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Plant “electrome” can be pushed toward a self-organized critical state by external
cues: Evidences from a study with soybean seedlings subject to different
environmental conditions
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ABSTRACT
In the present study, we have investigated how the low-voltage electrical signals of soybean seedlings
change their temporal dynamic under different environmental conditions (cold, low light, and low
osmotic potential). We have used electrophytografic technique (EPG) with sub-dermal electrodes inserted
in 15-days-old seedlings located between root and shoot, accounting for a significant part of the
individual seedlings. Herein, to work on a specific framework to settle this type of the study, we are
adopting the term “electrome” as a reference to the totality of electrical activity measured. Taking into
account the non-linear dynamic of the plants electrophysiology, we have hypothesized that the stimuli, as
applied in a constant way, could push the system to a critical state, exhibiting spikes without a
characteristic size, indicating self-organized criticality (SOC). The results from the power spectral density
analysis (PSD), showed that the interval of the large majority of the b exponents were between 1.5 and 3,
indicating that the time series, regardless environmental conditions, showed long-range temporal
correlation (long memory for b 6¼0 and b 6¼2). The analyses from the histograms of the runs showed
different patterns of distributions concerning the experimental conditions. However, the runs exhibiting
typical spikes, mostly under low light and osmotic stress, showed power law distribution with exponent m
ffi 2, which is an indicative for SOC. Overall, our results have confirmed that the temporal dynamic of the
electrical signaling shows a complex non-linear behavior with long-range persistence. Moreover, the
hypothesis that plant electrome can exhibit a self-organized critical state evoked by environmental cues,
dissipating energy by bursts of electrical spikes without a characteristic size, was reinforced. Finally, new
perspectives for research and additional hypothesis were presented.
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Introduction

To face the constant challenges imposed by the changing envi-
ronment, plants evolved a sophisticated system of perception,
involving the capacity to sense many stimuli by specific sensors,
processing information, and to respond by alterations in differ-
ent scales of organization (molecular, physiologic and morpho-
logical). Insofar plants are modular organisms, the question
about the integration of signals from the different parts of their
body (from roots to shoots), have major relevance to the stabil-
ity maintenance of the whole organization of plants under
potentially stressful situations. Therefore, plants show an infor-
mational system constituted by a complex network of signal
transduction from cell-cell to long distance communication,
enabling integration of their body parts (modules), providing
the ability to adjust their phenotype to different environmental
conditions.1-3

Among a plenty of signals with different natures,4 electrical sig-
nals are able to inform distant cells about local stimuli, triggering
proper physiologic responses to a multitude of environmental
cues.,5,6 Studies linking electrical signaling with physiologic
responses to environmental changes are often based on the analysis

of action potentials (APs) or variation potentials (VPs), taking into
account mostly parameters as frequency, amplitude, distance of
propagation and time frame.5,7,8,9 However, quite oftenmixed elec-
trical potential waves are recorded, for instance, as result of overlap-
ping APs and VPs (among other voltage variations), creating a
complex web of systemic information in which several electrical
signals may be layered on top of each other in time and space,10

which makes hard accessing a proper signal analysis.11 Recently,
Saraiva et al.12 have demonstrated that electrical signals in plants,
measured as time series of low voltage variations in whole tissues,
can exhibit high complex dynamic patterns (actually, chaotic
behavior instead purely white noise). Moreover, the complexity of
the electrical signals showed dependence of the environmental
stimulation (osmotic stress), exhibiting burst of electrical spikes fol-
lowing a power law (i.e. spikes without a characteristic size).

The complexity of electrical signals in organisms, emerging
from a plethora of different processes in time and space, has
been named as “electrome.”13 Electrome, a novel term created
in analogy with genome, proteome, transcriptome and so on,
can be used to describe the totality of the ionic currents in dif-
ferent scales of organization in biologic systems. It is a
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collective and versatile term to designate the electric dimension
of living entities that is based on gradients of ions, which gener-
ate energy potentials. Thus, we can refer to cell electrome, tissue
electrome, organ electrome, and organism electrome. Such
term includes the ionic currents associated with APs, VPs and
other ionic currents that propagate through cytoskeleton, into
the same temporal scale. Together, the system formed by
plasma membrane with the ionic channels and pumps,
anchored by cytoplasm cytoskeleton, which is linked with the
nucleus actin skeleton and DNA molecules associated with it,
forms a complex “membrane-cytoskeleton-DNA.” This com-
plex system transports, integrates and processes electrical and
molecular signals that can stores information and engenders a
genetic and cognitive memory that operate together.13

