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Abstract

Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and 

hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and 

neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA 

exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to 

changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic 

protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 

2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity 

resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA 

attenuates oxidative stress induced cell death. We hypothesized that OXA would be 

neuroprotective against PA induced cell death. To test this, we treated an immortalized 

hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA 

attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of 

Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA 

inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 

cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve 

capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, 

increasing basal respiration, maximum respiration, ATP production, and reserve capacity. 

Collectively, these results support that OXA protects against PA-induced hypothalamic 

dysregulation, and may represent one mechanism through which OXA can ameliorate effects of 

obesogenic diet on brain health.
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Introduction

Diets rich in the saturated fatty acid palmitic acid (PA) promote hypothalamic dysregulation 

and contribute to obesity through disruption of appetite regulating signals (Benoit et al., 

2009; Kleinridders et al., 2009). Mechanisms triggered by PA exposure include increased 

oxidative stress, insulin resistance, release of pro-inflammatory cytokines, and apoptosis 

(Benoit et al., 2009; Moraes et al., 2009; Thaler et al., 2012; Zhang et al., 2008). In the 

hypothalamus, diet-induced obesity also alters genes regulating the apoptotic pathway. For 

example, hypothalamic expression of anti-apoptotic protein B cell lymphoma 2 (Bcl-2) is 

decreased, while expression of the pro-apoptotic protein B cell lymphoma 2 associated X 

protein (Bax) is upregulated (Moraes et al., 2009). These gene expression changes are linked 

to obesity pathogenesis. High fat diets (HFD)also contribute to the overproduction of 

reactive oxygen species (ROS) in the brain, resulting in increased oxidative stress and cell 

damage (Pipatpiboon et al., 2013; Pipatpiboon et al., 2012; Zhang et al., 2005). Because 

production of ROS is a crucial signal resulting in cell death, oxidative stress and apoptosis 

are closely related pathways. Further, ROS suppresses neuronal anti-apoptotic proteins 

including Bcl-2 (Pugazhenthi et al., 2003).

Because dietary components such as PA can directly and negatively affect brain health, it is 

likely that protection against obesity involves neural mechanisms capable of ameliorating 

diet effects on central nervous system signaling. One potential candidate are the orexins 

(hypocretins), hypothalamic peptides important in maintaining energy metabolism, sleep/

wake cycles, and promoting obesity resistance (Butterick et al., 2013; Kotz et al., 2012). 

Orexin A (OXA) and orexin B (OXB) act through two G-protein coupled receptors (orexin 
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receptors 1 and 2; OX1R and OX2R, respectively) to alter intracellular metabolic functions 

(Harada et al., 2011; Sellayah et al., 2011; Sikder and Kodadek, 2007) and promote cell 

survival against oxidative stress and ischemic events (Butterick et al., 2012; Yuan et al., 

2011) in part through activation of Akt (protein kinase B) (Sokolowska et al., 2014). Here 

we focus on elucidating neuroprotective pathways through which orexin alters brain 

response to PA, a major component of obesogenic diets.

Work from our lab has demonstrated that OXA attenuates caspase-3/7 mediated apoptosis in 

response to H2O2, an initiator of oxidative stress (Butterick et al., 2012). Because HFDs are 

known to induce oxidative stress and neuronal cell death, (Moraes et al., 2009; Wu et al., 

2004) we sought to determine whether OXA protects against PA-induced cell death. To test 

this, we evaluated the response of an immortalized murine hypothalamic cell line 

(designated mHypoA-1/2) (Belsham et al., 2009) to OXA. We demonstrate here that OXA 

attenuates PA-induced apoptosis via reducing caspase-3/7 activity, increasing Akt activation, 

stabilizing expression of the pro-survival gene Bcl-2, and inhibiting ROS production. 

Finally, we show that OXA alters intracellular metabolic function in mHypoA-1/2 cells in 

real-time via increased basal respiration, maximum respiration, ATP production, and reserve 

capacity.

