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Abstract

Metastatic castrate resistant prostate cancer (mCRPC) is responsible for the majority of prostate 

cancer deaths with the median survival after diagnosis being 2 years. The metastatic lesions often 

arise in the skeleton, and current treatment options are primarily palliative. Using guidelines set 

forth by the National Comprehensive Cancer Network (NCCN), the medical oncologist has a 

number of choices available to treat the metastases. However, the sequence of those treatments is 

largely dependent on the patient history, treatment response and preferences. We posit that the 

utilization of personalized computational models and treatment optimization algorithms based on 

patient specific parameters could significantly enhance the oncologist’s ability to choose an 

optimized sequence of available therapies to maximize overall survival. In this perspective, we 

used an integrated team approach involving clinicians, researchers, and mathematicians, to 

generate an example of how computational models and genetic algorithms can be utilized to 

predict the response of heterogeneous mCRPCs in bone to varying sequences of standard and 

targeted therapies. The refinement and evolution of these powerful models will be critical for 

extending the overall survival of men diagnosed with mCRPC.
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INTRODUCTION

Nearly 30,000 men are projected to die from prostate cancer in 2014 in the USA alone [1]. 

The majority of these men will succumb to mCRPC. These metastases typically arise in the 

skeleton where they induce extensive bone destruction and formation that in turn greatly 

impact the patient’s quality of life and overall survival. Upon diagnosis, the medical 

oncologist will administer second line treatment options based on a dialog with the patient 

and NCCN guidelines.

The NCCN guidelines for prostate cancer treatment were generated from the collective 

experiences of the world’s foremost genitourinary oncology experts and are a gold standard 

in regards to how patients with mCRPC should be treated [2]. For example, if a patient with 

advanced disease is diagnosed with symptomatic mCRPC, the oncologist will continue to 

ablate serum levels of testosterone and administer an anti-bone resorptive such as 

bisphosphonates or anti-receptor activator of nuclear KB ligand (RANKL) based therapies. 

The choice of hormonal and chemotherapies that can be utilized include, but are not limited 

to, abiraterone, enzalutamide, docetaxel, mitoxantrone and, cabazitaxel. In addition, we are 

at the beginning of a period that will potentially see multiple therapies on-line that 

specifically target molecules commonly overexpressed or aberrantly activated in mCRPC 

such as c-Met, AKT and JAK/STAT [3–6]. How to pick which therapies and the 

combination/sequence in which to apply them will become ever more challenging as small 

differences in efficacy may result in a big impact on individual patient survival. Further 

complicating the treatment and decision-making process is the inter-patient heterogeneous 

nature of mCRPCs [7], so there is a necessity for rapidly predicting a specific patient’s 

response to administered therapies.

To generate new tools and approaches that could address this challenge in the clinical 

setting, a recent workshop was held at the H. Lee Moffitt Cancer Center and Research 

Institute [8]. This workshop was comprised of genitourinary surgeons, oncologists, 

biologists, pathologists, epidemiologists and mathematical modelers. The group focused on 

using available parameters and knowledge about mCRPC to capture the basic elements of 

tumor-bone interaction and the impact of both standard-of-care and new targeted therapies 

on the disease. The results of this integrated model demonstrate the power of the approach 

and suggest that enhancing the sophistication could significantly improve the overall 

survival for men diagnosed with mCRPC.

BACKGROUND

Mathematical and computational models are powerful tools that can be directly applied in 

the clinical setting for treatment guidance. These models can either use quantifiable 

outcomes and work backwards (top-down approach) toward inferences about mechanism or 
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start from assumptions on mechanisms and calibrate parameters so that the outcomes emerge 

(bottom-up approach) [9]. Top-down models can help utilize existing data when very little is 

known about the biology of the disease. Statistical models such as nomograms are regularly 

used by clinicians to predict the probability of prostate cancer survival based on age, 

Gleason score, Karnofsky performance status, PSA, alkaline phosphatase and albumin levels 

[10]. Also the Linear Quadratic Model of radiation response is an established mathematical 

model that allows the radiation oncologist to design treatment schedules based on empirical 

radiation damage and repair rates [11]. Additionally, mathematical models have been used to 

optimize the scheduling of radiation therapy of GBM patients [12], and to predict whether 

leukemia patients can cease treatment and remain cancer-free [13]. For prostate cancer, the 

application of cell death rate analysis functions and PSA thresholds has also facilitated 

predictions of castration resistance emergence during intermittent androgen deprivation [14]. 

