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Abstract: Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic
functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of
symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective
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disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent
component analysis procedure to estimate both group-level and subject-specific connectivity states
from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ
patients, we identified measures differentiating groups from the whole-brain DFC and traditional static
functional connectivity (SFC), separately. Results show that DFC provided more informative measures
than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant
state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from
HC to BPP to SAD to SZ) mainly involving post-central, frontal, and cerebellar cortices as well as 34
examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus
and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correla-
tions, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral
and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For
frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities
involving the left cerebellar crus differentiated SZ from other groups and one connection linking
frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for
assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. Hum
Brain Mapp 38:2683–2708, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Schizophrenia (SZ), schizoaffective disorder (SAD), and
bipolar disorder with psychosis (BPP) have overlapping
clinical symptoms, familial co-occurrence and shared
genetic risk [Cardno and Owen, 2014; Cosgrove and
Suppes, 2013; Pearlson et al., 2016]. SZ is a psychotic disor-
der characterized by persistent psychotic symptoms (e.g.,
delusions and hallucinations) and decreased function. BPP
is marked by presence of mania and concomitant psycho-
sis. Over 100-year ago, Kraepelin [Ebert and Bar, 2010]
distinguished between SZ and BPP primarily based on
longitudinal course and long-term outcome, but noted that
cross-sectional symptoms including delusions, hallucina-
tions, and mood disturbance were found in patients
with both diagnoses [Pearlson, 2015]. Indeed, Kraepelin in
1920 lamented that his two-psychosis model failed to ade-
quately capture distinct disorders. Kasanin [Kasanin, 1933]
introduced SAD, which combines features of both SZ and
mood disorders, to elucidate this apparent symptom over-
lap by postulating an additional diagnostic category. Differ-
entiating BPP, SAD, and SZ can be difficult based on
phenomenological features alone. Considering the difficulty
of differential diagnosis and lack of consensus, biological, in
addition to symptomatic, measurements may be useful for
differentiating these clinical syndromes. So far, most biolog-
ical measures also fail to uniquely differentiate the psycho-
ses, suggesting that more work is needed to understand the
relationships between these clinical syndromes and neurobi-
ology [Clementz et al., 2015, 2016; Pearlson et al., 2016].

Both structural [Mathew et al., 2014] and functional imag-
ing [Meda et al., 2015] have been used to explore abnormal-
ities in BPP, SAD, and SZ. Previous work [Glahn et al.,
2008] found reduced gray matter density in SZ patients

relative to healthy controls (HCs) in multiple brain regions.
Gradual gray matter density deficits in BPP, SAD, and SZ
patients, as well as in their biological relatives were
reported [Ivleva et al., 2013]. Functional connectivities and
functional networks derived from resting-state functional
magnetic resonance imaging (fMRI) data also have been
used to investigate these disorders. Khadka et al. [2013]
analyzed data of SZ, BPP and their unaffected first-degree
relatives using independent component analysis (ICA), and
identified significant alterations in seven functional net-
works. Our previous work [Du et al., 2014, 2015b] studying
networks decoded by ICA found brain differences among
BPP, SAD, and SZ in multiple networks (including the
default mode and salience networks), and observed that
HCs and BPP patients clustered into one group while SAD
and SZ patients clustered into another group. Using a
regions of interest (ROIs)-based method, Argyelan et al.
[2014] investigated differences among HCs, SZ, and BPP
patients in whole-brain functional connectivities, and found
that SZ patients had significantly lower connectivity
strengths than HCs, and BPP group showed intermediate
connectivity strengths between SZ group and HC group.
While decreased connectivity strength has been found in SZ
[Lynall et al., 2010], some work has also reported increased
connectivity strength [Whitfield-Gabrieli et al., 2009; Zhou
et al., 2007] in SZ. So far, brain function impariments
among BPP, SAD, and SZ are still unclear. It is uncertain
whether there are progressively network alterations from
HC to BPP to SAD to SZ, and what kinds of distinct versus
shared impairments are related to these disorders. In addi-
tion, all the above mentioned connectivity and network
studies used blood-oxygen-level dependent (BOLD) signal
over the entire scan time to estimate, assuming functional
connectivities (or networks) are stationary.
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Connectivity patterns can be time-varying over periods
of tens of seconds, evident during a few minutes of
resting-state scans [Allen et al., 2014; Calhoun et al., 2014;
Di and Biswal, 2013; Du et al., 2016; Hutchison et al., 2013;
Kiviniemi et al., 2011; Yaesoubi et al., 2015; Zalesky et al.,
2014]. It is possibly theoretically useful to capture these
non-stationary connectivity patterns for a better under-
standing of the influence of disease on brain connectivity
[Damaraju et al., 2014; Du et al., 2016; Miller et al., 2016;
Rashid et al., 2014; Yu et al., 2015]. In the present study,
we aim to apply a novel “chronnectome” approach [Abrol
et al., 2016; Calhoun et al., 2014] to study BPP, SAD, and
SZ. We expect that dynamic functional connectivity (DFC)
derived from resting-state fMRI data would help clarify
the nature of neural deviations across the psychosis
spectrum.

Among different dynamic connectivity estimation mod-
els, the sliding time window method [Hutchison et al.,
2013] is the most popular. This technique computes func-
tional connectivities using the windowed BOLD time
series, resulting in time-varying connectivity patterns
along different windows and thereby revealing implied
connectivity states [Allen et al., 2014]. The diverse connec-
tivity states may yield promising biomarkers for psychosis.
To extract connectivity states, researchers have used
various methods including clustering and decomposition
techniques. Connectivity states extracted using different
methods may have discrepant patterns due to their differ-
ent assumptions [Calhoun et al., 2014]. Furthermore, while
connectivity states obtained from clustering approaches
have the same scale with real connectivity strength,
post-processing may be needed for connectivity states esti-
mated using decomposition methods. Researchers used
K-means to extract connectivity states by grouping connec-
tivity patterns from different windows into several clusters
[Allen et al., 2014; Damaraju et al., 2014; Du et al., 2016].
K-means could converge exponentially slow for data with
extensive noise and fall into local optimum. Principal com-
ponent analysis (PCA) [Leonardi et al., 2013] has been
used to decompose the window-direction concatenated
connectivity patterns of all subjects into spatially uncorre-
lated components, of which the principle components are
considered to be the group-level (common) primary con-
nectivity states across subjects. Using Fisher discrimination
dictionary learning [Li et al., 2014], time-varying connec-
tivity patterns were decoded by sparse representation over
connectivity states. The supervised machine learning
method required prelabeling each connectivity pattern
as guidance. Miller et al. [2016] applied spatial ICA on
the window-direction concatenated connectivity patterns
of all subjects to estimate spatial independent components
(ICs), which reflected the group-level connectivity states.
Temporal ICA [Yaesoubi et al., 2015] also has been used to
decompose the dynamic connectivity series of all subjects
to compute temporal ICs, and the corresponding mixing
coefficients of ICs were regarded as the group-level

connectivity states. Most previous work using decomposi-
tion techniques only compared the group-level connectivi-
ty states among different groups. Little discussion is given
about obtaining the subject-specific connectivity states with
individual characteristics.

In this study, we introduce a novel ICA method, group
information guided ICA (GIG-ICA) [Du and Fan, 2013], to
extract connectivity states from dynamic connectivity pat-
terns. Different from the previous decomposition approaches,
our method enables computation of states at both group-level
and subject-level. GIG-ICA first computes the group-level
connectivity states by analyzing the intra-group subjects’
dynamic connectivity, and then guided by the group-level
states, it correspondingly estimates the subject-specific con-
nectivity states that are independent from each other. There-
fore, the resulting subject-specific states can simultaneously
capture inter-subject variability and within-group similarity.
In this article, we applied GIG-ICA to analyze dynamic con-
nectivity derived from resting-state fMRI data of HC, BPP,
SAD, and SZ subjects. Then, based on measures from dynam-
ic connectivity, we explored the ability of the outcomes
describe the psychosis continuum. In addition, we also
performed conventional static functional connectivity (SFC)
analysis to see if DFC could provide more informative
information than SFC.