In plants, based on empirical studies,14 Debono15 have
correlated electrophytografic activity (EPG) as resultant of
an integration of intracellular APs derivate from synchro-
nized “protoneural networks,” diffusing information at the
whole plant level. EPGs are extracellular spontaneous sur-
face potential variations, as well as evoked bursts of spikes
recorded at the level of leaves or roots. Synchronized elec-
trical activity of cells in plant tissues have been hypothe-
sized by Masi et al.16 when electrical spikes were measured
by microelectrode technique in root apex. The likely physio-
logic role of these EPGs is to contribute to the integrative
properties of plants, allowing long-distance integration of
signals. Accordingly, low voltage potential variations
recorded at the level of group of polarized cells or tissues
could participate to the fine regulation of physiologic func-
tions of plants.15

In the present study, we have investigated how the low-volt-
age electrical signals of soybean seedlings change their temporal

dynamic under different constant environmental conditions.
Herein, to work on a specific framework to settle this type of
the study, we are adopting the term “electrome”13 as a reference
to the non-local electrophysiology measurements. Accordingly,
in this study we have used EPG technique with sub-dermal
electrodes inserted in 15-days-old seedlings,12 supposedly rep-
resenting the electrome of the whole plants insofar the meas-
urements were performed in tissues (from epidermis to
vascular vessels) located between root and shoot, accounting
for a significant part of each individual seedling. Moreover, tak-
ing into account the non-linear dynamic of the plants electro-
physiology, we have hypothesized that the stimuli, as applied
uniformly producing a constant tension in the plants, could
push the system to a critical state, exhibiting spikes without a
characteristic size.

Originally, the concept of self-organized criticality (SOC)
was presented as an attempt to explain the 1/fb noise in nature,
specially, the pink noise (b D 1).17,18 In general terms, SOC is a
ubiquitous phenomenon in nature regardless on the details of
the physical system under study. For instance, earthquakes,
sandpiles, droplet formation, dynamic of populations, and bio-
logic evolution itself are systems that, under certain circum-
stances, can reach a self-organized critical state.18,19 Systems
that potentially can reach a self-organized critical state are con-
stituted by multiple components interacting locally with their
neighbors (for example, groups of cells connected by plasmo-
desmata) and, when subjected to a constant external perturba-
tion, show responses without a characteristic length of scale. In
the critical state, if we build an histogram of some physical vari-
able x, we will observe the probability density function (pdf)
will follow a power law f j x jð Þ» j x j ¡m; 1<m< 3, asymp-
totically when j x j ! 1 .20 Recent studies with EEG in

Figure 1. Representative original data of the DV (low voltage variation) time series before and after environment stimuli of the 3 treatments (cold, low light, osmotic
stress by mannitol). To allow easier visual comparison before and after stimuli, the scale of y axes were adjusted to each treatment. N is the length of time series in arbi-
trary units. Sampling rate was f D 125 Hz thus, to convert x axes to seconds, divide N by f.
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human brains have showed evidences of SOC,21,22 as well as in
plant electrophysiology.12 We have suggested that SOC behav-
ior could have the role to improve the efficiency of dissipation
of disturbances, avoiding a catastrophic collapse of the whole
system.

Results

A naked-eye inspection of the original runs (Fig. 1) showed
qualitative differences between the electrical signals before and
after the environmental stimuli. While the baseline of all signals
was, in module, 9.6 § 1.2 mV, after stimuli, spikes up to
500 mV were observed, mainly in the treatments with low light
and osmotic stress. The maximum magnitude of the spikes was
limited by the standard voltage cutoff (500 mV) of the measure-
ment protocol used herein, which was compatible to the results
of spikes observed in the studies of Masi et al.16

The spectral analysis by FFT (Fig. 2a, c, e and g) showed a
remarkable difference between the runs before and after stim-
uli. Before the treatments (Fig. 2a) it was observed fundamental
frequencies around 0.9 § 0.6 Hz, a range of mean frequencies
of 4.8 § 0.9 Hz, and higher frequencies around 10.2 § 0.9 Hz
with lower amplitudes. However, after the 3 environmental
treatments, only the fundamental frequencies remained
(Fig. 2c, e and g).