These models generally work by “fitting” their assumptions to existing clinical data in a top-

down approach, but we will conversely use a bottom-up methodology utilizing known 

parameters to predict how cancers will behave over time. This type of model can incorporate 

the established biology of heterogeneous clones in prostate cancer and predict how each of 

those clonal populations respond to therapies and, interact with the surrounding 

microenvironment [15, 16]. We posit that this approach can not only yield novel insights 

about the biology of the disease but also help design new therapeutic approaches that can 

help delay or even overcome the emergence of resistance to known treatments.

Designing a mCRPC-Bone Microenvironment Interactome

Producing a useful mechanistic mathematical model of the treatment of heterogeneous 

metastatic disease requires the collective expertise of physicians, biologists and 

mathematicians. The mathematical model must be as simple as possible without losing 

significant complexity, be parameterized carefully with robust clinical and biological data 

and be easily implemented to provide rapid and reliable outputs that can help guide the 

medical oncologist in regards to treatment strategy. The model’s output relies upon the 

accuracy of its assumptions, so making false assumptions or neglecting significant elements 

can lessen the validity of a model’s results. By calibrating a model to fit within reasonable 

parameter ranges, one can determine how sensitive the results are to different parameters. 

However, the model itself can be used to test different assumptions.

In this case, we consider a heterogeneous mCRPC. This heterogeneity translates into 

different clonal populations with varying genetic mutation content that in turn can lead to 

multiple phenotypes. These phenotypes could then plausibly have different growth rates, 

treatment susceptibility and interactions with the surrounding bone microenvironment (Fig 

1A). mCRPCs can promote bone remodeling and formation that in turn generates a positive 

feedback loop known as the “vicious cycle” [17]. Elevated hormone levels can subsequently 

perpetuate this cycle. To capture patient-specific cancer heterogeneity, we modeled a cancer 

cell population that could have any combination of three common druggable mutations/

alterations in signaling pathway activity. These included the androgen receptor (AR), 

Phosphatase and TENsin homolog (PTEN) and, Janus Kinase/Signal Transducers and 

Activators of Transcription (JAK/STAT) pathways. AR and JAK/STAT activity drives 

proliferation while loss of PTEN enhances AKT mediated cancer cell survival and 
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proliferation. In the model, each cell may possess alterations in any of these molecules/

pathways so that the in silico mCRPCs are potentially comprised of up to 8 permutations of 

cancer cell types, assumed to be present at observation and not acquired during further 

progression. These mutations can affect the proliferation rates and responses of the clones to 

targeted therapies (Fig. 1). Importantly, any number of mutations can be included in 

computational model but for the purposes of this example, we limited the number to three.

From this interactome we estimated the baseline initial conditions (hormone levels, rate of 

bone remodeling and the heterogeneity of the mCRPC) and parameterized the interaction 

rates between them, which are represented as green stimulatory arrows or red inhibitory 

lines. The aim of the mathematical model example presented here is not to completely 

capture all the elements that characterize the heterogeneity of mCRPC and the surrounding 

microenvironment but only those that involve the therapeutic options that can be applied in 

the clinic. Importantly, more mutations/cell types and their effects can be added to or 

subtracted from the model foundation for further refinement. However, a novel aspect of this 

mathematical model is the consideration of the impact of applied treatments on the bone 

microenvironment and indirectly on the behavior of the cancer cells.