Methods

Cell culture and reagents

Differentiated immortalized adult mouse hypothalamic (mHypoA-1/2, cited elsewhere as 

CLU172;CELLutions-Cedarlane, Burlington ON CAN) (Belsham et al., 2009; Guo and 

Feng, 2012) were maintained in Dulbecco's modified Eagle's medium (DMEM; Invitrogen, 

Carlsbad CA USA) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic 

cocktail (penicillin, streptomycin and neomycin) at 37°C with 5% CO2. The mHypoA-1/2 

cells do not express endogenous orexin (Belsham et al., 2004), independently confirmed by 

our laboratory (data not shown). Orexin A peptide (ThermoFisher Scientific, Waltham MA 

USA) was suspended in phosphate buffered saline (PBS; Invitrogen) and diluted to a final 

concentration of 300 nM in DMEM. Palmitic acid (Sigma-Aldrich, St Louis, MO USA) was 

suspended in dimethyl sulfoxide (DMSO) and diluted to a final concentration 0.1 mM in 

DMEM. Dual orexin receptor antagonist (DORA; TCS 1102; Tocris Bioscience, Avonmouth 

GBR) was reconstituted in DMSO and diluted to a final concentration of 1.16 nM in DMEM 

(Callander et al., 2013). The dual orexin receptor antagonist used in this study binds 

similarly to both OX1R and OX2R rapidly with high affinity (Callander et al., 2013).

Treatments

In general for treatment assays, cells underwent two steps: First, a 24 h pretreatment with a 

test substance (e.g. orexin or vehicle); and second, a 2 to 24 h challenge with palmitic acid 

or vehicle, with or without the test substance used for 24 h pretreatment. Specifically, for 

cell viability assays, neurons were treated with DORA or DMSO vehicle for 20 minutes to 

block orexin receptors, subjected to a 24 h treatment with OXA or PBS vehicle, and finally 

challenged with vehicle (PBS+DMSO), PA, DORA, or OXA for 24 h. For the caspase-3/7, 

ROS, and gene expression experiments, cells underwent 24 h pretreatment with OXA or 
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PBS vehicle, followed by 2 h challenge with PA or DMSO vehicle in the presence of OXA 

or PBS vehicle. For the mitochondrial respiration assays without PA challenge, cells were 

exposed to vehicle (PBS+DMSO), OXA (50, 150, or 300 nM) or DORA for 2 h. For the 

mitochondrial assay with PA challenge, cells were first pretreated with OXA (300 nM) or 

vehicle control (PBS) for 24 h followed by a 6 h challenge with vehicle (PBS+DMSO), PA, 

or OXA. All concentrations and time points were based on previous studies (Butterick et al., 

2014; Butterick et al., 2012; Callander et al., 2013; Xu et al., 2015).

Cell viability assay

Cell survival was determined using a resazurin-based assay (Presto Blue, Invitrogen) as 

previously described (Butterick et al., 2012). Viable cells produce a fluorescent signal 

(560EX/590EM) as determined using a spectrophotometer (SpectraMax-M5; Molecular 

Devices, Sunnyvale CA USA). Data are reported as percent relative fluorescence units 

(RFU) change vs. control.

Caspase Activity

Caspase 3/7 activity was determined as previously described (Butterick et al., 2014; 

Butterick et al., 2012). Briefly, caspase-3/7 activity was determined by the addition of a 

luminogenic caspase substrate DEVD based assay (Caspase-Glo 3/7, Promega, Madison WI 

USA). Changes in relative luminance units (RLU; 650 nm) were analyzed using a 

microplate spectrometer reader (SpectraMax-M5). Data are presented as fold increase in 

caspase activity normalized to cell number.

Reactive Oxygen Species assay

Intracellular ROS (superoxide and hydroxyl radical) production was determined using a 

commercially available deep red fluorescence kit following manufacturer's protocol (Abcam, 

Cambridge GBR). Cells were pretreated with OXA (or vehicle) for 24 h,then challenged 

with PA (or vehicle) plus OXA (or vehicle) for 2 h. During the last hour of challenge, the 

cell-permeable deep red dye was added to cells and allowed to incubate at 37°C and 5% 

CO2. Intracellular superoxide and hydroxyl radicals oxidize the deep red dye producing a 

fluorescent signal (Gliyazova et al., 2013). Fluorescence was measured at 650EX/675EM 

using a spectrophotometer (SpectraMax-M5). Data are presented as fold change vs. control.