MATERIALS AND METHODS

We analyzed resting-state fMRI data of the aforemen-
tioned four groups. First, the whole-brain dynamic connec-
tivities of each subject were calculated using the sliding
time window approach. Then, we applied GIG-ICA to
each group’s dynamic connectivity patterns to extract
both group-level and subject-specific connectivity states.
Subsequently, we investigated inter-group differences in the
group-level connectivity states, the fluctuations of connec-
tivity states, and the dominant subject-specific connectivity
states. Finally, we conducted traditional static connectivity
analyses on the same dataset for a comparison.

Materials

Resting-state fMRI data from 623 subjects including 238
HCs, 140 BPP, 132 SAD, and 113 SZ patients were ana-
lyzed. There were no significant group differences of age
or sex (P 5 0.31 for sex examined by Chi Square test;
P 5 0.19 for age examined by analysis of variance). The
data were provided from participants in the multi-site
Bipolar and Schizophrenia Network on Intermediate Phe-
notypes study [Meda et al., 2014, 2015; Tamminga et al.,
2013]. Subjects were recruited and scanned at six sites (Bal-
timore, Boston, Chicago, Dallas, Detroit, and Hartford).
The scanning period was about five minutes for all sites.
All subjects were psychiatrically stable and on stable medi-
cation regimens at the time of study. Participants were
instructed to rest with eyes closed and stay awake.
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Demographic information is shown in Table I. The
detailed imaging acquisition parameters for each site can
be found in Supporting Information Table S1.

We preprocessed the fMRI data of each subject using a
Data Processing Assistant for Resting-State fMRI toolbox
[Yan and Zang, 2010] based on Statistical Parametric Map-
ping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm). The first
six volumes were discarded, and then the remaining images
were slice-time corrected and realigned to the first volume
for head-motion correction. The output of realignment dem-
onstrated that the head motion was slight in all subjects (the
translations were less than 3 mm, and rotation did not
exceed 3o in all axis through the whole scanning process, see
Table I). Subsequently, we spatially normalized the images
to the Montreal Neurological Institute EPI template [Friston
et al., 1995], resliced them to 3 mm 3 3 mm 3 3 mm voxels,
and smoothed them with a Gaussian kernel with a full-
width at half-maximum of 8 mm. Detrending and filtering
(0.01–0.08 Hz) [Auer, 2008; Cordes et al., 2001; Zuo et al.,
2010] were then performed. Finally, nuisance covariates
including six head motion parameters, white matter signal,
cerebrospinal fluid signal, and global mean signal [Fox et al.,
2005] were regressed out.

Method

Computing DFC via a sliding time window method

For each subject, we computed whole-brain time-varying
connectivity matrices based on m (m 5 116) ROIs from the
automated anatomical labeling (AAL) template [Tzourio-
Mazoyer et al., 2002] using a sliding time window method
[Allen et al., 2014; Hutchison et al., 2013]. Figure 1A shows
an example of estimation. The indices (IDs) and names of
ROIs are included in Supporting Information Table S2. First,

the averaged BOLD time-series Yi in ROI i i 5 1; 2; � � � ; mð Þ
were computed. Second, for Yi, the windowed time-series
Yi;w w 5 1; 2; � � � ; nð Þ were obtained by applying a sliding
window on Yi. Here, n and w denote the number of win-
dows and the window ID, respectively. According to previ-
ous work [Allen et al., 2014; Zalesky and Breakspear, 2015],
a tapered window was created by convolving a rectangle
(width 5 20 TRs) with Gaussian kernel (r 5 3 TRs) and
moved in step of 1 TR. For different sites, the window
length ranged from 30 to 60 s, which has been shown to be
reasonable for capturing non-stationarity in connectivity
strengths [Abrol et al., 2016; Allen et al., 2014; Damaraju
et al., 2014; Zalesky and Breakspear, 2015]. Supporting
Information Table S1 includes the value of n for each site.
Thirdly, for each window w, we calculated a connectivity
matrix Rw (size: m 3 m) that included the connectivity
strengths between all pairs of Yi;w i 5 1; 2; � � � ; mð Þ. Consis-
tent with previous studies [Allen et al., 2014; Damaraju
et al., 2014], we initially estimated the regularized inverse
covariance matrix [Smith et al., 2011] based on graphical
LASSO model [Friedman et al., 2008]. For improving accu-
racy of dynamic connectivity estimation, LASSO imposed
sparsity by placing a L1 norm penalty on the inverse covari-
ance matrix to decrease noise effect of short time series in
each window. When using the graphical LASSO, the regu-
larization (penalty) parameter was optimized separately for
each subject by evaluating the log-likelihood in a cross-
validation framework (see details in the Supporting Infor-
mation). After that, the covariance matrix was calculated
based on the regularized inverse covariance matrix, and
then was transformed into the correlation matrix that was
taken as the estimation of Rw. Thus, for each subject, n
matrices denoted by Rw w 5ð 1; 2; � � � ; nÞ were obtained,
representing the subject’s dynamic connectivity patterns dur-
ing the whole scan period.

TABLE I. Demographic and clinical characteristics

HC (n 5 238) BPP (n 5 140) SAD (n 5 132) SZ (n 5 113)

Mean SD Mean SD Mean SD Mean SD

Age (year) 38.15 12.55 36.00 12.57 36.23 12.23 35.57 12.29
PANSS (Positive) — — 12.78 4.24 18.24 5.11 17.31 5.81
PANSS (Negative) — — 11.69 3.52 15.54 4.68 16.45 5.84
PANSS (General) — — 28.53 7.82 34.88 9.00 32.57 8.78
Maximum translation motion

displacement (mm)
0.58 0.85 0.67 0.55 0.76 0.85 0.65 0.58

Maximum rotation motion
displacement (degree)

0.57 0.87 0.56 0.52 0.75 1.34 0.55 0.58

n % n n % % n %
Male 100 42 53 38% 57 43 56 50
Female 138 58 87 62% 75 57 57 50

SD, standard deviation; n, number; HC, healthy control; BPP, bipolar disorder with psychosis; SAD, schizoaffective disorder; SZ, schizo-
phrenia; PANSS, Positive and Negative Syndrome Scale. Examined by analysis of variance, there were significant group differences in
PANSS scores (P-value 5 5.04 e 2 18 for the positive score, P-value 5 1.87 e 2 15 for the negative score, and P-value 5 1.45 e 2 8 for the
general score). There was no significant group differences in motion (P-value 5 0.17 for the translation parameter and P-value 5 0.23 for
the rotation parameter, tested by analysis of variance).
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Extracting functional connectivity states via GIG-ICA

Instead of focusing only on the group-level connectivity
states, we applied GIG-ICA method [Du and Fan, 2013] to
the window-direction concatenated dynamic connectivity
patterns of multiple subjects to extract the inherent
connectivity states at both group-level and subject-level.
Considering the subtle differences among groups, GIG-
ICA was applied to each of the four groups separately.

Due to the symmetry of the connectivity matrix, all

connectivity strengths among m ROIs corresponding to the

wth window can be converted to a vector containing only

upper triangular m3 m2 1ð Þ
2 56; 670 elements in Rw. Thus, the

time-varying connectivity patterns of the kth subject can

be represented by a window-by-connectivity matrix Xk

(size: n 3 6; 670). Consequently, the window-direction

concatenated dynamic connectivity patterns of all subjects

can be represented by X5 X1; � � � ; Xk; � � � ; XN
� �

; where N is

the number of subjects in one group.
At the first step of GIG-ICA (Fig. 1B), we applied the

Infomax algorithm [Amari et al., 1996; Bell and Sejnowski,
1995] to the Fisher-transformed X to estimate the group-
level connectivity states. To decrease the influence of ini-
tialization randomness in ICA, we applied ICASSO tech-
nique [Himberg et al., 2004] by running ICA multiple
times and then finding reliable ICs. In our work, we
selected the most stable run from 20 runs of ICA accord-
ing to an improved method [Ma et al., 2011] and then
regarded the components associated with the most sta-
ble ICA run as the reliable ICs (see Supporting Informa-
tion), which is different from the original ICASSO
technique [Himberg et al., 2004] taking the centrotypes
of multiple runs as reliable ICs. Note that before the
group-level ICA, a two-step PCA (including subject-

Figure 1.

