Bouche et al.,
2016). Activation of the photoperiodic flowering pathway leads to transcriptional activation
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of FLOWERING LOCUS T (FT), an activator of flowering. FT is produced in the leaves
and moves to the shoot apical meristem (Zuo et al., 2011), leading to activation of
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) (Yoo et al., 2005) and
APETALA1 (AP1) expression (Abe et al., 2005; Wigge et al., 2005). The vernalization
(winter cold) pathway inhibits the transcription of FLOWERING LOCUS C (FLC). FLC,
together with SHORT VEGETATIVE PHASE (SVP), represses the transcription of SOC1
and FT. Thus FLC acts as a flowering repressor by blocking the photoperiodic flowering
pathway. In the ambient temperature pathway, which involves amongst other FLOWERING
LOCUS M (FLM) and SVP, small fluctuations in temperature influence flowering time via
floral pathway integrators including FT and SOC1 (Verhage, Angenent & Immink, 2014;
Capovilla, Schmid & Pose, 2015). SOC1 integrates signals from multiple pathways and
transmits the outcome to LEAFY (LFY) (Immink et al., 2012;Michaels et al., 2003); SOC1 is
supposed to act at least partially via a positive feed-back loop in which AGAMOUS-LIKE 24
(AGL24) is involved upon dimerizing with SOC1 (Lee et al., 2008). Autonomous pathway
mutants are characterized by delayed flowering irrespective of day length. The proteins
encoded by the genes in the autonomous pathway generally fall into two broad functional
categories: general chromatin remodelling or maintenance factors, and proteins that affect
RNA processing (Srikanth & Schmid, 2011). Gibberellins influence the floral transition
through the regulation of SOC1 and LFY (Eriksson et al., 2006). LFY is a positive regulator of
AP1 (Wagner, Sablowski & Meyerowitz, 1999) and the commitment to flower is ascertained
by a direct positive feed-back interaction betweenAP1 and LFY. Once the expression ofAP1
has been initiated, this transcription factor orchestrates the floral transition by specifying
floral meristem identity and regulating the expression of genes involved in flower
development (Kaufmann et al., 2010).

In addition to qualitative information on pathways involved in flowering time regulation,
recently quantitative information has become available. This includes flowering time
measurements under various conditions and in different genetic backgrounds (Jung &
Muller, 2009; Leal Valentim et al., 2015), and time series of expression for key floral pathway
integrator genes (Leal Valentim et al., 2015). Such quantitative information has enabled
construction of a set of models describing flowering time regulation at the molecular level
(Leal Valentim et al., 2015; Jaeger et al., 2013; Dong et al., 2012; Salazar et al., 2009). Given
the above-described complexity, computational models are useful tools to comprehend
flowering time regulation. One example of a quantitative finding from our model (Leal
Valentim et al., 2015) for the network of floral pathway integrator genes is that a disturbance
in a particular gene has not necessarily the largest impact on directly connected genes. For
example, the model predicts that SOC1mutation has a larger impact on AP1, which is not
directly regulated by SOC1, compared to its effect on LFY which is under direct control of
SOC1. This prediction was confirmed by expression data.

Flowering time regulation facilitates the successful dispersion of flowering plants over the
world (Andres & Coupland, 2012) by contributing to the adaptation of plants to different
environmental conditions. In this context, it is an important question how genetic variation
in the various signaling pathways influences flowering time regulation. Can we describe the
effect of genetic variation in these signaling pathways by linking the magnitude of flowering
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time change to the magnitude of expression change of floral pathway integrator genes? If
so, what type of relationship exists between expression levels of floral pathway integrator
genes and flowering time in genetic backgrounds which differ in signaling components?