Real time RT-PCR

Total RNA was extracted from cultured mHypoA-1/2 cells with the aid of Trizol reagent 

(Invitrogen). A final concentration of mRNA (100 ng/μl) was determined using 260 and 280 

nm readings on a spectrophotometer (Nanodrop ND-8000; ThermoFisher). Primers were 

designed using MacVector 12 (MacVector Inc, Cary NC USA) and sequences are listed in 

table 1. Relative expression of target genes was determined with SYBR Green using the 

2-ΔΔCT method, normalized to GAPDH (Livak and Schmittgen, 2001).

Cell-based enzyme-linked immunosorbent assay (ELISA)

Changes in Akt activation were determined using a commercially available kit (R&D 

Systems, Minneapolis, MN). Briefly, cells were pretreated with OXA (or vehicle) for 24 h 
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and challenged with PA (or vehicle) and an additional dose of OXA (or vehicle) for 1 h. 

Time point was based on Sokolowska et al 2014 (Sokolowska et al., 2014). Cells were fixed 

with 4% formaldehyde, blocked, and incubated with primary antibodies (anti-phospho-Akt 

(S473) and anti-total Akt) overnight. Unbound primary antibodies were washed away and 

secondary antibodies (HRP-conjugated or AP-conjugated) were added. Unbound secondary 

antibodies were washed away and fluorogenic substrates were added. Fluorescence was 

measured on a spectrophotometer (540EX/600EM and 360EX/450EM). Data are reported as 

the ratio of phospho-Akt normalized to total Akt in each well.

Mitochondrial respiration assay

Mitochondrial function was assessed using either the XF24 or XFe96 extracellular flux 

analyzer (Seahorse Biosciences, North Billerica MA USA). Cell number and inhibitor 

titration experiments were performed for optimal response based on manufacturer 

instructions. For dose response assay, mHypoA-1/2 cells were plated on V7 microplates 

(Seahorse Biosciences) at 2×104 cells per well in DMEM supplemented with 10% FBS and 

1% PSN and incubated overnight at 37°C in 5% CO2. Cells were treated with increasing 

concentrations of OXA (50, 150, 300 nM) or vehicle for 2 h (n=4-5/treatment group). 

Following incubation, DMEM was removed and replaced with XF Assay media (Seahorse 

Biosciences, supplemented with pyruvate (1 mM), L-glutamine (2 mM), and glucose (10 

mM) containing respective treatment groups described above (Yao et al., 2009). During the 

assay, cells were treated with compounds in the following order: oligomycin (2 μM; Sigma) 

to determine mitochondrial ATP production, an uncoupler FCCP (carbonyl cyanide-4-

phenylhydrazone; 1.2 μM; Sigma) to determine the maximal respiration, and antimycin A (4 

μM; Sigma) to determine the spare capacity.

For DORA studies, cells were seeded at a density of 1×104 cells/well on XF96 microwell 

plates and incubated overnight at 37°C in 5% CO2. Cells were treated with either vehicle 

control (PBS and DMSO), OXA only (300 nM), DORA only (1.16 nM), or DORA plus 

OXA for 2 h (n=10-12/treatment group). Following incubation, DMEM was removed and 

replaced with XF Assay media (supplemented with pyruvate, L-glutamine, and glucose) 

containing respective treatment groups described above. During the assay, cells were treated 

with oligomycin (1 μM; Seahorse Biosciences), FCCP (0.5 μM; Seahorse Biosciences), and 

antimycin A (4 μM; Seahorse Biosciences).

For OXA and PA studies, cells were seeded at a density of 2×103 cells/wellon XF96 

microwell plates and incubated overnight at 37°C in 5% CO2. Cells were then pretreated 

with vehicle (PBS) or OXA (300 nM) for 24 h and challenged with PA (or vehicle) and an 

additional dose of OXA (or vehicle) for 6 h (n=10-12/treatment). Time points based were on 

(Xu et al., 2016). Following incubation, DMEM was removed and replaced with XF Assay 

media as described above. During the assay cells were exposed to compounds in the 

following order oligomycin (1 μM; Seahorse Biosciences), FCCP (0.5 μM; Seahorse 

Biosciences), and antimycin A (4 μM; Seahorse Biosciences).