Framework for the DFC analyses. (A) Estimation of dynamic connec-

tivity using a sliding time window method. (B) The first step of GIG-

ICA. For each group, the window-direction concatenated dynamic

connectivity of all subjects was decomposed by one ICA to obtain

the GSs and the associated SFs. (C) The second step of GIG-ICA.

Based on the dominant GS and the individual-subject dynamic con-

nectivity, we used a multiple-objective optimization to estimate the

dominant SS for each subject. [Color figure can be viewed at wileyon-

linelibrary.com]
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level PCAs and group-level PCA) was performed for
data reduction. In our study, the principal component
numbers preserved in the subject-level and group-level
PCAs were set to be the same for simplification. Thus,
we obtained

X5A � S; (1)

where S5 S1; � � � ; Sl; � � � ; SM½ � includes the estimated group-
level (common) ICs, representing the group-level connec-
tivity states (GSs). M denotes the number of states. Greater
M will preserve more variances from individual-subject
dynamic connectivity. To simplify state matching and con-
sequent comparisons among different groups, M was
determined to be the same number for all groups in our
study. It is known that the selection of number of compo-
nents is always difficult in blind signal decomposition
problem, as different rules could result in different num-
bers. In dynamic connectivity analyses using fMRI data,
many previous studies [Damaraju et al., 2014; Miller et al.,
2016; Rashid et al., 2014; Yaesoubi et al., 2015] applied spa-
tial ICA, temporal ICA, PCA, and K-means to estimate
connectivity states with the number of states as 5. Consid-
ering the similarity between our method and spatial ICA
[Miller et al., 2016], we also set M to 5, under which rela-
tively high variance was preserved in individual PCAs
(mean of the preserved variance percentage 5 72%). Fur-
thermore, we also evaluated the reliability of the estimated
connectivity states under conditions of 20 ICA runs in one
ICASSO, 100 additional ICASSO runs, and 100 subsets of
original samples using different settings (M 5 2, 4, 5, 6,
and 10). We found that the parameter 5 yielded greater
reliability than bigger number (i.e., 6 and 10) while pre-
serving acceptable variance compared to smaller number
(i.e., 2 and 4). The relevant results can be found in
Supporting Information Figs. S1-S3. Next, each state Sl

(size: 1 3 6; 670) was Z-scored to zero mean and unit

variance for the following analysis. In Eq. (1), A5

A1; � � � ; Ak; � � � ; AN
� �

contains N mixing matrices corre-

sponding to N subjects. For the kth subject, the associated

mixing matrix is Ak (size: n 3 M). Given Ak5

ak
1; � � � ; ak

l ; � � � ; ak
M

� �
, the lth column of Ak (i.e., ak

l ) represents

the subject-specific fluctuation (SF) of the lth GS (i.e., Sl) in

the kth subject’s dynamic connectivity. As ak
l is the loading

(or weight) coefficients in ICA, the sum of the absolute

value of ak
l can reflect the state’s importance to the kth

subject’s dynamic connectivity. Therefore, we measured
the contribution of the lth GS to all subjects’ dynamic con-

nectivity using abs alð Þ=
PM

l 5 1 abs alð Þ, where al is the lth
column of A. We term the GS with the greatest contribu-
tion the dominant GS, which included the most informa-
tion (i.e., power) across the entire time-varying
connectivity patterns of all subjects.

At the second step of GIG-ICA (Fig. 1C), based on the
identified dominant GS and the individual-subject
Fisher-transformed Xk k 5 1; � � � ;Nð ), we estimated the

corresponding dominant subject-specific connectivity state
(SS) for each subject. Using a multiple-objective optimiza-
tion function (2), the method simultaneously optimizes the
independence of the subject-specific IC (i.e., SS) as well as
the correspondence between the subject-specific IC (i.e.,
SS) and the group-level IC (i.e., GS). To simplify descrip-
tion, we use Sl to denote the identified dominant GS and
Sk

l to denote the corresponding dominant SS to estimate.

max
J Sk

l

� �
5 E G Sk

l

� �� �
2E G vð Þ½ �

� �2

F Sk
l

� �
5E SlS

k
l

� � ;

8<
: (2)

s:t: k wk
l k 51:

Here, Sk
l 5 wk

l

� �T � ~
Xk denotes the dominant subject-specific

IC of the kth subject. ~
Xk is the whitened Xk. wk

l is the

unmixing vector. v is a Gaussian variable with zero mean

and unit variance. G �ð Þ is a nonquadratic function. J Sk
l

� �
,

the negentropy of the estimated Sk
l with updates on wk

l ,

serves to measure the independence of Sk
l . E ½ � denotes the

expectation of variable. F Sk
l

� �
5E SlS

k
l

� �
, which equals to the

Pearson correlation between Sl and Sk
l , was used to mea-

sures the similarity between Sl and Sk
l . Solving the optimi-

zation function results in the optimal Sk
l , which represents

the dominant SS of the kth subject. The algorithm automat-

ically generates Z-scored Sk
l [Du and Fan, 2013], which can

be compared across subjects. From the above derivation, ak
l

is the corresponding SF of Sk
l .

Hence, for each group we obtained five GSs, among
which one GS was identified as the dominant GS. For each
subject, we computed the dominant SS and SFs. It is worth
noting that four groups of GSs may have diverse patterns
and could not be very corresponding across groups, as
they were estimated separately for each group. To make
the GSs, the associated SFs and the dominant SS to be
comparable across groups, we matched the results of the
four groups using a greedy search rule (see Supporting
Information).

Investigating group differences in the group-level

states and the states’ fluctuations

We expected to examine whether BPP, SAD, and SZ dis-
play disorder-related connectivity states and whether the
fluctuations of states show different features among
groups. To show the overall difference in the GSs’ connec-
tivity patterns, we visualized them using the BrainNet
Viewer toolbox [Xia et al., 2013]. Furthermore, to assess
the similarity of GSs across different groups, we computed
Pearson correlation coefficients among the matched GSs,
and took the mean of the correlations as their similarity
measure.

We investigated the states’ fluctuations from two aspects.
(1) To assess the variability of each state’s SF for each subject,
we computed the fractional amplitude of low frequency
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fluctuation (fALFF) of the normalized SF (with zero mean
and unit variance) using its low-frequency (<0.0125 Hz) to
high-frequency (>0.025Hz) power ratio [Du et al., 2015a].
For each state, we then compared the fALFF across groups
using analysis of covariance (ANCOVA) (P< 0.05 with Bon-
ferroni correction for multiple comparisons, i.e., P-value
threshold 5 0.05/number of states) with age, gender, and
site information as covariates and two-tailed two-sample t-
tests (P< 0.05 with Boneferroni correction, i.e., P-value
threshold 5 0.05/number of group pairs). Additionally, we
also compared the differences in fALFF among different
states in each group using analysis of variance (P< 0.05 with
Bonferroni correction, i.e., P-value threshold 5 0.05/number
of groups). (2) We evaluated the activation mode of the
states. For each state, the positive (or negative) values of all
subjects’ SFs were thresholded by preserving half number of
windows with greater absolute values using a manner simi-
lar to previous work [Yaesoubi et al., 2015], and then, the
percentage of the positively (or negatively) active windows
to all windows was calculated for each subject. Afterwards,
for each state, we compared the positively (or negatively)
active percentage among groups via ANCOVA (P< 0.05
with Bonferroni correction, i.e., P-value threshold 5 0.05/
number of states) with age, gender, and site information as
covariates and then two-tailed two-sample t-tests (P< 0.05
with Boneferroni correction, i.e., P-value threshold 5 0.05/
number of group pairs).