The b exponents calculated from power spectrum density
function (PSD »1/fb) indicated a range of colored noises (Fig. 2
b, d, f and h). The electrical signals recorded in the plants under
controlled conditions (before stimuli) showed an average b D
1.51 § 0.21, a typical reddened noise. However, the runs under

the different environmental conditions can be described as
brown (b D 2) to black noise (b D 3). Under cold conditions, b
D 2.85 § 0.69 (Fig. 2d), while under low light b D 1.96 § 0.30
(Fig. 2f), and b D 2.58 § 0.34 under osmotic stress (Fig. 2h). In
the lowest frequencies, as expected for all PSDs analyzed, b val-
ues approach to white noise (b D 0), likely from instrumental
origin. A paired t-Test showed that b values before stimuli
were lower (P < 0.0001) than b values for the all treatments.
Low light treatment exhibited the lowest (P < 0.001) b values
among the 3 stimuli. There was no significant difference (P D
0.17) in b values between cold and osmotic stress treatments.

The log-log plots of the tail of the probability density func-
tion (pdf, f jDv jð Þ) indicated different distributions for each
plant condition (Fig. 3). The histogram of the runs before stim-
uli (Fig. 3a) showed distributions varying between a typical
exponential (c D 1) and a Gaussian (c D 2) distribution, with
exponent c D 1.69 § 0.18. Overall, there is no a unique type of
distribution fiting throughout the runs in the different condi-
tions tested. However, no run showed a typical Gaussian distri-
bution, as it was expected since the runs showed a long-range
time correlation (Fig. 2). Nevertheless, it was possible to
observe differences in the density of spikes among the treat-
ments, with a high density of spikes in the runs scored under
osmotic stress and a low density of spikes under cold condi-
tions (Fig. 3).

Furthermore, analyzing closer the runs exhibiting typical
spikes (DV values between 100 and 500 mV) we have observed
that under low temperature the runs showed exponential distri-
bution (straight line in the log-linear plot, r2 ffi 0.99) (Fig. 4a).
On the other hand, the runs recorded under low light and

Figure 2. Representative spectrum analysis performed by fast Fourier transform (FFT) of time series recorded before (a) and after environmental stimuli (c) cold, (e) low
light, (g) mannitol; and power spectrum density function (PSD) of time series before (b) and after environmental stimuli (d) cold, (f) low light, (h) mannitol. The doted red
lines in the graphs a, c, e and g highlights the main frequencies observed in each treatment (fundamental frequencies between 0.5 and 1.5 Hz and, only in the runs before
stimuli, medium frequencies around 4 Hz, and higher frequencies around 9 Hz). In the graphs b, d, f and h the b exponents were (nD 20): under cold conditions b D 2.85
§ 0.69, under low light b D 1.96 § 0.30, and b D 2.58§ 0.34 under osmotic stress; before stimuli b D 1.51 § 0.21.
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osmotic stress showed typical power law distributions with m D
2.5 § 0.6 (Fig. 4b) and m D 2.1 § 0.3 (Fig. 4c), respectively.

Discussion

As previously suggested12,15 the dynamic of global electrical sig-
nals in plants, emerging from the integration of local (cell-to-
cell) electrical activity, is not a pure stochastic noise (white
noise), and can be related to the physiologic state of the plants
under different environmental conditions.