We examined the parallel effects of 5 therapies on this system to include in the interactome: 

hormone deprivation therapy (Hx), chemotherapy (Cx), a bone resorption inhibitor (Rx), an 

AKT inhibitor (Px) and a JAK/STAT inhibitor (Jx). Based on the literature these treatments 

can affect the tumor and the tumor microenvironment in different ways. For example, Hx 

treatment inhibits AR activity and in turn prevents tumor growth. Cx treatment can impact 

the survival of all cell types in the bone microenvironment. Rx treatment has an indirect 

affect on tumor growth by preventing bone turnover while the Px and Jx treatments are 

likely to only target cancer cells expressing those specific molecules in the tumor-bone 

microenvironment (Fig. 1). Once the interactome was established, we generated a system of 

first order linear ordinary differential equations (ODEs) to define these interactions in a way 

that would represent the number of each cell type, the hormone level, the amount of bone 

remodeling over time and the impact of treatment.

Designing and Parameterizing the mCRPC Computational Model

Mathematical modeling represents a way to integrate diverse clinical and biological data. 

Here we define a system of ODEs that integrates the changes in the tumor and the bone 

microenvironment over time with the application of specific treatments.

(1)
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(2)

Equation 1 defines the tumor as the sum of the multiple tumor phenotypes (Ti, where i 
represents each phenotype combination with a mutation status (mA,i, mJ,i, and mP,i = [0,1] = 

[off, on] for AR, JAK/STAT and PTEN, respectively) that will grow and respond 

differentially to applied treatments (Cx, Hx, Rx, Jx, Px = [0,1] = [off, on]) over time. 

Hormone therapy (Hx) is represented by reducing the hormone level (H) by 80% from 

baseline levels. Equation 2 describes how the bone microenvironment (B) is impacted by 

tumor cells, hormone stimulation, and treatments over time. These two equations are 

coupled so that the bone microenvironment influences the growth of the mCRPCs while the 

mCRPCs can impact the behavior of the bone microenvironment.

In order to solve the model equations, we utilized values obtained from the literature, 

information from clinicians in regards to how treatments are applied to patients and, in cases 

where the information available was abstract or missing, we used practical estimates and 

assumptions (Table 1). When no published data is available, empirical clinical and biological 

data can be generated to integrate into the model. For our example, we assumed that the 

initial mCRPC size was 1×106 cells (minimum size detectable with current imaging 

technology) with a baseline-volume doubling rate 18 days [18, 19]. We then estimated the 

total number of cells in the bone marrow to be on average 7×1011 cells and made the 

assumption that the patient would succumb to the disease when the cancer cells reached this 

number [20]. The rate of bone-stimulated tumor growth was estimated to be three times that 

of the tumor growth alone [21]. Based on pre-clinical and clinical information we also 

estimated the impact of the chosen therapies on cancer cell growth rates and on bone 

behavior [22–30]. Some of these values were derived from in vitro observations and were 

normalized to correlate with those obtained from in vivo studies. We next integrated 

estimates for all of the parameters in the ODEs except for the composition of the tumor, 

which is specific to the patient. Finally, with the mathematical model parameterized, 

treatment optimization can be achieved via genetic algorithms [31].

Finding Optimal Treatments with a Genetic Algorithm

Genetic algorithms (GAs) are optimization techniques whose design mimics Darwinian-type 

evolution. In a GA, a population of potential solutions to a problem is created, and through 

an iterative process, the solutions that better match or optimize the problem are selected, 

transformed and combined so that new, potentially better, solutions can be found. If properly 

designed, it is possible to ‘evolve’ the initial population of solutions so that after a number of 
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iterations, an optimized solution in the population satisfies the constraints set by the designer 

[32].

To this end, we designed a GA that optimizes treatment options for a specific mCRPC 

patient. Each treatment option is characterized by a sequence of 12-week treatments. 