As mentioned in Extracting functional connectivity
states via GIG-ICA section, we tested the reliability of the
estimated GSs of each group using different ICASSO runs.
For each group, we repeated additional 100 ICASSO runs,
each of which resulted in M GSs. Then, we computed the
similarity among M 3 101 GSs obtained from both original
and additional 100 ICASSO runs.

Furthermore, we also evaluated if the estimated GSs of
each group are stable when using different samples. For
each group, we generated 100 permutations, each of which
randomly included 80% of the original subjects. In each
permutation run, we applied the group-level ICA (as
shown in Fig. 1B) to analyze the selected subjects’ dynamic
connectivity, resulting in new GSs of the group. For each
group, we further investigated similarity among those new
GSs obtained from 100 permutations as well as the rela-
tionship between the GSs from the original subjects and
the GSs from 100 permutations. (1) We computed Pearson
correlation coefficients among the M 3 100 new GSs. (2)
We projected the estimated GSs from both 100 permuta-
tions and the original subjects into a 2D-plane using the
t-Distributed Stochastic Neighbor Embedding (t-SNE) pro-
jection method [van der Maaten and Hinton, 2008]. (3) We
averaged the corresponding GSs from 100 permutations,
and then calculated Pearson correlation coefficient between
each mean GS and the relevant GS obtained from the orig-
inal subjects. Note for each permutation run, we matched
the resulting states with the original states using a greedy
rule for facilitating comparison.

Investigating group differences in the functional

connectivities of the dominant state

Considering that the dominant state contained the most
information of dynamic connectivity patterns, we compared
the dominant connectivity state across groups in detail. We
expected to explore the following aspects. (1) Whether func-
tional connectivity (FC) strengths are impaired in those
diagnoses. If true, which brain regions are involved in the
altered FCs? (2) What kinds of deficits are related to symp-
tomatology across diagnoses? Whether there is a gradual
alteration from HC to BPP to SAD to SZ? Which impair-
ments are common or unique?

To investigate differences among the four diagnostic
groups, we performed ANCOVA (P< 0.01 with Bonferroni
correction, i.e., P-value threshold 5 0.01/number of all ROI
pairs) with age, gender, and site information as covariates
on each element (reflecting one FC’s strength) in the domi-
nant SS. For each significantly discriminative FC, we fur-
ther explored difference between any paired groups in the
connectivity strength using a two-tailed two-sample t-test
(P< 0.01 with Bonferroni correction, i.e., P-value thresh-
old 5 0.01/number of group pairs). Furthermore, for each
discriminative FC, we computed the correlation (P< 0.05
with Bonferroni correction, i.e., P-value threshold 5 0.05/
number of symptom scores) between the connectivity
strengths and the symptom scores (displayed in Table I)
for patients to explore their association.

We also tested medication effects using two types of
analyses. First, we converted all available anti-psychotic
data to their respective chlorpromazine (CPZ) dosage
equivalents for 244 patients with available dose-level med-
ication data, as prescribed by Andreasen et al [2010]. We
then used a multiple linear regression model to evaluate
associations between CPZ measures and strengths of each
FC (P< 0.05 with Bonferroni correction, i.e., P-value
threshold 5 0.05/number of all ROI pairs). Second, we
recoded available medication data into a binary “on”/
”off” format for main drug classes (anti-psychotics, anti-
depressants, mood stabilizers, anxiolytic/sedatives/
hypnotic, and anti-cholinergic/anti-parkinsonian). Then,
for each drug class, we performed a two-tailed two-sample
t-test (P< 0.05 with Bonferroni correction, i.e., P-value
threshold 5 0.05/number of all ROI pairs) to examine
group differences in FC strengths between the patients
taking a particular medication and patients not taking the
medication.

In our study, we applied GIG-ICA to each group’s
dynamic connectivity separately to estimate the group-
specific connectivity states, which may raise concerns on
whether the identified group differences were due to the
grouping. To assess the validity of the identified group
differences, we performed a permutation test based on
1,000 permutations by randomly rearranging all 623 sub-
jects of the original four groups (i.e., HC, BPP, SAD, and
SZ). For each of 1,000 permutations, we first generated
four dummy groups each of which had the same number
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of subjects with the original group. Consistent with the
processing on the original groups, we first estimated the
group-level states by performing the group-level ICA on
the dynamic connectivity of each dummy group, and then
we identified the dominant group-level state according to
the states’ contributions, finally we estimated the domi-
nant subject-specific states on the basis of the dominant
group-level state. Afterwards, in each permutation run, we
used ANCOVA with age, gender, and site information as
covariates on each FC’s strengths of the dominant subject-
specific states. While performing ANCOVA, the used age,
gender and site information of each subject were the sub-
ject’s real age, gender, and site information. Finally, for
each FC in the dominant state, we calculated the occurring
frequency of the case where the P-value obtained from
ANCOVA using rearranged groups (i.e., one permutation)
was smaller than the corresponding P-value obtained from
ANCOVA using the original (i.e., real) groups. The fre-
quency (i.e., the tail probability computed from 1,000 per-
mutations) reflects the significance level of the identified
group difference. Smaller tail probability indicates
lower possibility of false positives of the identified group
difference.

Static functional connectivity analyses

We performed the conventional SFC analyses for a com-
parison. For each subject, we computed Pearson correla-
tion coefficients between any pair of Yi i 5 1; 2; � � � ;mð Þ,
resulting in a connectivity matrix R (size: m 3 m). Fisher’s
r-to-z transformation was applied to the connectivity
strengths, and then ANCOVA (P< 0.01 with Bonferroni
correction, i.e., P-value threshold 5 0.01/number of all ROI
pairs) with age, gender, and site information as covariates
was performed on each element (reflection one FC’s
strength) in R. Based on each discriminative FC identified,
we further explored the difference between any pair of
groups using a two-tailed two-sample t-test (P< 0.01 with
Bonferroni correction, i.e., P-value threshold 5 0.01/
number of group pairs). Similar to DFC analyses, we
also computed Pearson correlation coefficients between the
FC strengths and the symptom scores, and tested the
medication effects for patients. Furthermore, to show
the connectivity patterns, we averaged R matrices across
subjects for each group.

RESULTS

Dynamic Functional Connectivity

Figure 2A shows an example of the whole-brain dynam-
ic connectivity estimation from one subject. It can be seen
that the connectivity pattern varied over time (windows),
in agreement with prior reports of the brain functional
dynamics [Calhoun et al., 2014]. Given any pair of win-
dows with a specific distance (measured using the start
time points of two windows), we computed the correlation

between any pair of connectivity patterns in such two win-
dows and averaged all correlations to measure the similar-
ity of connectivity patterns in two windows with the
distance. The result (bottom panel in Fig. 2A) shows that
the similarity decreased rapidly along with the increasing
distance and changed gently after the distance of 20, sup-
porting the time-varying property of connectivity and the
existence of a relatively stable connectivity state. For a
comparison, the connectivity matrix computed using the
SFC analyses of the same subject is shown in Figure 2B. It
can be seen that the connectivity pattern computed using
the windowed BOLD signal was considerably different
from that obtained using the whole BOLD signal, indicat-
ing that the dynamic connectivity approach may provide
additional information.

Group Differences in the Group-Level States

and the States’ Fluctuations

Figure 3A shows the ICASSO result of each group, indi-
cating that the estimated GSs were relatively robust in 20
ICA runs. In addition, the performances of multiple ICASSO
runs were also very close (Fig. 3B), supporting the states’
reliability. The matched GSs across HC, BPP, SAD, and SZ
groups as well as their visualized connectivity patterns from
the original ICASSO are shown in Figures 4 and 5, respec-
tively. It is noted that the states were approximately
matched across groups due to the fact that different groups
exhibited various patterns of GSs. For each group, the domi-
nant GS had the greatest contribution to the dynamic con-
nectivity (46%, 44%, 48% and 47% for HC, BPP, SAD, and SZ
groups, respectively), whereas each of the other four GSs
had less than 20% contribution. Therefore, the dominant GS
included the most information (i.e., power or contribution)
compared to the remaining states.