The oxygen consumption rate (OCR) was automatically calculated and recorded by the 

Seahorse XFe software, respiration rates were manually calculated and normalized to cell 

number as described by Brand and Nicholls (Brand and Nicholls, 2011). The non-
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mitochondrial respiration rate was calculated as the minimum rate following antimycin A 

injection. Basal respiration was determined as the last rate measurement before oligomycin 

injection minus the non-mitochondrial respiration rate. ATP turnover was calculated as the 

last rate measurement before oligomycin injection minus the minimum rate measurement 

after oligomycin injection. Maximum respiration was determined by subtracting non-

mitochondrial respiration from maximum rate measurement following FCCP injection. The 

reserve capacity was determined by subtracting the basal respiration from the maximal 

respiration.

Statistical methods

Statistical differences were determined using a one-way ANOVA followed by Tukey's post 

hoc test, using GraphPad Prism 5 (GraphPad Software, San Diego CA USA). Letters 

indicate significant differences between treatment groups (e.g. columns with the same letters 

do not differ from each other, while columns with different letters are significantly 

different).

Results

Figure 1: OXA attenuates PA induced cell death

To determine whether OXA inhibits PA-induced neuronal cell death, mHypoA-1/2 cells 

were pretreated with or without OXA (300 nM) for 24 h, and then exposed to PA in the 

presence or absence of OXA for an additional 24 h. As expected, PA significantly reduced 

cell survival (Fig 1A; p<0.001 vs. vehicle control; C). Conversely, OXA pretreatment 

attenuated PA-induced cell death (Fig 1A; p<0.05 vs. OXA only and OXA+PA). Further, 

treating the cells in the presence of DORA negates the effects of OXA, preventing 

attenuation of PA-induced cell death (Fig 1A; p<0.001 vs. OXA only and OXA+PA). To 

determine if cell death occurred via apoptosis, caspase-3/7 activity was measured. 

Hypothalamic neurons were pretreated with or without OXA for 24 h, and then challenged 

with PA in the presence or absence of OXA for an additional 2 h. As predicted, PA 

significantly increased caspase-3/7 activity (Fig 1B; p<0.0001 vs. C). However, OXA 

attenuated PA-induced caspase-3/7 activity (Fig 1B; p<0.0001 vs. OXA only, p<0.001 vs. 

OXA+PA).

Figure 2. Orexin A reduces reactive oxygen species in mHypoA-1/2 cells

Prior data indicate OXA is protective against oxidative stress (Bulbul et al., 2008; Butterick 

et al., 2012; Sokolowska et al., 2014). To determine if OXA protects against PA-induced 

ROS production, mHypoA-1/2 cells were pretreated with OXA for 24 h, and then challenged 

with or without PA for an additional 2 h. As expected, PA significantly increased ROS 

production compared to control (Fig 2; p<0.05). Further, in the presence of OXA, PA-

induced ROS production was attenuated (Fig 2; p<0.05 PA vs. OXA+PA).

Figure 3-4: OXA increases Akt activation and stabilizes expression of anti-apoptotic gene 
Bcl-2

Prior reports indicate OXA activates Akt phosphorylation (Sokolowska et al., 2014). 

Likewise, we demonstrate OXA significantly increases Akt phosphorylation with or without 
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PA exposure (Fig 3; p<0.05 vs. C, p<0.001 vs. PA). To determine if apoptotic gene 

expression is altered following exposure to PA and OXA, changes in the anti-apoptotic gene 

Bcl-2 and pro-apoptotic gene Bax were assessed. Following 2 h PA exposure, Bcl-2 

expression was significantly reduced (Fig 4A; p<0.05 vs. C). Cells treated with OXA in the 

presence or absence of PA had stabilized Bcl-2 gene expression compared to those treated 

with PA only (Fig 4A; p<0.05 vs. OXA only and OXA plus PA). The ratio of Bax/Bcl-2 

expression was significantly upregulated in mHypoA-1/2 cells treated with PA only (Fig 4B; 

p<0.05 vs. C). In contrast, cells treated with OXA or OXA plus PA had stabilized Bax/Bcl-2 

ratios (Fig 4B; p<0.001 OXA vs. PA, p<0.05 OXA+PA vs. PA). Additionally, orexin 

receptors (OX1R and OX2R) gene expression in mHypoA-1/2 cells is unchanged following 

acute 2 h PA exposure (supplemental Fig 1A-B).