The above-mentioned quantitative analyses focus on one specific Arabidopsis genetic
background, without genetic difference in signaling pathways being taken into account,
leaving these questions so far unanswered. In principle, one could imagine answering
these questions by extending these models to include a large number of signaling pathway
components. However, construction of such large models would lead to serious complica-
tions in terms of e.g., parameter estimation. Here we follow a different route to investigate
how the effect of genetic variation in components of upstream signalling pathways on
flowering time is mediated by floral pathway integrator genes. We establish a quantitative
connection between expression levels of floral pathway integrator genes, and flowering times
in various genetic backgrounds differing in upstream signal components. This demonstrates
that in many cases, floral pathway integrator genes transmit perturbations to flowering
time via gradual, proportional changes in their expression levels. Our current study is
complementary to our previous modelling approach which focused on the floral pathway
integrator gene network, and not on the input to this network by upstream signalling
components. This analysis provides a quantitative understanding of the effect of variation
in the various input pathways on flowering time, which will ultimately enable us to better
understand plant adaptation.

METHODS
Simulations
Predictions from the dynamic flowering time model were obtained using the model as
presented in Leal Valentim et al. (2015). This consists of a set of Ordinary Differential
Equations (ODEs) for the dynamics of AP1, LFY, SOC1, FD, FT and AGL24; SVP and FLC
are present as external inputs in the model. In each of the six ODEs, regulation of gene
expression is described by one or more terms of the form β∗ f (x), where f is a function of
concentrations x of one or more regulators. To simulate the effect of genetic variation in
upstream signalling pathways influencing a given gene, the value of each parameter β in its
equation was modified by multiplying it with a factor a ranging from 0.05 to 10 in steps
of 0.05 and subsequently from 10 to 100 in steps of 1. The resulting flowering time after
simulating the modified model was obtained, as well as the expression value of the gene
itself at day 10 (this timepoint was used because it matches closely with the timepoint used
in much of the experimental datasets that we used). Out of the resulting expression values,
a range of ten-fold expression change was chosen around the unperturbed expression
level at day 10. In addition, in Fig. 1 a five-fold expression range around the unperturbed
expression level at day 10 is indicated. These ten-fold and five-fold ranges were obtained
by dividing or multiplying the unperturbed value at day 10 with sqrt(10) = 3.16 or sqrt(5)
= 2.236, respectively. For SVP and FLC there is no ODE because these genes are present
as external inputs in the model. For these, variation in upstream signalling pathways was
simulated by simply setting the level of the gene to different fixed levels. For SVP this again
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Figure 1 Dynamic model predicts linear dependency of flowering time in different genetic
backgrounds on floral pathway integrator gene expression levels. The dynamic Ordinary Differential
Equation (ODE) model for flowering time regulation in Leal Valentim et al. (2015) was used to simulate
how flowering time (FLT) depends on gene expression level measured at day 10 for (A) AGL24 (B) SOC1
(C) LFY (D) FT (E) SVP (F) FLC. To mimic genetic variation in upstream signalling pathways, parameter
values in the ODE model were modified as explained in Methods. Red points indicate the expression level
of the gene at day 9–11 in the unperturbed model. Vertical dotted grey lines indicate five-fold expression
range around the expression level at day 10 in the unperturbed model, which is indicated with a vertical
dotted red line. For FLC, the five-fold range is small compared to the displayed range and the vertical lines
fall on top of each other.

involved a range of ten-fold expression change; for FLC this range was arbitrarily made
larger because of the small effect of ten-fold expression change.

Experimental data
We use data from a randomly chosen subset of genes for which mutations are described as
impacting flowering time (Lloyd & Meinke, 2012). Our dataset has at least several examples
per floral pathway integrator gene. Data was extracted from figures or tables in papers
describing the effect of mutations of particular genes on flowering time, and presenting the
expression level of genes involved in signal integration. Expression measurements in differ-
ent experiments are made at different days and/or different tissues, but such differences are
not taken into account. Also, in particular for FT, often values are provided for several
timepoints during one day (to capture the circadian rhythm). Although for such a case in
principle it would be best to record the total area under the curve (sum of expression), for
simplicity the highest observed value was used as approximation in this case.

To analyse the data, a straight line was fitted through each of the datasets: T =
Sensitivity ∗ x+T0, where T is flowering time and x is expression level; Sensitivity and T 0

are parameters for which values are obtained in the fit. The R-function lm was used for the
linear fit, and cor.test to test the statistical significance.