A variety of natural phenomena are well described by 1/fb-
type noises, with b ranging from 0 (white noise) to > 2 (red-
dened noise).,19,23,24 In our study, the interval of the b expo-
nents values (often from 1.5 up to 3) of the PSD functions
(Fig. 2) indicated that the time series, regardless environmental
conditions, showed long-range temporal correlation (long
memory for b 6¼0 and b 6¼2).25 This implies that the current
value of the biologic signal (e.g. the variation of low voltage, as
herein) co-varies not only with its most recent value but also
with its long-term history (persistence) in a scale-invariant
manner.26 Insofar electrical signals in plants have been related
to physiologic responses to environmental stimuli,5,6 it is rea-
sonable to hypothesize that the persistence in the electrical
dynamics could affects the spread of the signaling in plant’s
responses to stimuli. Accordingly, our results of b exponents
showed that (Fig. 2), under environmental perturbation, there
was a trend for darker noises. According to Cuddington and

Figure 3. Probability density functions ((pdf, f jDv jð Þ) of the tail of the of the runs (a)
before stimulus (log-log), (b) cold (log-linear), (c) low light (log-log), osmotic stress (log-
log). In (a) the dashed line represents the modeled exponential distribution (cD 1), the
continuous line is the fit of the distribution jDv jð ÞD a � exp ¡ b � jDv j cð Þ, with
cD 1.69 § 0.18, and the dot-dashed line is the modeled Gaussian distribution (c D 2).
Plots b, c and d have non-defined distribution.

Figure 4. Histograms (probability density functions f jDv jð Þ» jDv j ¡m) of the
absolute values of the electrical signals jDVj plotted with the whole scored time
series (N �300,000). Plot (a), cold treatment, showing typical cases of exponential
distribution (straight line in the log-linear plot, r2 ffi 0.99); plots (b) low light treat-
ment, and (c) osmotic stress by mannitol were plotted as log-log, showing typical
power law distributions with the slopes m D 2.5 § 0.6 (b) and m D 2.1 § 0.3 (c).
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Yodzis23 darker noises (b > 2) are related with higher persis-
tence, which could support for the electrical long distance sig-
naling at whole plant level. The long-range time correlation
indicates that the low-voltage signals of the plants are not a ran-
dom noise, likely carrying meaning information for the whole
plant organization.

Such as other non-linear complex phenomena, the dynamic
of the electrome shall be considered as an emergent property,
that is, a collective property of the system, which is non-reduc-
tive to the underlying mechanisms engendering single electrical
events in the plasma membranes. Accordingly, De Loof13 holds
that there are not 2 identical electromes. Each cell has its own
electrome that is different from any other cells, even consider-
ing 2 cells derived from mitosis. This is reasonable insofar the
daughter cells has different distribution of quantities and types
of ionic channels and pumps, as well as different cytoskeleton
structure. Thus, the dynamic that emerges from integration of
electrical signals of each cell in a tissue must exhibits a high
level of complexity. On the other hand, as observed herein,
eventual bursts of spikes emerge as an outcome of self-orga-
nized collective behavior among groups of cells.,15,16

To try elucidating the possible roles of the temporal dynamic
of electrical signaling in the plant-environment relationship,
our study brings evidence that plants can be pushed to a self-
organized critical state under some specific situations. The
power law distribution of the spikes in the log-log histogram
(pdf), only in plants subjected to environmental stimuli sup-
ports this hypothesis. According to Bak et al.17 SOC systems
are barely stable and, then, perturbations can cause a cascade of
energy dissipation on all length scales, following a power law
distribution (scale invariance), allowing efficient dissipation of
disturbances throughout the system. Power law distributions,
specifically when 1< m < 3 (as in our results of plants under
low light and osmotic stress), can be signatures of SOC
states.17,18,19

Recent studies with EEG in human brains have also
showed evidences of SOC.21,22 However, SOC has been asso-
ciated to a normal brain functioning and disturbances, such
as epileptic seizures attacks, deviate neuronal activity from a
power-law distribution.22 Thus, while SOC seems to be the
normal state for brain functioning, our results have sug-
gested that the critical state in plants can be induced under
stressful environmental conditions. Yet, it is not clear what
is the meaning of SOC for biologic systems stability. By one
hand, critical states can be associated to optimal information
processing and computational capabilities (brain special-
ties)22 and, on the other hand, in the critical state, systems
can dissipate energy (tensions) efficiently,17 which is a very
important capacity for plants under stressful situations.
Accordingly, the spectral analysis (Fig. 2) showed that, after
environmental stimuli, the higher frequencies have disap-
peared, which could be an indicative of lower energy cost of
the system, as a consequence of the energy dissipation effi-
ciency. Under stressful conditions, saving energy is an effi-
cient strategy for surviving. This was more evident especially
under osmotic stress, since under lower temperatures the
activity of the spikes was constrained insofar cold reduces
the activity of the ion pumps, lowering electrical activity in
the membranes.15