Figure 5-7. OXA alters metabolic respiration

To determine the effects of OXA on metabolic respiration, mHypoA-1/2 cells were treated 

with increasing concentrations of OXA (50, 150, and 300 nM). We show that OXA 

increased basal respiration (p<0.05 vs. C), ATP turnover (p<0.05 50, 300 nM OXA vs. C, 

p<0.001 150 nM OXA vs. C) maximum respiration (p<0.05 150, 300 nM OXA vs. C), and 

reserve capacity (p<0.05 150, 300 nM OXA vs. C) in a dose-dependent manner (Fig. 5A-E). 

This effect is directly mediated by orexin receptors, as treatment with DORA attenuated 

OXA-increased basal respiration (p<0.0001 DORA, DORA+OXA vs. OXA), ATP turnover 

(p<0.0001 DORA, DORA+OXA vs. OXA), maximum respiration (p<0.0001 DORA, 

DORA+OXA vs. OXA), and reserve capacity (p<0.0001 DORA vs. OXA, p<0.001 DORA

+OXA vs. OXA; Fig. 6A-E). We next sought to determine if PA alters metabolic respiration 

and if OXA treatment would negate this effect. We demonstrate PA significantly reduced 

basal respiration (p<0.0001 vs. C, OXA, OXA+PA), ATP turnover (p<0.0001 vs. C, OXA, 

p<0.001 vs. OXA+PA), maximum respiration (p<0.0001 vs. OXA, p<0.001 vs. C, OXA

+PA), and reserve capacity (p<0.05 vs. C, OXA+PA, p<0.0001 vs. OXA) (Fig 7A-E). 

Importantly, OXA attenuated PA-induced reduction in metabolic respiration (Fig 7A-E).

Discussion

The hypothalamus is vital in sensing changes in fuel availability and maintaining energy 

balance. High fat diets contribute to hypothalamic dysregulation and obesity in part via 

increased inflammation, oxidative stress, and apoptosis (Duffy et al., 2015; Moraes et al., 

2009; Valdearcos et al., 2014; Zhang et al., 2008). Therefore, identifying mechanisms to 

prevent HFD-induced hypothalamic dysregulation is of major importance to treating obesity. 

Data support that OXA is a mediator of obesity resistance through increased spontaneous 

physical activity (Butterick et al., 2013; Kotz et al., 2012), yet the intracellular components 

of how this occurs are unclear. Prior reports demonstrate that OXA is neuroprotective 

against oxidative stress in hypothalamic and cortical neurons (Butterick et al., 2012; 

Sokolowska et al., 2014). Likewise, we show that OXA prevents PA-induced apoptosis 

through inhibition of caspase-3/7 activity (Fig 1A-B). Our data show that PA increases ROS 

in hypothalamic cells (Fig 2), and notably, we show that OXA attenuates PA-induced ROS 

production (Fig 2). We also demonstrate that OXA increases Akt phosphorylation and 

stabilizes both Bcl-2 expression and the Bax/Bcl-2 ratio following PA challenge (Fig 4-5). 
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These data indicate that neuroprotective mechanisms of OXA rely in part on attenuation of 

ROS signaling and caspase-dependent apoptosis. To the best of our knowledge, this is the 

first report demonstrating that OXA attenuates PA-induced hypothalamic cell death. Diets 

rich in PA exacerbate the production of ROS throughout the brain (Park et al., 2011; 

Pipatpiboon et al., 2013; Pipatpiboon et al., 2012). Further, PA induces neuronal cell death in 

part via increased ROS production (Almaguel et al., 2009). Although modest amounts of 

ROS act as cell signaling molecules and are important in nutrient sensing, chronic and 

sudden increases in ROS, such as those observed after HFD exposure, alter cell physiology 

and induce pathways of cell death (Gyengesi et al., 2012). Hypothalamic neuropeptide Y 

(NPY) and pro-melanocortin (POMC) neurons are in part regulated by ROS signaling to 

control food intake (Gyengesi et al., 2012). Further, orexin neurons directly interact with 

POMC and NPY neurons (Muroya et al., 2004), suggesting one mechanism through which 

OXA suppression of ROS could contribute to obesity resistance.