One important point in our data analysis is that various datasets were obtained using
different ways of normalizing the expression values. Multiplicative normalization should
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effect Sensitivity in a multiplicative way: if T = S∗x+T0, then for x ′= a∗ x , T = (S/a)∗
x ′+T0, i.e., S′= S/a. Hence, we can compare the value of Sensitivity for different genes
only when the same reference gene is used for normalization, and no additional relative
normalization is used. The parameter T 0 should be independent of the normalization
that is used for expression data. It would only depend on the unit of flowering time. This
unit was either total leaf number or rosette leaf number; we did not observe a systematic
difference for data reported in either unit and hence did not discriminate between these
cases in presenting our results.

In addition to separately fitting the various datasets available for a given floral pathway
integrator gene, we also obtained one model for each floral pathway integrator gene in
which the various datasets were fitted simultaneously. This was performed using the
R-function nls. In these models, each dataset obtained its own value of Sensitivity, but only
one global value of T 0 was used for each floral pathway integrator gene.

RESULTS
We aim to obtain a comprehensive picture of how variation in signalling pathways influ-
ences flowering time via affecting floral pathway integrator genes. To do so, we first analysed
our recently published mechanistic model for the floral pathway integrator gene network
(Leal Valentim et al., 2015). This model describes regulatory interactions between the
various integrator genes and is able to predict the effect of a specific perturbation in one
of the genes, on all the other genes in the network. By assessing how this finally influences
AP1 expression, the model predicts flowering time: flowering is predicted to start when
AP1 expression passes a certain threshold. This model was developed using expression data
and flowering time of wild-type Arabidopsis thaliana, as well as mutants of floral pathway
integrator genes. In our current work, we focus on genetic variation in upstream signalling
pathways, which were not used previously for modelling. To simulate variation in these
upstream signalling pathways, parameters describing input to the floral pathway integrator
genes were modified in the model (see ‘Methods’). This allowed to observe the dependency
of predicted flowering time on expression levels of floral pathway integrator genes (Fig. 1).
These plots indicate that for each gene, in an expression range of five- to tenfold around its
nominal expression, the response of flowering time to expression change is approximately
linear. To further analyse the response curves obtained from our model (Fig. 1) a linear
model was fitted. The p-value associated with the linear fit is significant (<10−15) for all
the genes over the full range of expression displayed in Fig. 1. The obtained Pearson R2

values for the linear fits are all above 0.75.
Hence, analysis of our floral pathway integrator gene regulatory network model predicts

a gradual and rather linear dependence of flowering time response on changes in input to
the floral regulatory network. To assess the validity of this prediction, we chose to analyze
large amounts of datasets available in literature. Numerous studies present measurements
of flowering times in various conditions and for various genetic backgrounds. Since one
often knows which floral pathway integrator gene is relevant for the specific signalling
pathway involved, the expression levels of the specific gene thought to be responsible for

van Dijk and Molenaar (2017), PeerJ, DOI 10.7717/peerj.3197 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.3197


mitigating the input from the signal transduction pathway are measured as well. Although
one has to extract most of this data manually from tables or figures in relevant publications,
it is an advantage that large amounts of data can be analysed in this way. Even though
some of the individual datasets are small, in its totality the data consists of over 200 pairs
of measurements of expression level and flowering time. This data has so far been scattered
throughout literature and we demonstrate that it can be integrated. We use this data as
a means to describe in a quantitative way the effect of changes in genetic background
in signalling pathway components on flowering time. We start with a specific example
regarding the floral pathway integrator gene SOC1.

Introductory example for SOC1
SOC1 expression measurements (qPCR) were obtained in different genetic backgrounds
(cry2 and fri, affecting the photoperiod pathway and the vernalization pathway, respectively)
and different conditions (El-Din El-Assal et al., 2003). For the same conditions, flowering
time was also measured (El-Din El-Assal et al., 2003). It is straightforward to combine these
two sets of measurements in a quantitative way, although this has not yet been done so
far. As shown in Fig. 2A, across the different genetic backgrounds, there is a quite strong
linear dependency of flowering time on the expression level of SOC1 (R2

= 0.80). It is this
dependency that is the focus of investigation of this study, for SOC1 as well as for floral
pathway integrator genes. In our analysis, we focus on the effect of differences in genetic
backgrounds on each particular gene in the floral pathway integrator gene network. For that
particular gene, expression level measurements might then be explanatory for flowering
time changes. By analysing data as shown in Fig. 2A from various publications, we are able
to get a comprehensive quantitative picture how floral pathway integrator gene expression
mediates transmission of environmental and endogenous cues to flowering time.