Although not a feature at the moment, it is clear that GAs can optimize not only the order of 

the treatments but also the duration of each. In its current implementation, each individual 

solution is a vector that identifies which of the 5 treatments is to be used at each 12-week 

interval. In order to evaluate the fitness of a given individual, i.e. sequence of treatments, we 

use a fitness function. This fitness function evaluates how a given sequence of treatments, 

encoded into a GA individual, maximizes the time until the number of cells fills the capacity 

of the bone marrow. After this evaluation, the GA produces a new generation of individuals 

in which optimal treatment sequences are retained while those that performed poorly during 

the evaluation are discarded. As the number of potential solutions considered at any given 

time is constant, the space left by poorer performers is replaced with new individuals 

generated from better responding patients. After each iteration, there is some alteration 

(changing a treatment in the sequence) to allow for variation. This process quickly produces 

individuals with more optimal treatment strategies that may improve with each generation.

RESULTS

A key advantage of the approach is the ability to examine the effect of individual therapies 

on the growth of each mCRPC and also the ability to compare the efficacy of those 

therapies. For example, comparing Hx to Jx treatment in different monoclonal populations 

(only a single subtype of cells exist in tumor population) reveals that Hx impacts mCRPCs 

with the fastest growing clones while Jx, as expected, selectively eliminates those cancer 

cells dependent on JAK/STAT activity (Fig. 2). Overall, Hx affects those mCRPCs with cells 

that harbor AR mutations while Jx affects those with JAK/STAT mutations. Therefore, each 

treatment can target four different cancer cell populations but importantly to different net 

effects due to the influence of how the combination of stimulatory and inhibitory 

interactions under that treatment affect each tumor subtype.

The more likely clinical scenario however, is that the mCRPC will be heterogeneous in 

nature and the choice of treatment will depend on the specific mix of cell subtypes identified 

in the patient biopsy. In the clinic, the initial degree of heterogeneity would be inferred from 

the patient’s biopsy and depend on the mutations of interest. To initiate the model, we 

assumed a potential worst-case scenario, where there’s a maximum degree of heterogeneity 

so that all cell subtypes are equally represented (Fig. 3A & 3B, Patient 1). The application of 

individual continuous treatments to this population revealed Hx to be the most efficacious 

with an increase in overall survival from the untreated case of 3.2 years (Fig. 3C, Patient 1). 

The targeted therapies (Px and Jx) enhanced overall survival by only 2.8 and 2.0 months, 

respectively. Cx performed slightly better by extending overall survival by 5.4 months. 

Interestingly, the model predicted that, although the inhibition of RANKL (Rx) reduced 

bone formation, it had little effect on overall survival, an observation consistent with clinical 

findings [33].
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The efficacy of the applied therapies is critically dependent on the percent composition of 

mutations, but is also dependent on the distribution of cancer cell subtypes in the mCRPC 

models. Therefore, we next compared how the subtype distribution of the in silico 
heterogeneous mCRPCs affects outcomes. Patient 1 is initiated with an equal number of 

cancer cell subtypes. In this patient, each mutation is present in 50% of the cell population. 

The mCRPCs in Patients 2 and 3 have 35.1% JAK/STAT mutations, 25.1% AR mutations, 

and 10.25% PTEN mutations (Fig. 3A), but the actual cell subtype distribution of these 

mCRPCs is different (Fig. 3B). Results with single treatments illustrate that Hx efficiently 

treats Patient 2, which has a higher degree of heterogeneity and similar effects were noted in 

Patient 3 (Fig. 3C). In contrast, all of the mutated cells in Patient 3 had the JAK/STAT 

mutation and application of Jx treatment was substantially more efficacious than the Hx 

therapy (by 5.2 years).

Finding an optimal single continuous treatment for a specific tumor provides a good first 

approximation to how treat a patient, but we can also employ the GA to find an optimal 

sequence, in which several treatments can be utilized in an order that maximizes overall 

survival. In each case, the GA finds at least one sequence that is either equal to or better than 

the single treatment optimum. For Patient 1, applying Jx first then Px before continuous Hx 

resulted in a gain of 2.9 months over Hx alone. For Patient 2, applying one round of Jx 

within the initial 3 rounds of treatment extended life by 2 months. For Patient 3, continuous 

treatment of Jx was the optimal treatment, but we also found that up to 50% of the 

treatments could be switched with Hx in any order with no change in the outcome.