Activation of protein kinase phosphatidylinositol 3-kinase (PI3K/Akt) is required for 

stabilization of Bcl-2 expression and suppression of apoptosis in part through accumulation 

of Akt in the mitochondria (Bijur and Jope, 2003; Jiang et al., 2011; Zhou et al., 2000). 

Others have demonstrated OXA is neuroprotective against oxidative stress via involvement 

of the PI3K/Akt signaling pathway (Sokolowska et al., 2014; Zhang et al., 2010). Moreover, 

OXA may rely on increase mitochondrial accumulation of Akt to inhibit the onset of 

apoptosis (Bijur and Jope, 2003). Under oxidative stress conditions, Akt accumulation in the 

mitochondria is inhibited (Bijur and Jope, 2003) When PI3K/Akt activity is downregulated, 

neurons are more susceptible to oxidative stress-induced cell death (Taylor et al., 2005). 

Likewise, increased ROS leads to dephosphorylation of PI3K/Akt (Cao et al., 2009), 

indicating ROS levels play a crucial role in apoptosis. Phosphorylated PI3K/Akt upregulates 

Bcl-2 expression; conversely, oxidative stress downregulates Bcl-2 expression (Hildeman et 

al., 2003; Pugazhenthi et al., 2003; Pugazhenthi et al., 2000), therefore it is logical that OXA 

not only influences Bcl-2 expression but also alters mitochondrial function to inhibit 

apoptosis (Bijur and Jope, 2003). Although others demonstrate OXA is neuroprotective in 

cortical neurons without any pretreatment (Sokolowska et al., 2014; Sokolowska et al., 

2012), our prior work (Butterick et al., 2012) and data in the current study demonstrate that 

pretreating hypothalamic neurons with OXA for 24 h prior to challenge produces the most 

robust neuroprotective response (supplemental Fig 2). Orexin pretreatment prior to insults 

such as PA could lead to heightened activation of neuroprotective pathways, including 

increased Akt, mitogen-activated protein kinase, and hypoxia-inducible factor 1 alpha 

(HIF-1α) (Butterick et al., 2013; Sikder and Kodadek, 2007; Yuan et al., 2011).

Mitochondria play an essential role in modulating ATP production, ROS, and apoptosis (Sun 

et al., 2016). Because the brain is a highly metabolically active organ, maintaining 

mitochondrial function and integrity is critically important. Mutations in mitochondrial 

proteins, impaired mitochondrial dynamics and respiration, and increased ROS production 

are associated with neurodegenerative diseases such as obesity, Alzheimer's disease, and 

Parkinson's disease (Cai and Tammineni, 2016; Petrov et al., 2015; Raza et al., 2015; Van 

Laar and Berman, 2009; Zorzano and Claret, 2015). Therefore, understanding mechanisms 

to prevent mitochondrial disturbances are important for developing therapeutics for 

neurodegenerative diseases. Prior data indicate that OXA increases ATP production, 
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indicating that OXA alters mitochondrial function (Sikder and Kodadek, 2007). We 

demonstrate for the first time that OXA increases basal respiration, maximum respiration, 

ATP turnover, and reserve capacity in a dose-dependent manner in real time (Fig 5A-E). 