When integrating and comparing data for different experiments or different genes, one
particular complication is that reported qPCR gene expression levels are normalized in
various ways. In order to be able to combine datasets from different publications, one of
the two following conditions should hold: (1) The same reference gene was used for nor-
malization, and we assume that the expression level of the reference gene is constant in the
different conditions applied in the various publications. In this scenario, expression levels
of different genes in various publications can be quantitatively compared. Alternatively,
(2) the reported expression level was scaled using wildtype expression levels of the gene of
interest. In this case, in order to compare data from different publications, it is essential
that the wildtype expression level that is used is the same. This seems less likely than the
assumption that a reference gene such as actin or tubulin has a constant gene expression
level. In several cases, the two scenarios are combined, in the sense that qPCR data are first
normalized to a reference gene but that the reported expression level is subsequently scaled
to a wildtype expression level.

For SOC1, the data analysed above were reported after scaling the expression level to
wildtype SOC1 expression levels. Two additional examples of data for flowering time and
SOC1 expression were obtained in which expression levels were normalized relative to a
reference gene (Liu et al., 2008; Gunl et al., 2009) (Figs. 2B–2C). In one of these (Fig. 2B),

van Dijk and Molenaar (2017), PeerJ, DOI 10.7717/peerj.3197 6/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.3197


Figure 2 Dependency of flowering time (vertical axis) on SOC1 expression levels (horizontal axis) in
various genetic backgrounds and various conditions, obtained in three different studies (A–C). Flow-
ering time is reported in number of leaves; expression is normalized by scaling to wildtype expression level
(A), normalized to actin (B) or normalized to tubulin (C).

there was again a clear linear relationships between the observed SOC1 expression levels
and flowering time in various backgrounds, with Pearson R2 value of 0.76. In the third
one, there was less evidence for a linear relationship, with Pearson R2 value of 0.46 (p-value
0.3). Remarkably, it can be observed in Fig. 2 that one of the two parameters in the linear
equation is quite similar for each of the three datasets (78, 98 and 91, respectively). This
observation is more generally true, and we will come back to it in the next section. Note
that the fits in Figs. 2B and 2C are less robust than the one in Fig. 2A, but we discuss below
how we can combine multiple datasets for one gene in a simultaneous fit.

Dependency of flowering time on floral pathway integrator gene
expression levels
Datasets reporting gene expression levels for various floral pathway integrator genes in
different genetic backgrounds, in combination with flowering time values in these genetic
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Figure 3 Overview of data and analysis. (A) Available flowering time measurements and expression lev-
els of floral pathway integrator genes were obtained from literature for various genetic backgrounds. (B)
Genes from different upstream signalling pathways which were mutated in these genetic backgrounds are
indicated. We analyse the data by modelling how expression level changes in floral pathway integrator
genes (caused by genetic variation in the upstream signalling pathways) lead to quantitative changes in
flowering time. In a first step, several models were obtained for each of the floral pathway integrator genes.
Subsequently, one final model was obtained for each of these genes.

backgrounds, were obtained (Fig. 3; Table 1). We start by fitting multiple models for each
gene (one per dataset). Because in some cases, the number of data points in a dataset is
rather small, we subsequently fit one model per floral pathway integrator gene (see below).

As presented above for SOC1, linear relationships were observed between flowering time
and gene expression levels (Figs. S1–S5; Table S1). These can be described by the following
equation:

T = Sensitivity ∗ Expression level+T0. (1)

Here,T is the observed flowering time, and the coefficients Sensitivity andT 0 are specific for
each floral pathway integrator gene. This equation describes how the measured flowering
time T in a given genetic background can be modelled as a linear function of the expression
level of a floral pathway integrator gene. The parameter Sensitivity describes the slope, in
other words, the sensitivity of flowering time to changes in expression of the flowering
time integrator network gene. Parameter T 0 describes the intercept with the line where
ExpressionLevel equals zero. Because, as explained above, expression data can only be
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Table 1 Datasets obtained from literaturea.