These findings, by one hand, brings new insights about the
possible role of the electrical signaling in the coordination of
fine tuning metabolic adjustments, as well as an important fac-
tor to dissipate excessive energy under stressful situations.
However, by the other hand, precisely because the high com-
plexity involved in the electrome dynamic, the understanding
about the “mechanisms” that cause such complexity, as well as,
the likely “mechanisms” by which electrical signaling affect the
metabolic regulation may be unlikely to be completely uncov-
ered. Despite of the well understood knowledge on the cellular
mechanisms engendering electrical phenomena underlying
APs and VPs,7,8 a comprehensive understanding of the realm
of the electrical phenomena in higher scales (from tissues to
whole organism) can be far more difficult.13

Concluding remarks and perspectives

Our study supports the hypothesis that plant electrome can
exhibit a self-organized critical state evoked by environmental
cues, dissipating energy by bursts of electrical spikes without a
characteristic size (scale invariance). Moreover, we have con-
firmed that the temporal dynamic of the electrical signaling
shows a complex non-linear behavior with long-range correla-
tion (memory).12

At least hypothetically for now, the persistence of the electrical
signals observed in our study could support the hypothesis of a
plant electrical memory, as claimed by Volkov et al.27 in a study
proposing a mechanism of short-term electrical memory in the
Venus flytrap. Actually, memory has been considered an essential
attribute allowing plants to face environmental stresses and to
improve their learning responses in the future (such as acclimation
or priming responses). Until now, different molecular mechanisms
have been envisaged as the basis of plant memory, such as calcium
waves, different epigenetic modifications of DNA and histones,
and regulation of timing via biologic clocks.28,29 Recently, it have
been speculated that ionic currents self generated by cells could be
one of the basis of cognitivememory frombacteria to human brain,
including plants.13

Moreover, de Arcangelis and Herrmann30 have proposed
that learning can be a phenomenon occurring in a self-orga-
nized critical state. The proposed model was able to reproduce
quantitatively the experimentally observed critical state of
brains and, at the same time, learns and remembers logical
rules. Additionally, insofar brain dynamics is influenced by
neuroanatomical connectivity,21 learning was dependent of the
plastic adaptation of the synaptic strengths in the neuronal net-
work, affecting the appearance of critical states.30 Insofar our
results showed evidence of SOC behavior in electrical signaling
in plants at the organism level, the likely relationship between
SOC and learning it is an insightful “food for thought” for
future discussion of plant learning modeling.1

Finally, toward future investigation, we propose to study, based
on non-linear time series analysis, the ubiquity of the complex
behavior of electrical signaling in the plant responses to environ-
ment, testing for different species and different environmental
cues. Maybe, a possible strategy could be by stimulating the plants
with their own patterns of electrical signal and cross-testing
between each other, comparing with expected physiologic
responses (for instance, stomatal responses, metabolic changes and
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so on). Additionally, we have hypothesized a posteriori that the
individual electrical signatures could be representative of the physi-
ologic state of the plants that, by means of sophisticate techniques
of patterns recognition, could provide a method to diagnose spe-
cific physiologic conditions of each individual, some similar to the
electrical brain signatures in humans.31

Material and methods

Plant model and initial growth conditions

In this study, soybean [Glycine max (L) Merrill] cv. Intact Bt/
RR was used as plant model. Seedlings were obtained from
seeds germinated in 180 mL pots with vermiculite as substrate.
The pots were kept in maximum capacity of water retention
during both germination and early seedling development under
controlled conditions in a growth chamber (Phytotron EL-101,
Eletrolab, Brazil): day/night temperature of 28/22�C, respec-
tively, 14h of photoperiod with 500 mmol photons m¡2 s¡1,
and air humid around 60%. The plants were irrigated daily
with 1/2 strength Hoagland nutrient solution, preventing, at
same time, both starvation and salinization. The amount of irri-
gation was determined after weighing the pots with its maxi-
mum water retention and verifying the daily evaporation loss.12

Treatments

To accomplish the objective to test for SOC hypothesis, 15
days-old seedlings (after germination) were subjected to 3 treat-
ments constituted of constant potential stress factors (osmotic,
low light and cold). To observe spike-like responses with no
characteristic size, it is essential that the disturbances be
imposed as homogeneous as possible, creating a constant ten-
sion in the system, without driving the likely differences on
magnitude of responses. Thus, we can ensure that the different
sizes of the spikes are not evoked by stimuli with different
intensities, being an outcome from the self-organization of the
system.