These preliminary applications of computational modeling identify that Hx is the most 

efficacious treatment strategy for mCRPCs in general and agrees with clinical findings using 

androgen deprivation therapies [34]. However, the model also identifies that there may be 

more optimal personalized treatment schedules for different mCPRC compositions. 

Applying our optimization algorithm to the patient with most heterogeneous tumor resulted 

in an optimized treatment schedule that is essentially the standard of care. But, in patients 

where there same mutations exist but there is a different distribution of cell subtypes, GA 

optimizations illustrate that the standard of care works best in one (Patient 2) and a targeted 

therapy works best in the other (Patient 3).

DISCUSSION

Herein, we have described examples of how combining hypothetical personalized genetic 

data from a patient with an evolutionary algorithm and a minimal mathematical model can 

be used to optimize a therapeutic strategy in patients with mCRPC. Iterating through a GA 

identifies treatment sequences that can reduce tumor burden and extend overall survival for a 

given patient. Unlike other novel models using top-down approaches to fine-tune equations 

that reflect clinical observations, the computational model here takes a bottom-up approach 

in parameterizing equations with known values to predict potential outcomes, outcomes that 

can be validated with retrospective or prospective in vivo studies. The results with this 

approach not only match the standard of care treatment using conventional therapies, but 

critically, allow for the incorporation of targeted therapies such as JAK/STAT, AR and 
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PTEN. This method could provide a platform where other pathways, tumor phenotypes, and 

microenvironmental influences could be investigated.

The relatively simple model described herein predicts that hormone ablation (Hx) is the best 

option for extending overall survival for most tumors since it directly inhibits the growth of 

cells that are dependent on AR signaling and these cells have the fastest growth rate. This 

observation resonates with the results of extensive clinical trials using androgen deprivation 

strategies and comes to the same conclusion with a relatively straightforward computational 

model. Interestingly, chemotherapies were observed to only incrementally extend overall 

survival regardless of applying the therapy before or after hormonal therapy. The model also 

includes the potential impact of applied therapies on the bone microenvironment. Androgens 

have been shown to regulate bone formation, and therefore the potential impact of hormonal 

therapy on the process can be determined. This model is also a first approximation and the 

framework set up lends itself to refinement. For example, as we learn more about 

immunotherapies and immune cell interactions in the mCRPC bone-microenvironment, we 

can easily include immune components such as T-cells since clinical therapies (dendritic 

based sipuleucel-T for example) are being utilized for the treatment of mCRPC [35]. 

Further, we have defined the bone microenvironment as a single output (either bone is 

formed or not) and this could be further refined to take into account the impact of therapies 

specifically on osteoclast, osteoblasts and their precursors as we have previously shown [36]. 

An obvious additional test of the model could be in evaluating combinations of therapies to 

extend the overall survival of the patients, especially those with highly heterogeneous 

tumors.

A key revelation using this type of modeling approach was that the response of the mCRPCs 

was critically dependent on the extent of intra-tumor heterogeneity. The results identified 

logically that the more heterogeneous the cancer the less effective the targeted treatments 

would be in extending overall survival. The model also shows that it is not the total 

percentage of mutations within the tumor but the percentage of subtypes harboring those 

mutations that is an important factor in treatment efficacy and overall survival.

Incorporating GAs for the treatment of mCRPCs can also assist the medical oncologist in 

defining the optimal treatment strategy to apply to newly diagnosed patients. Each run of the 

GA is personalized for a specific tumor. In our example, we considered three mutations and 

illustrated the various ways these mutations can be dispersed across the cancer cells that 

comprise the mCRPC. Clearly, more mutations can be integrated into the model and the GA. 