Gene/reference Mutant
genotypes

Wildtype
genotype

Conditionsb Flowering
timec

SOC1
El-Din El-Assal et al. (2003) cry2, FLC-Sf2, FRI-Sf2, cry2; FLC-Sf2,

cry2; FRI-Sf2, cry2; FRI-Sf2; FLC-Sf2
Ler, Cvi LD, SD; 25C; day 21 TL

Gunl et al. (2009) gi, 35S::GI, 35S::GI; gi Col LD; 22C; day 15 TL
Liu et al. (2008) 35S::AGL24, 35S::SOC1, agl24 Col SD; 22C; day 21 RL
FT
Mizoguchi et al. (2005) gi; 35S::GI,lhy, lhy;cca1, 35S::GI; lhy, gi; lhy; cca1 Ler SD; 22C; day 10 TL
Li et al. (2008) agl24, 35S::SVP, svp, soc1 Col, Ler, C24 LD, SD; GA; 22C; day 11 TL
Zuo et al. (2011) cry2, cyr2; spa1 Col, RLD LD; day 14 RL
Fornara et al. (2009) Cdf1, cdf2, cdf3, cdf5 Col LD, SD; day 10 RL
Yang et al. (2012) 35S:JMJ18, jmj18, tissue specific JMJ18 Col LD; 22/18C; day 11 TL
Gunl et al. (2009) gi, 35S::GI, 35S::GI; gi Col LD; 22C; day 15 TL
Endo et al. (2007) cry2, tissue specific CRY2 Col LD; day 9 RL
Nefissi et al. (2011) elf3; elf3 enhancer and suppressor lines Col, Ler LL; day 14 RL
Sawa & Kay (2011) gi; 35S::gi; tissue specific GI Col LD, SD; 23/16C; day 10 TL
Tseng et al. (2004) gi, spy Col, Ler LD; 22C; day 14 TL
Wu, Wang & Wu (2008) lwd1; lwd2, lwd1; lwd2/LWD1 Col LD, SD; day 18 RL
FLC
Yang et al. (2012) 35S:JMJ18, jmj18, tissue specific JMJ18 Col LD; 22/18C; day 11 TL
El-Din El-Assal et al. (2003) cry2, FLC-Sf2, FRI-Sf2, cry2; FLC-Sf2,

cry2; FRI-Sf2, cry2; FRI-Sf2; FLC-Sf2
Ler, Cvi LD, SD; 25C; day 21 TL

He et al. (2004) nox1, nos1, NO-donor treatment Col LD; 22C; day 10 RL
Niu et al. (2007) prmt10, prmt5 Col LD; day 11 TL
Jiang et al. (2007) ldl1, ldl2, ldl1/ldl2 Col LD; day 10 TL
Wang et al. (2012) ugt87a2 Col LD; 22C; day 21 RL
SVP
Nefissi et al. (2011) elf3; elf3 enhancer and suppressor lines Col, Ler LL; day 14 RL
Li et al. (2008) ft Col LD; 22C; day 11 TL
LFY
He et al. (2004) nox1, nos1 Col LD; 22C; day 10 RL
Wang et al. (2012) ugt87a2 Col LD; 22C; day 21 RL
AGL24
Yu et al. (2002) AGL24-RNAi, 35S-AGL24 Col, Ler LD; 23C; day 5 RL
Li et al. (2008) agl24-1, 35S::SVP, svp-41, soc1-2 Col, Ler, C24 LD, SD; GA; 22C; day 11 TL

Notes.
aFlowering time and expression data for specific floral pathway integrator genes were obtained from literature. Table includes data for each floral pathway integrator gene in
which genetic background and expression data was measured. Values obtained from fitting each dataset are presented in Fig. 2 and Figs. S1–S5, and raw data are available in
Data S1. Results of fitting these data using a linear model are shown in Table 2 and Table S1.

bExperimental conditions: LD indicates long day, SD indicates short day, LL indicates continuous light, GA indicates gibberellin. Day indicates age of plant for which measure-
ments were taken. If reported, temperature is indicated as well.

cFlowering time measurement: RL indicates number of rosette leaves, TL indicates total number of leaves.
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Table 2 Linear dependencies of flowering time on expression levelsa.