Additionally, we show OXA mediated changes of metabolic function are attenuated in the 

presence of DORA (Fig 6A-E). Increased reserve capacity is linked to promoting neuronal 

survival in models of oxidative stress (Choi et al., 2009; Yadava and Nicholls, 2007). Thus, 

the increased reserve capacity observed after OXA exposure could represent a bioenergetic 

advantage for neuronal survival during PA challenge. To the best of our knowledge, we 

demonstrate for the first time that OXA stabilizes basal respiration, maximum respiration, 

ATP turnover, and reserve capacity in the presence of PA (Fig 7A-E). These data indicate 

increasing mitochondrial bioenergetics as a potential mechanism through which OXA 

protects against insults such as HFDs. Maintaining hypothalamic circuitry would be 

beneficial in preventing the pathophysiology of neurodegenerative diseases such as obesity. 

Mitofusin 2, a mitochondrial membrane protein, participates in mitochondrial fusion and has 

recently been implicated in obesity pathogenesis. Diaz et al demonstrated rodents fed a high 

saturated fat diet had impaired hypothalamic mitochondrial function and reduction in 

mitofusin 2 (Diaz et al., 2015). In addition, mitochondrial dynamics governed by mitofusin 2 

are integral in maintaining hypothalamic neurons that dictate metabolic status (Diaz et al., 

2015; Dietrich et al., 2013; Schneeberger et al., 2013). As such, OXA-induced 

neuroprotective mechanisms may rely in part on altering proteins involved in mitochondrial 

dynamics. Future studies aimed at targeting the effects of OXA on mitochondrial dynamics 

and a potential role of mitofusin 2 should be considered in the context of obesity and 

neurodegenerative diseases. Additionally, data suggest the neuroprotective and obesity 

resistant mechanisms triggered by OXA rely on a HIF-1α-dependent pathway (Yuan et al., 

2011). OXA upregulates HIF-1α, increasing ATP production and oxidative phosphorylation 

by shunting pyruvate into the tricarboxylic acid (TCA) cycle (Butterick et al., 2013; 

Butterick et al., 2012; Kodadek and Cai, 2010; Sikder and Kodadek, 2007). This HIF-1α-

triggered increase in ATP could represent a biochemical mechanism through which OXA-

producing neurons could prompt increases in cellular activity in target cell populations, 

subsequently stimulating wakefulness and other behavioral and physiological processes 

(Kodadek and Cai, 2010; Sikder and Kodadek, 2007).

In summary, these data support that OXA is neuroprotective against PA-induced neuronal 

insult in part through a ROS/caspase-dependent mechanism. Although in vitro studies have 

limitations, this work demonstrates an important mechanism in which OXA alters 

mitochondrial function and promotes neuronal survival following PA challenge. Future work 

will explore the effects of OXA signaling and the relationship of long and short-term 

changes in mitochondrial function and proteins in response to HFD. Understanding the role 

of OXA in maintaining neuronal survival will provide therapeutic targets for prevention or 

treatment of neurodegenerative diseases such as obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

OXA Orexin A

PA palmitic acid

ROS reactive oxygen species

HFD high fat diet

Bcl-2 B cell lymphoma 2

Bax B cell lymphoma 2 associated X protein

OX1R orexin receptor 1

OX2R orexin receptor 2

DORA dual orexin receptor antagonist
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Highlights

• Palmitic acid (PA) induces hypothalamic apoptosis

• Orexin A attenuates PA-induced apoptosis and suppresses reactive oxygen 

species

• Orexin A increases intracellular respiration and ATP in hypothalamic cells

• Orexin A stabilizes PA-induced reduction of mitochondrial respiration
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Figure 1. Orexin A attenuates PA-induced hypothalamic cell death
A) mHypoA-1/2 cells were pretreated with OXA for 24 h and then incubated with PA in the 

presence or absence of OXA or DORA for an additional 24 h. PA significantly reduces cell 

viability (p<0.001 vs. vehicle control; C). OXA attenuates PA induced cell death (p<0.05 vs. 

OXA only and OXA+PA). DORA negates OXA induced cell survival (p<0.001 vs. OXA 

only and OXA plus PA). B) PA significantly increases caspase-3/7 activity (p<0.0001 vs. C). 