Figure 4 (the bottom row) displays the correlation matrix
of the matched GSs. Interestingly, the dominant GSs were
very consistent across the four groups (similarity meas-
ure 5 0.93). However, the similarity measures were relative-
ly small for the rest of the four states (0.66, 0.57, 0.39, and
0.36, respectively). Specifically, for GS 2 and GS 3, BPP and
SZ groups showed lowest correlation. Furthermore, GS 4 of
SZ group was less correlated with all GSs 4 from other
groups, and SAD group showed a unique pattern in GS 5,
suggesting diagnosis-relatedness of these states. To verify
this, we also performed one group-level ICA on the dynamic
connectivity patterns of all 623 subjects to extract the connec-
tivity states of all groups with the number of components as
5. Then, we computed the similarity between each state
from one single group and the corresponding state from all
groups. Results (shown in Supporting Information Fig. S4)
support the diagnosis-relatedness of GS 4 of SZ and GS 5 of
SAD.

As mentioned in the method section, we also investigat-
ed stability of the identified group-level states by applying
100 permutation runs to each group. Figure 6A shows the

r Du et al. r

r 2690 r



Figure 2.

(A) The whole-brain dynamic connectivity of one HC from

Hartford site. Top panel: The window-direction concatenated

dynamic connectivity. Each column represents the connectivity

strengths of all ROI pairs at one window, and each row repre-

sents the dynamics of connectivity strengths of one pair of

ROIs. Middle panel: The connectivity matrices at three time win-

dows marked by arrows in the top panel. Bottom panel: Mean

of similarity (measured by correlation) between any two connec-

tivity matrices in two windows with a specific distance. (B) The

connectivity matrix from the SFC analyses of the same subject.

The x-axis and y-axis in the bottom panel of (A) and (B) denotes

the ROI ID, which corresponds to brain regions from the AAL

template (see Supporting Information Table S2). [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 3.

Reliability of GSs obtained from ICASSO runs. (A) ICASSO

results of the group-level states. Clusters are indicated by red

convex hulls and white/red lines connect similar estimates. The

cyanic circles indicate the reliable GSs, which were used for

consequent analyses. (B) Similarity matrix among the states

from original and additional 100 ICASSO runs. Each similarity

matrix was computed based on 5 3 101 states obtained from

original and additional 100 ICASSO runs. Each block on the

diagonal of one similarity matrix reflects the similarity among

corresponding states computed from 101 ICASSO runs. [Color

figure can be viewed at wileyonlinelibrary.com]
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similarity matrix among all GSs from 100 permutations of
each group. The result suggests that the corresponding
GSs (especially the dominant GSs) obtained from different
subsets of the same group were very similar. Figure 6B
displays the projection results of the estimated GSs from
both 100 permutations and the original subjects for each
group, supporting that all corresponding GSs were

clustered tightly. As shown in Figure 6C, each mean GS
from 100 permutations was highly correlated to the rele-
vant GS from the original subjects (correlations> 0.94). All
our results support that the identified group-level states
were quite stable regardless of different samples and the
original group-level states (shown in Fig. 4 of the manu-
script) were robust and meaningful.

Figure 4.

The matched GSs of HC, BPP, SAD, and SZ groups and their

correlation matrix. Each row of the first four rows includes the

connectivity matrices of GSs for one group. Contribution of

each GS to dynamic connectivity is shown along with the GS

matrix. Each matrix in the last row shows the correlation matrix

of the matched GSs from four groups. The similarity measure

reflects the mean of those correlations. The first column corre-

sponds to the dominant GS. [Color figure can be viewed at

wileyonlinelibrary.com]
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For each state, the corresponding SFs in all windows of

all subjects are demonstrated in Figure 7A. Relative to oth-

er states, the dominant state contributed higher loadings

in dynamic connectivity patterns for most of windows of

all subjects. We compared the SF’s fALFF among different

states and did not find significant difference. However,

measured by the mean of fALFF across subjects (shown in

Supporting Information Fig. S5), the dominant state had

slightly higher variability (low fALFF value) than other

states, probably due to that the dominant state was rela-

tively more active over time. There was no significant dif-

ference across the four groups in the variability of SFs.

Figure 7B shows the percentage of the positively and nega-

tively active windows for the matched states across

groups. Our results indicate that for all subjects, the domi-

nant GS was only positively active in the time-varying

connectivity. The percentage of the positively active

window showed an increasing trend from BPP to SAD to

SZ for GS 1 and GS 3. Specially, for GS 3, HC and BPP

were more similar while SAD and SZ were close. In addi-

tion, for the GS 4 (SZ-related state), SAD group showed

difference with HC and BPP in activation. For the GS 5

(SAD-related state), the activation mode of SZ was signifi-

cantly different from that of HC and BPP. The results

suggest that SAD and SZ groups showed greater change

in fluctuations of states compared to BPP and HC groups.

It is worth noting that the positive and negative values in
the connectivity matrices of states (shown in Fig. 4) should
be carefully interpreted as that the signs of ICs (i.e., states)
are arbitrary. Therefore, the states should be considered
along with their associated loadings (i.e., SFs). It can be
observed from Figure 7 that the dominant state always had
positive SFs, so the positive and negative values in the domi-
nant state reflected the positive and negative connectivity
strengths, respectively. Regarding the dominant GS, the
positive connections primarily included the default mode
network, the sensory-motor network, the vision-related net-
work, and the within-cerebellum connectivities, while the
negative connections primarily linked cerebellum and other
cortices including Rolandic operculum, insula, Heschl’s gyri
and superior temporal lobe. For other non-dominant states,
their SFs had both positive and negative values. Positive
value in SF implies that the state exists in the connectivity
pattern of the corresponding window, and negative value in
SF indicates the anti-state exists in the connectivity pattern
of the corresponding window.

Group Differences in the Functional

Connectivities of the Dominant State

Regarding the dominant SS, we show the ANCOVA
result in Figure 8A–C. There are 166 FCs showing

Figure 5.

The visualized connectivity patterns of the matched GSs for HC, BPP, SAD, and SZ groups. The

connectivity patterns are shown using the same sparsity, and the red and blue lines denote posi-

tive and negative values in the GS matrix (shown in Fig. 4), respectively. [Color figure can be

viewed at wileyonlinelibrary.com]
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Figure 6.

Reliability of GSs obtained from different permutations. (A) Similarity

matrix of GSs from 100 permutations for each group. Each block on

the diagonal of one similarity matrix reflects the similarity among cor-

responding states computed from 100 permutations. (B) Projection

of the estimated GSs from 100 permutations and original subjects for

each group. Corresponding GSs from different permutations are

shown using dots with the same color. Each GS calculated from the

original subjects is shown by a “1.” (C) Mean state of the corre-

sponding GSs from 100 permutations for each group. The correlation

between each mean GS and its associated GS from the original

subjects is shown in the title of each subfigure. State i i 5 1 � � � 5ð Þ
corresponds to GS i i 5 1 � � � 5ð Þ in Figure 4. [Color figure can be

viewed at wileyonlinelibrary.com]
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significant group difference, primarily located in the thala-
mus, cerebellum, frontal, temporal, occipital, fusiform,
postcentral, cuneus, putamen, supramarginal, and calcar-
ine cortices. Examined by two-sample t-tests, 52 FCs
showed significant group differences among patient
groups, while the remaining 114 FCs were only discrepant
between HCs and psychosis patients. The detailed infor-
mation including the associated ROIs, P-value and effect
size in ANCOVA, the mean of connectivity strength in
each group, and the pair-wise group difference are listed

in Supporting Information Table S3. Additionally, we also
examined group differences using analysis of variance
(without covariates) instead of ANCOVA, and found simi-
lar discriminative FCs (see Supporting Information Fig.
S6).