Gene Normalization (number of datasets) Sensitivity T 0

SOC1 Scaled (1×) −0.74 78.3
Actin (1×) −72 97.5
Tubulin (1×) −478.9 90.8

FT Scaled (3×) −0.30 (0.06) 38.5 (6.0)
Actin (2×) −19.6 (9.95) 45.4 (11.2)
Tubulin (1×) −11.5 29.9
IPP2 (4×) −4.0 (1.1) 53.4 (15)
UBQ10 (3×) −363 (451) 45.8 (24.0)

FLC Scaled (7×) 5.8 (7.1) 12.7 (5.1)
Actin (1×) 81.0 8.1

SVP Scaled (1×) 0.29 4
Tubulin (1×) 37.2 −12.5

LFY Scaled (3×) −5.0 (1.5) 14.6 (2.7)
AGL24 Scaled (3×) −1.7 (1.8) 19.6 (2.1)

Notes.
aValues for parameters in linear fit T = Sensitivity * Expression Level+ T 0 for data shown in Fig. 2 and Figs. S1–S5. Normal-
ization method used in the different datasets is indicated (scaled means normalization by scaling with wildtype or maximum
expression value). Different normalization renders values of Sensitivity incomparable, but should not affect comparisons be-
tween values of T 0. Reported values are average (standard deviation) in case multiple datasets are available for the same nor-
malization. Characteristics of individual datasets are reported in Table 1. Values for Sensitivity and T 0 in individual datasets
are reported in Table S1.

directly compared if the same normalization has been applied, we present values of
Sensitivity and T 0 for each floral pathway integrator gene separately for each possible type
of normalization (Table 2; Table S1). Figure S6 presents a histogram of the Pearson R2

values obtained with the different models, indicating that in the large majority of cases the
value of R2 is higher than 0.75, meaning that more than 75% of the variation is explained
by a simple linear model. The majority of the linear models has a significant p-value and
this mainly depends on the number of datapoints available; for the cases with more than
five datapoints, nine out of 12 have a p-value below 0.05 (Table S1).

In contrast to Sensitivity, T 0 should not depend on normalization applied to the expres-
sion data (see ‘Methods’ for explanation). Hence, T 0 values for the same floral pathway
integrator gene obtained from different datasets should be quite similar. This was indeed
observed for the SOC1 datasets presented above. More generally, although there is some
variation, the different values of T 0 obtained for a given gene are indeed significantly
similar to each other compared to the values for the other genes (Text S1; Fig. S7). For the
values of Sensitivity this is not the case, in line with our expectation.

One concern with respect to the analysis so far could be that for some of the datasets,
the number of data points is rather small. We still chose to analyze such datasets initially
separately because the combination of perturbations of various input pathways for the
same floral pathway integrator gene allowed to demonstrate the similarity of T0 values. To
further deal with the concern that some of the datasets are small, we subsequently fitted
one final model per floral pathway integrator gene. This was done by allowing one T0 value
per floral pathway integrator gene, but a different value of Sensitivity per dataset. In this
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Figure 4 Comparison between predictions and experimental data. (A) Comparison between predicted
and experimental flowering time for single linear model fitted to various SOC1 datasets. These datasets
are the same as the ones used in Fig. 2, but here they are all fitted simultaneously using different values of
Sensitivity but one single value of T 0. The number of degrees of freedom in this fit is 30. (B) Comparison
between T 0 and flowering time of knock-out mutants. Based on fits of quantitative relationships between
expression levels and flowering time, T 0 predicts flowering time in knock-out mutants for different floral
pathway integrator genes. These predictions show a good relationship with experimentally observed flow-
ering time for these knock-outs. Each point in this plot represents one particular floral pathway integrator
gene; red outlier point indicates ft.

setup, the number of data points is for each gene larger than the number of parameters;
the number of degrees of freedom ranges from 2 for SVP to 72 for FT, and for all genes
except SVP and LFY it is at least 30. Comparing the linear model predictions with the
experimental flowering time values indicates in most cases a clear correspondence (Fig. 4A;
Fig. S8). Note that FT has the most deviating behaviour in the sense that the relationship
between experimental and predicted flowering time values is less linear.