The GA may also provide a way to bridge the gap between the measured patient-specific 

data and the actual subpopulation cell numbers required by the mathematical model. To 

provide dynamic real-time predictions at point-of-care using biopsy testing for these 

mutations and avoid bias, we can find an average by using many different versions of the 

patient that recapitulate the identified mutations of interest with various distributions of 

subpopulations. Each version of the patient can be evaluated for fitness of the individual 

treatment sequence and correlated with the average survival time. Further, the GA evolves a 

population of optimal treatment strategies. For example, in the case of Patient 3 (Fig. 3), the 

GA found many strategies that optimized patient survival to the same degree. This provides 

flexibility in strategy in case an alternative is needed due to treatment resistance or patient/
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physician preference. In Patients 1 and 2, the GA improved overall survival by several 

months compared to standard of care treatment findings that underscore the potential value 

of such models in the clinical setting. In this context, recent clinical evidence has identified 

how altering the sequence of standard of care therapies can improve overall survival by up to 

12 months [37].

Clearly, understanding the heterogeneity profile of the mCRPCs will be important in 

parameterizing these models so they can ultimately be of use to the medical oncologist as 

they consider an optimal treatment strategy for the patient. To validate the model outputs, 

retrospective biopsies from patients with mCRPC combined with treatment and outcome 

information can be utilized. The number of cells in each subpopulation can be counted and 

the heterogeneity profile determined via automated quantitative analysis (AQUA). These 

parameters can then be entered into the model along with the actual patient’s treatment 

schedule to correlate patient outcome with model output. There are, of course, a number of 

caveats to the model presented herein. For example, the application of AKT inhibitors (Px) 

has been shown to abrogate androgen signaling and therefore, AKT inhibitors could directly 

impact androgen signaling in other clones that do not have PTEN mutations [38]. These 

indirect effects could be integrated into the interactome of future iterations of the model. It 

also is possible that the obtained biopsy does not capture the wide degree of mutational 

variability potentially present in the mCRPC and therefore, the initial data entered into the 

model may not provide an optimal treatment sequence. However, information obtained from 

the biopsy should still provide sufficient information so that the model and GA can provide a 

superior treatment strategy than standard of care alone. Another caveat is that it is likely that 

a patient with a visually detectable mCRPC could have occult metastases in other areas, 

raising the possibility that a computationally optimized treatment based on the heterogeneity 

of a single biopsy could have differential effects on other metastases. However, a recent 

report has identified that there is intrapatient similarity in regards to mCRPC kinase 

signaling pathways suggesting that multiple or occult metastases could respond in the same 

manner to applied therapies [7]. By retrospective validation and subsequent alteration of the 

biological parameters, in addition to prospectively “shadowing” clinical trials in patients 

diagnosed with mCRPC, we allow for the refinement of the method and its implementation 

as a valuable medical oncology tool in the clinic.

CONCLUSIONS

The treatment strategies pursued by the medical oncologist for the treatment of mCRPC are 

often based on NCCN guidelines, the patient’s medical history and their preferences. 

However, there is currently a paucity of information available as to how altering the 

sequence of treatments or adding targeted therapies will impact an individual’s mCRPC 

response. This is a challenge that is further exacerbated by the heterogeneity comprising 

each patient’s cancer. Herein, we have provided an example of how relatively simple 

computational models can be used in a predictive capacity to determine patient outcome in 

response to treatments. By viewing the disease in a more heterogeneous and interactive 

manner, we can have a better understanding of mCRPC and the effects of the available 

treatments on a specific tumor composition. Further refinement of parameters should yield 

powerful models that can assist the medical oncologist in the decision-making process. Such 
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models will be especially important for predicting the impact of targeted therapies and the 

delivery of precision medicine for the treatment and cure of mCRPC patients.
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ABBREVIATIONS