Measured by the mean connectivity strength across sub-
jects (see Supporting Information Table S3), 22 FCs (Fig. 8D)
showed decreasing strengths, while 34 FCs (Fig. 8E) had
increasing strengths from the HC to BPP to SAD to SZ. The
hypoconnectivities with decreasing trends included the

Figure 7.

(A) Values of SFs in the concatenated windows of all subjects

for each state. (B) The percentage of the positively and nega-

tively active windows of each state. The percentages from differ-

ent subjects in the same group are shown using a boxplot. For

each boxplot, the central line is the median; the square is the

mean; and the edges of the box are the 25th and 75th percen-

tiles. The whiskers extend to 1 inter-quartile range, and the out-

liers are displayed with a “*” sign. Any pair of groups with

significant group difference tested by two-sample t-tests

(P< 0.05 with Bonferroni correction) is denoted by a line. For

State 4 of SZ and State 5 of SAD, we do not display their com-

parison results with the associated states from other groups,

due to that they showed unique connectivity patterns. State i

i 5 1 � � � 5ð Þ corresponds to GS i i 5 1 � � � 5ð Þ in Figure 4.

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 8.

(A) Statistical values 2log10 pð Þ, which were identified by perform-

ing ANCOVA on each FC’s strengths in the dominant SSs of the

four groups. (B) Partial eta squared (reflecting effect size) of each

FC in the dominant SS, tested by ANCOVA. (C) The visualization of

the 166 discriminative FCs (P< 0.01 with Bonferroni correction).

(D) Twenty-two FCs which showed decreasing trends in the domi-

nant SS from HC to BPP to SAD to SZ, measured by the mean con-

nectivity strength. (E) Thirty-four FCs which had increasing trends

in the dominant SS from HC to BPP to SAD to SZ, measured by the

mean connectivity strength. (F) Fourteen FCs which showed signifi-

cant difference in HC versus SAD, HC versus SZ, BPP versus SAD,

and BPP versus SZ, tested by two-sample t-tests (P< 0.01 with Bon-

ferroni correction). In (C)–(F), the thickness of each line reflects the

associated F-value in ANCOVA. [Color figure can be viewed at

wileyonlinelibrary.com]
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Figure 9.

Statistical analyses and symptom association results of five hypocon-

nectivities that had significant correlations with the symptom

scores. Statistical analyses result of each FC linking two ROIs is

shown using a subfigure, where each bar shows the mean of con-

nectivity strengths across subjects in one group, and the title

includes the P-value of ANCOVA. Any pair of groups with significant

difference (two-sample t-test, P< 0.01 with Bonferroni correction)

is denoted using two symbols with the same color and shape. Signifi-

cant association was identified by computing Pearson correlation

between the strengths of each discriminative FC and the symptom

scores of patients (P< 0.05 with Bonferroni correction). The fol-

lowing similar figures are shown using the same manner. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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Figure 10.

Statistical analyses and symptom association results of 12 hyperconnectivities that showed significant

correlations with the symptom scores. [Color figure can be viewed at wileyonlinelibrary.com]
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postcentral, frontal, and cerebellum cortices, and the hyper-
connectivities with increasing trends involved insular, tem-
poral, frontal, thalamus, cerebellum, fusiform, lingual,
occipital, and supramarginal cortices. Interestingly, all hypo-
connectivities having significant associations with the symp-
tom scores were negatively correlated with the PANSS
positive or negative scores, and all related FCs were linking

postcentral and frontal gyri (see Fig. 9). Similarly, all hyper-
connectivities having significant correlations with the symp-
tom scores were positively correlated with the PANSS scores
(see Fig. 10). Moreover, non-frontal hyperconnectivities
appeared to underlie negative symptoms, while frontal
hyperconnectivities were more critical for positive symp-
toms. Therefore, our findings suggest that these FCs may

Figure 11.

Statistical analyses results of 14 FCs showing significant differences in HC versus SAD, HC versus

SZ, BPP versus SAD, and BPP versus SZ, assessed by two-sample t-tests (P< 0.01 with Bonferroni

correction). [Color figure can be viewed at wileyonlinelibrary.com]

r Identify Dynamic Connectivity States via GIG-ICA r

r 2699 r

http://wileyonlinelibrary.com


reflect disease severity, and the FC strengths between post-
central and frontal cortices showed an apparent clinical
relevance.

Assessed by two-sample t-tests, 14 FCs (see Figs. 8F and
11) only showed significant differences in HC versus SAD,

HC versus SZ, BPP versus SAD, and BPP versus SZ, sugges-
ting that BPP and HC groups resembled each other while
SAD and SZ groups were more similar to each other in these
FCs. Interestingly, 10 of the 14 FCs were relevant to the fron-
tal cortex, and the remaining four FCs were located around

Figure 12.

(A) Statistical analyses results of three FCs that showed signifi-

cant group differences between the SZ group and the other

three groups, tested by two-sample t-tests (P< 0.01 with Bon-

ferroni correction). Last sub-figure shows the significant associa-

tion with the symptom scores (P< 0.05 with Bonferroni

correction). (B) Statistical analyses result of one FC that showed

significant group difference between the SAD group and the oth-

er three groups. [Color figure can be viewed at wileyonlineli-

brary.com]

Figure 13.

(A) P-value map obtained from performing ANCOVA on each

FC’s strengths in the dominant subject-specific states of the

original four groups. (B) All FCs’ associated P-values (i.e., the

frequencies or tail probabilities) that were computed based on

ANCOVA results of the dominant state from 1,000 permuta-

tions. (C) Among the 166 discriminative FCs (representing the

significant group differences among the original four groups),

only 24 FCs (see Supporting Information Table S4 for details)

showed P-values with more than zero value in the permutation

test. [Color figure can be viewed at wileyonlinelibrary.com]
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fusiform gyrus. Hence, our results supported common fron-
tal and fusiform impairments in SAD and SZ.

We also found that SZ differed significantly from other
diagnostic groups in three FCs (Fig. 12), all of which were
relevant to the left cerebellar crus. SAD had a significant
alteration compared to the other three groups in one FC
linking the frontal and fusiform cortices.

In addition, in targeted medication analyses, we found
no significant associations between FC strengths and daily
antipsychotic dose CPZ equivalents. Likewise, for binary
coded medication classes, we observed no significant asso-
ciations with FC.

As mentioned in Investigating group differences in the
functional connectivities of the dominant state section, we
examined the validity of the identified group differences
using an additional permutation test. Figure 13A shows all
connections’ P-values obtained by performing ANCOVA
on each connection’s strengths in the dominant subject-
specific states based on the original four groups. Figure
13B displays all connections’ associated P-values (i.e., the
frequencies or tail probabilities) that were computed based
on ANCOVA results of the dominant state from 1,000 per-
mutations. By comparing Figure 13A and 13B, we found
that the P-value map was quite comparable between the
original ANCOVA and the permutation test. More impor-
tantly, as shown in Figure 13C, regarding the identified
166 discriminative FCs presenting group differences
among the original four groups, only 24 FCs (see Support-
ing Information Table S4 for details) showed P-values
with more than zero value (maximum P-value 5 0.014,

minimum P-value 5 0.001, and mean P-value 5 0.0025) in
the permutation test. In summary, our results support that
the 166 discriminative connectivities shown in Figure 8C
were driven by diseases rather than grouping.

Group Differences Identified Using

the SFC Analyses

Figure 14 displays each group’s mean connectivity matrix
obtained from the SFC analyses. By comparing Figure 14
with Figures 4 and 5, it is seen that the mean static connec-
tivity matrix and the dominant group-level state’s connec-
tivity matrix exhibited a similar pattern, supporting that the
dominant state consisted of the most information of
dynamic connectivity patterns. As shown in Figure 15A–C,
ANCOVA on the static connectivity revealed significant
group differences in 29 FCs (see Supporting Information
Table S4 for details). Among the 29 FCs, 28 FCs were
observed using the above mentioned DFC method.