The values of T 0 are ordered as follows: T 0,SVP <T 0,FLC ∼T 0,AGL24 ∼T 0,LFY <T 0,FT

<T 0,SOC1. T 0 indicates the flowering time predicted by the linear relation in case of zero
gene expression, which should be later for a flowering activator than for a flowering
repressor. Hence, one would expect activators to have higher values than repressors. This is
indeed the case. Given that the values of T 0 indicate the expected flowering time when the
level of a specific floral pathway integrator gene is set to zero, the values of T 0 can be used
to predict the flowering time for knock-out mutants of each of the floral pathway integrator
genes. To validate these predictions, we compare them with our recently obtained set of
flowering times for knock-out mutants (Leal Valentim et al., 2015) (Fig. 4B). There is a
good correspondence between predictions and experimental data, although FT deviates
from this pattern (Pearson R2 including all cases is 0.38 between T 0 and flowering time
of knock-out mutants; excluding FT, the value of R2 is 0.96 and the p-value ∼0.02). Note
that LFY is not included in this figure because a lfy mutant does not flower properly at all
(Blazquez et al., 1997). The discordant behaviour of LFY cannot be predicted by the simple
linear analysis presented here. We provide an alternative analysis of our flowering time
ODE model for prediction of LFY mutant flowering time in Fig. S9. LFY expression was
fixed at given levels and the resulting flowering time predicted by the ODE model was
recorded. For values of LFY below ∼1nM, the model predicts that there is no flowering.
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This behaviour is in accordance with the known behaviour of the lfy null-mutant which was
not used for training themodel, providing additional independent validation for themodel.

The value of the slope of the fitted line in Fig. 4B ismuch lower than 1. This line relates the
value of T 0, our prediction of flowering time, to the observed flowering time in knock-out
mutants. One reason for this small slope could be the fact that knock-out mutants in
general will not have exactly zero expression in planta, leading to a smaller effect on
flowering time than predicted. Nevertheless, the clear relationship between predicted and
experimental flowering time provides independent validation of the simple linear model
fits from which the value of T 0 was obtained. Note that the flowering time and expression
data used to obtain these fits are from genetic backgrounds in which upstream signal
components have been mutated. Hence, the input data are independent from the floral
pathway integrator gene knock-out mutants from which flowering time data is used in
Fig. 4 for validation.

DISCUSSION
Input from the environment is transduced by signalling pathways and integrated by a small
number of floral pathway integrator genes. The complexity of the signalling pathways
and their connection with the floral pathway integrator genes is overwhelming. Hence,
understanding the effect of genetic variation in signalling pathways on flowering time is a
daunting task. Our analysis indicates that in spite of this complexity, the effect of differences
in genetic background can be quantitatively understood by focussing on expression level
changes of floral pathway integrator genes. Perturbations in upstream signalling pathways
effect floral pathway integrator genes mostly in such a way that the effect on flowering time
is linear in the change in gene expression level. The fact that a linear response is significant
in most cases, and that this response is observed for different floral pathway integrator
genes, suggests that it is an important aspect of the way in which plants adapt to their local
environment. The measured expression level changes are often up to tenfold or higher
(Fig. 2, Figs. S1–S5). Hence, the linearity is observed over a large range of expression values.