ADT Androgen deprivation therapy

AR Androgen receptor

GA Genetic algorithm

JAK/STAT Janus kinase /Signal transducers and activators of transcription

mCRPC Metastatic castrate resistant prostate cancer

NCCN National comprehensive cancer network

ODE Ordinary differential equation

PSA Prostate serum antigen

PTEN Phosphatase and tensin homolog

RANKL Receptor activator of nuclear kappa B ligand
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Figure 1. 
Interactome demonstrating the interactions between mCRPCs that are comprised of multiple 

subtypes of cancer cell populations with the surrounding bone microenvironment and the 

response of each compartment to applied treatments. For this in silico example, mCRPC cell 

populations are either mutated individually for AR, JAK or PTEN, a mix of two mutations 

or, all three. mCRPC cells not harboring these mutations are illustrated as wild type (WT) 

population. The surrounding bone microenvironment is also considered wild type for each of 
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the mutations being examined. Green arrows represent positive effects while red indicate 

negative or blocking actions.
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Figure 2. 
The response of monoclonal mCRPCs to continuous hormonal (Hx) or JAK/STAT (Jx) 

treatment. In this in silico example, both therapies impact cancer cells with a particular 

mutation and therefore, have the potential to impact the growth of 4 clones. The arrows 

illustrate the decreases in the growth rate compared to untreated. Clones with AR mutations 

(left panel) have the fastest growth rates under no treatment, but with hormone deprivation 

therapy, the growth rate is reduced. JAK/STAT inhibitor (right panel) not only reduces 

growth, but selectively eliminates cells with that mutation.
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Figure 3. 
The effect of continuous treatment or GA-derived treatment sequences on interpatient 

mCRPC heterogeneity. Three mCRPCs patients with varying degrees of mutational 

composition (bars) and cell subtype (pie charts) were generated (A). Patient 1 has an equal 

representation of all cell subtypes while Patients 2 and 3 have the same percentages of 

mutations but different distributions of cancer cell subtypes. The three in silico patients were 

then administered various treatments (B). Each Patient’s mCRPC response to continuous 

treatment (conventional and targeted) and GA optimized (blue bar) was assessed in terms of 

overall survival (years gained). GA braced bracket illustrates each therapy sequence and 

duration.
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TABLE 1

Parameters used to power computational model.

Parameter Definition Value Reference

mJ,i, mP,i, mA,i mutational status of cell type i [off, on] = [0, 1] -

Cx, Hx, Rx, Jx, Px drug status [off, on] = [0, 1] -

α proliferation rate 2.6 × 10−3 d−1 [18]

β bone-to-tumor stimulation 2.6 × 10−9 d−1 [21]

σ tumor-to-bone stimulation 2.6 × 10−9 d−1 [39]

γA AR tumor stimulation 3.1 × 10−3 d−1/(ng/mL) [18]

η hormone-to-bone stimulation 2.5 × 10−3 d−1/(ng/mL) b

H0 baseline hormone level (Hx off) 3.5 ng/mL a, [40]

H1 hormone deprivation level (Hx on) 0.7 ng/mL a, [40]

γP PTEN tumor stimulation 4.3 × 10−4 d−1 b

γJ JAK/STAT tumor stimulation 9.7 × 10−4 d−1 b

τC Cx tumor inhibition 2.4 × 10−3 d−1 [41]

γ P*(1- τP) Px tumor inhibition 2.1 × 10−2 d−1 b, [25]

γ J*(1- τJ) Jx tumor inhibition 1.8 × 10−2 d−1 b, [23]

νR Rx bone inhibition 3.1 × 10−1 d−1 [21,24]

νJ Jx bone inhibition 1.0 × 10−3 d−1 [28]

νC Cx bone inhibition 1.0 × 10−3 d−1 b

νP Px bone inhibition 3.4 × 10−4 d−1 [27]

- time step 1 d -

- treatment time 12 weeks a

- initial number of cells 106 [14]

- initial bone density 0.13 a

- bone marrow capacity 7×1011 cells [15]

a
indicates information derived from clinicians while

b
is assumed data for which no empirical information exists at this time.
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