Measured by the mean connectivity strength across sub-
jects, six FCs showed decreasing strengths (as shown in Fig.
15D), while three FCs had increasing strengths (as shown in
Fig. 15E) across HC, BPP, SAD, and SZ groups using the SFC
analyses. The hypoconnectivities (Fig. 16A) involved pal-
lidum, cerebellum, thalamus, occipital, and fusiform corti-
ces, and the hyperconnectivities (Fig. 16B) lay in paracentral,
thalamus, cerebellum, and temporal cortices. Only one
hyperconnectivity linking paracentral lobule and cerebellum
(Fig. 16C) showed significant positive correlations with
PANSS positive and negative scores of patients.

Figure 14.

The mean static FC matrix across subjects and its visualized pattern for HC, BPP, SAD, and SZ

group, respectively. The red and blue lines represent positive and negative connectivity strengths,

respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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Evaluated by two-sample t-tests, only three FCs showed
difference among patient groups using the SFC analyses.
Among the three FCs, one FC showed difference between
SAD and SZ, while the other two FCs were different
between BPP and SZ (see Supporting Information Table

S5). No SAD or SZ related alteration was found. Similar to
the DFC analyses, no association was found between the
FC strengths and current medication status. Taken togeth-
er, more informative potential biomarkers were found
using our DFC analyses, compared to the SFC analyses.

Figure 15.

(A) Statistical values 2log10 pð Þ, which were identified by per-

forming ANCOVA on each FC’s strengths in the static FC

matrix of the four groups. (B) Partial eta squared of each FC in

the SFC matrix, examined by ANCOVA. (C) The visualization of

the 29 discriminative FCs (P< 0.01 with Bonferroni correction).

(D) Six FCs that showed decreasing trends from HC to BPP to

SAD to SZ using the static connectivity analyses, measured by

the mean connectivity strength. (E) Three FCs showing increas-

ing trends across the four groups using the static connectivity

analyses, measured by the mean connectivity strength. In (C)–

(E), the thickness of each line reflects the associated F-value in

ANCOVA. [Color figure can be viewed at wileyonlinelibrary.

com]
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DISCUSSION AND CONCLUSIONS

Exploring neuroimaging-based biomarkers to help dif-
ferentiate BPP, SAD, and SZ patients, who display signifi-
cant clinical overlap, is promising but challenging.
Recently, there has been growing interest in studying
brain dynamic connectivity which may uncover important
dynamic-based biomarkers. In this article, we introduced a
GIG-ICA framework to estimate both group-level and

subject-specific connectivity states from time-varying con-
nectivity patterns. Our method enables performance of
analyses on subject-level features, such as identifying dis-
eases biomarkers using statistical methods and classifying
individual patients using machine learning approaches. By
analyzing the whole-brain ROIs-based dynamic connectivi-
ty derived from resting-state fMRI data, we examined
group differences among a large sample including HCs,
BPP, SAD, and SZ patients.

Figure 16.

(A) Statistical analyses results of all six hypoconnectivities in the SFC analyses. (B) Statistical

analyses results of all three hyperconnectivities in the SFC analyses. (C) Significant associations

between FC strengths and the symptom scores of patients (P< 0.05 with Bonferroni correction).

The connectivity strengths were Fisher’s r-to-z transformed. [Color figure can be viewed at

wileyonlinelibrary.com]
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We observed that while the dominant group-level state
(GS 1) with the greatest contribution to time-varying con-
nectivity was highly consistent across groups, the non-
dominant states showed varied or disparate patterns
across groups. Specifically, for GS 2 and GS 3, BPP and SZ
groups showed lowest similarity, but GS 4 of SZ and GS 5
of SAD were diagnosis-related. Interestingly, these states
also showed different activation patterns among groups,
suggesting the possibility of further developing these mea-
sures as diagnoses-related biomarkers. The positively
active window showed an increasing trend across BPP,
SAD and SZ groups for GS 1 and GS 3. For the activation
mode of GS 3, HC and BPP resembled each other more
closely while SAD and SZ were more similar. Regarding
the SAD (or SZ) related state, SZ (or SAD) showed signifi-
cant activation difference with both HC and BPP. All the
findings support the hypothesis that SAD and SZ had
more abnormal patterns than BPP. It is also worth point-
ing out that we evaluated the reliability of each group’s
connectivity states by performing additional ICASSO runs
and using different subsets of samples (i.e., permutations).
Our results suggested that the identified states were reli-
able and meaningful.

Regarding the dominant state, widespread group differ-
ences lay in 166 FCs, which mainly involved the thalamus,
cerebellum, frontal, temporal, occipital, fusiform, postcentral,
cuneus, supramarginal, and calcarine cortices. Furthermore,
there were progressive abnormalities from HCs to BPP
patients to SAD patients to SZ patients with respect to hypo-
connectivities and hyperconnectivities. The results are con-
sistent with some previous studies that observed more
severe gray matter deficits from BPP to SAD to SZ [Ivleva
et al., 2013] and functional impairments from BPP to SZ
[Argyelan et al., 2014]. Hence, our findings support the
view that these chronic psychotic disorders are in a continu-
um of severity, with BPP closer to normality and SZ at the
more severe end. Specifically, 22 FCs associated with the
postcentral, frontal, and cerebellar cortices showed decreas-
ing trends across HC, BPP, SAD, and SZ groups, while 34
FCs associated with the insular, temporal, frontal, fusiform,
lingual, occipital, supramarginal cortices, as well as thala-
mus and cerebellum, had increasing trends across those
groups. Promisingly, these FCs showing decreasing/increas-
ing trends across groups also had negative/positive correla-
tions with the symptom severity scores in patients,
indicating the clinical relevance of these possible biomarkers.
Interestingly, all hypoconnectivities that showed significant-
ly negative correlations with symptom scores were linking
the postcentral and frontal cortices. Therefore, our findings
support the postcentral-frontal connectivity strength as an
underlying biomarker for psychosis severity, consistent with
the previous work [Lynall et al., 2010] that also revealed
reduced FCs in precentral, postcentral, frontal, temporal,
and insular cortices in SZ. Noteworthy, these FC differences
among patient groups were not attributable to the current
medication status.

Furthermore, the psychosis groups showed between-
group difference in 52 FCs, while HCs differed from patients
in 114 FCs. The results indicate that these psychotic disor-
ders showed considerably similar alterations in connectivi-
ties, consistent with prior studies [Meda et al., 2016;
Pearlson et al., 2016]. We also found that for 14 FCs involv-
ing the frontal cortex and fusiform gyrus, HCs and BPP
patients were more similar to each other, while SAD resem-
bled SZ patients. This supports common executive function
(associated with frontal cortex) and face recognition (rele-
vant to fusiform) abnormalities in SAD and SZ, consistent
with previous reports from other groups [Beatty et al., 1993;
Bora et al., 2009; Tang et al., 2012]. The current finding is
also consistent with the results of our previous work [Du
et al., 2014, 2015b], which used spatial functional networks
to investigate the hierarchical inter-group relationship and
found that HCs and BPP patients clustered into one group
while SAD and SZ patients clustered into another. Our find-
ing supports the idea that SAD may be biologically similar
to SZ, as classified based on symptoms in the current DSM-5
[Heckers et al., 2013; Malaspina et al., 2013].

Our results also suggest that compared to other groups,
SZ patients had significant alterations in three FCs related
to the left cerebellar crus. SAD was different from all other
groups in one FC linking frontal and fusiform cortices.
Cerebellum is usually considered to be mostly associated
with motor function, however, increasing evidence sug-
gests that the cerebellum participates in high-order brain
function and cerebellar brain networks are impaired in SZ
patients [Buckner, 2013; Collin et al., 2011; Guo et al., 2015;
Koziol et al., 2014; Ramnani, 2012; Stoodley, 2012]. Previ-
ous work showed reduced gray matter volumes of fusi-
form in SAD [Landin-Romero et al., 2017]. Therefore, these
diagnosis-related aberrances may help contribute to the
differentiation of three disorders with overlapping
symptoms.