Our findings on the role of gene expression variation in transducing the effect of genetic
background variation to flowering time can be compared with more general analyses
focusing on understanding the effect of variation in genetic background on phenotypes.
For example, it was found in C. elegans that the effect of genetic background on the severity
of RNAi andmutant phenotypes could be predicted from variation in the expression level of
the affected gene (Vu et al., 2015). Also, it has beenobserved that genetic variation associated
with trait variation is likely to influence expression variation as well (Nicolae et al., 2010),
suggesting that this expression variation is intermediate in establishing the link between
change in genotype and change in phenotype. A recent method estimated genetically
regulated gene expression and correlated these estimates with phenotype values to identify
genes involved in causing the phenotype (Gamazon et al., 2015). In a broad perspective,
our analysis demonstrates the possibility of analysing the dependence of quantitative traits
on expression of key genes involved, which could be applied to a variety of plant traits.
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Our findings are based on literature data obtained under various experimental
conditions. For example, the day or the timepoint during the day used for measurement is
different between different datasets. More generally, gene expression clearly might display
different trends in different tissues or between different cell-types within a tissue. Using a
single qPCR-based value to characterize the expression of a gene ignores these spatial aspects
completely. Although this puts limit on the level of comparability between these data sets,
our analysis shows that it is possible to integrate such data. One additional complicating
factor is the fact that qPCR data are reported in various ways. For one parameter in our
model we overcome this problem by comparing data normalized in the same way. For the
other parameter, this is not needed because it is independent of normalization.Nevertheless,
the use of multiple qPCR reference genes would be of great value, both for better compara-
bility between studies and also to ensure accuracy of measurements (Remans et al., 2014).

In addition to different ways of reporting expression, also different ways of reporting
flowering time are used. The data we used either reported the total number of leaves, or
the number of rosette leaves. Days to flowering is not often reported but would be a useful
addition, in particular since leaf number and days to flowering are not always congruent
(Takahashi & Morikawa, 2014). A more systematic storage of qPCR data and of phenotypic
measurements (Krajewski et al., 2015) such as flowering time would clearly also be helpful
to enable large scale comparative analyses such as we present.

The linear model appeared to be successful, but less so for FT than for other genes: the
value of T 0 obtained for FT did not correlate well with the experimental flowering time of
an ft mutant (Fig. 4), and when fitting the various datasets simultaneously for each gene,
there was a less clear linear relationship between predicted and observed expression for FT
compared to the other genes (Fig. S8). This might relate to the fact that in particular for FT,
the mRNA levels measured by qPCR are only a weak proxy for the real amount of active
component. This is because FT protein is transported from leaves tomeristem before it may
exert its effect on SOC1 and FT. Molecular aspects of this transport are not known in much
detail yet, but one could imagine that there would be some kind of threshold above which
not all FT is transported. If this would be the case, the predicted value of T 0 in our analysis
would be too low, as is indeed observed when the predicted values are compared with
experimental flowering times for mutants (Fig. 4). A similar threshold behaviour seems to
be present in Fig. S8 for FT. A more general scenario in which the response of flowering
time to expression level of a particular floral pathway integrator gene would not necessarily
be expected to be linear is if multiple floral pathway integrator genes are simultaneously
effected by upstream changes. Yet another complicating factor is the fact that various floral
pathway integrator genes regulate each other. This could lead to correlations in expression
levels of various floral pathway integrator genes, which in turnmight influence our analysis.
If a gene which is directly influenced by an upstream pathway regulates another floral
pathway integrator gene, both might in principle display a clear correlation between
flowering time response and expression level.

In the literature, the quantitative, continuous nature of flowering time and its gradual
response to changing input is often neglected when analysing the effect of variation on
flowering time. In many cases, the measured response of flowering time to perturbations is
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reported just as leading to early or late flowering.Only a few studies analyse quantitative rela-
tionships between gene expression levels and flowering time. This includes a study in which
AGL24 is shown to be a dosage-dependent mediator of flowering signals (Yu et al., 2002).
FLC levels in Arabidopsis accessions are correlated to flowering times of these accessions
(Lempe et al., 2005). For rice, there is one example of analysis of quantitative relationship
between expression of an FTortholog and flowering time (Takahashi et al., 2009). Our com-
prehensive quantitative analysis neatly fits with these previous findings and quantifies the
dosage dependence of flowering time for various floral pathway integrator genes. It indicates
that the effect size of genetic variation in input pathways on flowering time can be under-
stood via expression changes of floral pathway integrator genes. This proportional response
of flowering time to upstream changes enables a gradual adaptation to changing environ-
mental factors such as temperature and light. The continuous nature of flowering time is
therefore an essential aspect of the potential of plants to adapt to various environments.
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