OXA reduces caspase 3/7 induced apoptosis (p<0.0001 vs. OXA only, p<0.001 vs. OXA

+PA).
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Figure 2. Orexin A reduces reactive oxygen species in mHypoA-1/2 cells
mHypoA-1/2 cells were pretreated with OXA for 24 h and then incubated with PA in the 

presence or absence of OXA for an additional 2 h. ROS is significantly increased following 

2 h PA exposure (p<0.05 vs. C). OXA treatment attenuates PA-induced ROS production 

(p<0.001 vs. OXA only, p<0.05 vs. OXA+PA).
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Figure 3. Orexin A increases Akt phosphorylation
mHypo-A1/2 cells were pretreated with OXA for 24 h and then exposed to PA in the 

presence or absence of OXA for an additional 1 h. Phosphorylated Akt is significantly 

increased following exposure to OXA in the presence or absence of PA (p<0.05 vs. C, 

p<0.001 vs. PA).
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Figure 4. OXA stabilizes expression of anti-apoptotic gene Bcl-2
mHypoA-1/2 cells were pretreated with OXA for 24 h and then challenged with PA in the 

presence or absence of OXA for an additional 2 h. A) PA significantly reduces Bcl-2 

expression (p<0.05 vs. C). OXA stabilizes Bcl-2 expression (p<0.05 vs. OXA only and OXA

+PA). B) The Bax/Bcl-2 ratio is significantly increased following PA challenge (p<0.05 vs. 

C). However, OXA stabilizes Bax/Bcl-2 ratio (p<0.001 vs. OXA only, p<0.05 vs. OXA+PA).
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Figure 5. OXA alters metabolic respiration in a dose dependent manner
Oxygen consumption rates (OCRs) were determined in mHypoA-1/2 cells treated with 

increasing concentrations of OXA (50, 150, 300 nM) for 2 h. OXA increases B) basal 

respiration (p<0.05 vs. C), C) ATP turnover (p<0.05 50, 300 nM OXA vs. C, p<0.001 150 

nM OXA vs. C), D) maximum respiration (p<0.05 150, 300 nM OXA vs. C), and E) reserve 

capacity (p<0.05 150, 300 nM OXA vs. C).
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Figure 6. Orexin induced metabolic respiration is directly mediated by orexin receptors
Oxygen consumption rates (OCRs) were determined in mHypoA-1/2 cells treated with OXA 

(300 nM) and/or DORA (1.16 nM) for 2 h. OXA increases B) basal respiration (p<0.0001 

vs. C), C) ATP turnover (p>0.001 vs. C), D) maximum respiration (p<0.0001 vs. C), and E) 
reserve capacity (p<0.05 vs. C). Treatment with DORA attenuates OXA-increased B) basal 

respiration (p<0.0001 vs. OXA), C) ATP turnover (p<0.0001 vs. OXA), D) maximum 

respiration (p<0.0001 vs. OXA), and E) reserve capacity (p<0.0001 DORA vs. OXA, 

p<0.001 OXA+DORA vs. OXA).
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Figure 7. Orexin stabilizes metabolic respiration
Oxygen consumption rates (OCRs) were determined in mHypoA-1/2 cells pretreated with 

OXA (300 nM) for 24 h and challenged with PA in the presence or absence of OXA for 6 h. 

PA significantly reduces B) basal respiration (p<0.0001 vs. C, OXA, OXA+PA), C)ATP 

turnover (p<0.0001 vs. C, OXA, p<0.001 vs. OXA+PA), D) maximum respiration (p<0.0001 

vs. OXA, p<0.001 vs. C, OXA+PA), and E) reserve capacity (p<0.05 vs. C, OXA+PA, 

p<0.0001 vs. OXA). Treatment with OXA stabilizes PA-reduced B) basal respiration, C) 
ATP turnover, D) maximum respiration, and E) reserve capacity.
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Table 1
Real-time qPCR primer sequences

Target and accession number Forward primer (5ʹ to 3ʹ) Reverse primer (5ʹ to 3ʹ)

Bcl-2 (NM_177410.2) CACCGCGAGGGGACGCTTTG AGGTCGCATGCTGGGGCCATA

Bax(NM_007527.3) GCTGAGCGAGTGTCTCCGGC ACGCGGCCCCAGTTGAAGTT

GAPDH (NM_017008) GACATCAAGAAGGTGGTGAAGCAG AAGGTGGAAGAGTGGGAGTTGC
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