Using the traditional static connectivity technique, we
only observed 29 discriminative FCs, 28 of which over-
lapped with those identified using our dynamic connectiv-
ity analysis method. Among patient groups, three
connectivities were different, including one FC that distin-
guished between SAD and SZ groups and two FCs show-
ing differences between BPP and SZ populations. The
conventional method failed to reveal any SAD- or SZ-
specific alteration. Superior to the SFC analysis, our DFC
method is able to extract inherent connectivity states, con-
sequently enabling us to identify biomarkers from multiple
states as well as the fluctuations of those states. In summa-
ry, our approach is superior to standard SFC in identifying
connectivity-related biomarkers of the psychosis groups.

Our method is able to compute the subject-specific states
with direct correspondence across subjects, while preserv-
ing the accuracy of the subject-specific states through opti-
mizing their independence. Considering the subtle clinical
differences among groups, we applied GIG-ICA to dynam-
ic connectivity patterns of each group separately rather
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than dynamic connectivity patterns of all groups. If all
subjects’ dynamic connectivity patterns from the four
groups were analyzed by one GIG-ICA, the assumption of
common states across all groups may be too strict and
category-specific group-level states cannot be detected.
Furthermore, to assess the validity of the found group dif-
ferences, we also applied a permutation test with 1,000
permutation runs, each of which randomly rearranged all
623 subjects to generate four dummy groups and then
investigated group differences. Results from the permuta-
tion test clearly support that the 166 discriminative FCs
were driven by diseases rather than grouping. In our
study, the subject-specific states provided discriminative
measures, and promisingly those measures showed rea-
sonable associations with symptom severity scores in
patients, indicating accuracy of the obtained individual
features. We also noticed that there is no work that per-
forms individual ICA on each subject’s dynamic connectiv-
ity to estimate the subject-specific states. This is probably
due to the difficulty of establishing correspondence among
subject-specific states estimated using individual ICA.

Previous dynamic studies [Damaraju et al., 2014; Rashid
et al., 2014] have used K-means to compare dynamic func-
tional network connectivity (dFNC) between SZ and BPP.
In contrast, our article focused on the whole-brain AAL
ROIs-based dynamic connectivity, and applied GIG-ICA to
estimate the subject-specific states. Hence, the findings are
not especially comparable between our work and previous
dynamic studies. However, Rashid et al. [2014] also found
differences between SZ and BPP in the frontal and frontal-
parietal regions.

While there is no gold standard for ROI selection, we
used the canonical AAL template-defined regions as ROIs
to compute whole-brain functional connectivity, as the
template provides a clear parcellation and explicit descrip-
tion on whole-brain regions. Recently, researchers have
also used brain regions with functional coherence obtained
from group ICA [Allen et al., 2014; Damaraju et al., 2014],
clustering techniques [Craddock et al., 2012; Du et al.,
2012; Thirion et al., 2014], and previous fMRI studies [Du
et al., 2016] to calculate connectivities. ROIs obtained using
data-driven methods may be sensitive to the model
parameters such as the number of ICs or clusters. Howev-
er, dynamic analyses using ROIs with more flexible brain
function also worth studying.

There are some limitations that are worth further con-
sideration in future. First, the number of ICs was adjust-
able, and the change of this parameter may influence the
estimated states and the identified group differences. To
facilitate the comparison among the four groups, we set
the number of ICs as an empirical value, five [Damaraju
et al., 2014; Miller et al., 2016; Rashid et al., 2014; Yaesoubi
et al., 2015], for all groups. The setting preserving enough
variance in individual PCAs led to reliable performance
under the conditions of different ICA runs, different
ICASSO runs and different subsets of samples for all

groups. Furthermore, we also investigated the states’ reli-
ability under different numbers of ICs including 2, 4, 5, 6,
and 10. Results (Supporting Information Figs. S1-S3) show
that the parameter 5 yielded relatively higher reliability
than bigger number (i.e., 6 and 10) while preserving
acceptable variances compared to smaller number (i.e., 2
and 4). We also found that the group differences in the
dominant state identified using different settings showed
similarity to some extent (see Supporting Information Fig.
S7), while the P-value maps from settings 5 and 6 were
likely closest to each other. Hence, the setting 5 main-
tained a relatively better balance among the preserved var-
iance, the reliability of states, and the resulting group
differences in our study. However, other choices for the
number of states, such as different settings for different
groups, may deserve further study. In addition, effective-
ness of the identified measures for distinguishing individ-
ual patients also needs to be evaluated in future work.
Second, we mainly investigated the subtle group differ-
ences in connectivities based on the dominant state due to
the fact that the dominant state was very consistent and
comparable across all subjects in all groups. For the non-
dominant states matched approximately across groups,
different groups exhibited various patterns. Therefore, we
primarily compared their similarity and disparity at the
group level as well as their fluctuations for those highly-
matched states, rather than conducting statistical analyses
on the individual-level states. In future, an effective meth-
od needs to be developed to investigate differences in the
non-dominant individual states. Third, the number of time
points of fMRI data used in our study was relatively
small. Some work [Leonardi et al., 2013] used data includ-
ing more volumes to investigate dynamics; however,
many studies have already shown that different connectiv-
ity states can be robustly and replicably captured using
similar time points in a short period [Abrol et al., 2016;
Calhoun et al., 2014; Damaraju et al., 2014; Miller et al.,
2016; Rashid et al., 2014; Yaesoubi et al., 2015; Yu et al.,
2015]. Fourth, we regressed out the global signal from
each voxel’s time series in preprocessing, as a global signal
is assumed to reflect a combination of resting-state fluctua-
tions, physiological noise (e.g., respiratory and cardiac
noise), and other noise signals with non-neural origin.
Removal of the global mean has been shown to facilitate
the detection of localized neuronal signals and improve
the specificity of FC analysis [Chai et al., 2012; Fox et al.,
2005, 2009; Van Dijk et al., 2010], although it could result
in increased negative correlations [Murphy et al., 2009].
Some previous work [Chai et al., 2012; Chang and Glover,
2009; Fox et al., 2009] reported that meaningful anti-
correlated networks may only become detectable after
regressing no-biological origins. Considering that regress-
ing out global mean is a controversial issue [Hayasaka,
2013], it may deserve further investigation. Finally, we did
not study non-psychotic bipolar patients; whether these
differ from bipolar individuals with psychotic symptoms
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needs to be studied separately. In addition, we investigat-
ed group differences based on the symptom-based diagno-
ses that likely need more refinement. Biomarker-based
categories termed Biotypes [Clementz et al., 2016] have
shown promising performance as an effort to understand
neurobiological heterogeneity in psychosis. In future work,
we will investigate group differences in dynamic connec-
tivity based on novel multi-domain biomarker batteries
derived from multiple types of biological assessment
[Clementz et al., 2015; Meda et al., 2016].

In summary, we propose here a novel scheme that uses
GIG-ICA method to analyze dynamic connectivity. Results
showed that our approach detected group differences and
associations with symptoms that were not evident using
the conventional static connectivity analysis. Findings
using our method suggested that the diagnosis-related
states with varied activation were present for these mental
disorders. Based on the dominant state, both hypoconnec-
tivities and hyperconnectivities were observed for these
diagnoses, and interestingly these connections’ strengths
had reasonable associations with the symptom scores. Our
results support that SAD and SZ showed common impair-
ments in frontal connectivities, compared to HC and BPP.
Furthermore, we also found SZ- and SAD-related connectiv-
ity alterations. Collectively, our work shows the promising
potential of dynamic connectivity analysis for understand-
ing these symptomatically similar disorders.
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