The first experiment, with osmotic stress, was performed to
try reproducing the findings in,12 which have showed the first
evidence of SOC in plant electrophysiology. Therefore, the
seedlings were osmotically stimulated with a mannitol solution
with water potential of ¡2.0 MPa, applied directly on the sub-
strate of the pots, taking care to avoid any mechanical contact
with the plants. The second experiment was performed with a
low light treatment, reducing the light intensity in the growth
chamber to 50 mmol photons m¡2 s¡1 during the measure-
ments. The third experiment was performed reducing the tem-
perature in the growth chamber to 15�C during measurements.

All the 3 experiments were performed with 20 replicates
(plants) each.

Data acquisition

The bioelectric time series were recorded using a device of elec-
tronic acquisition with 4 channels (model MP36, Biopac Sys-
tems, US) with high input impedance. The sampling rate used
was 125 Hz with 2 filters, one high-pass (0.5 Hz cutoff

frequency) and a low-pass (1.5 kHz cutoff frequency). The sig-
nals were amplified with a gain of 20,000 x, allowing high reso-
lution to capture the voltage variations ( jDv j � 500mV cutoff
voltage) before and after stimuli, to perform suitable and reli-
able time series analyses.

With the objective to acclimate the seedlings to the condi-
tions of data acquisition, one day before each experimental ses-
sion sub-dermal needle electrodes (model EL452, Biopac
Systems, US) were inserted into the region between the stem
and the roots, below the first pair of simple leaves. Acclimation
to the electrodes is required because their insertion induces
action potentials and local fluctuations in potential variation,
which is stabilized in a few hours with the disappearance of the
evoked electrical variations.32 Each pair of electrodes (positive/
negative) was inserted into the stem at a fixed distance (1 cm
from each other) and 2–3 mm in depth, ensuring contact with
the conducting vessels of the plants. The parts of the electrodes
outside the plants were isolated from each other by a block of
polystyrene. All bioelectric measurements were taken inside a
Faraday cage properly grounded to prevent electric noise from
the laboratory environment. A third electrode was attached to
the structure of the Faraday cage to obtain adequate electrical
grounding. In each experimental session, data were collected
from 4 plants simultaneously, using a total of 20 plants in each
treatment.

Data gathering was performed continuously during 1h
before and 1h after application of the each specific environmen-
tal stimuli in the same plant for each replicate.

Time series analyses

In this study, we analyzed the time series DV D {Dv1, Dv2,…,D
vN}, where Dvi is the potential difference between the electrodes
inserted in the plants, as described above. The series analyzed
correspond to samplings with the total length N »75,000
points, corresponding to 600 s (using 125Hz) of the data mea-
sured before and after stimuli.

Therefore, first, a spectrum analysis was performed by fast
Fourier transform (FFT) to decompose the series allowing
observing dominant frequencies throughout the spectrum 125/
2 Hz. Second, the power spectral density (PSD) was calculated,
it describe how the power of the waves are distributed over fre-
quency (DV2 Hz¡1), to evaluate the exponent b

when PSD» 1=f b; with b typically ranging from ¡1 to 3. For
some values of the spectral exponent b indicates the noise
color: white noise (b D 0), red (or pink noise) noise (b D 1),
brown noise (b D 2) and black noise (b D 3).23,24 Typically, a
white noise contains an equal mix of all frequencies. Colored
noises have a preponderance of frequencies of a given range. If
a time series is dominated by long-range cycles, the noise is
called reddened.23

Additionally, a histogram (pdf) of the absolute value of the
magnitudes of the spikes jDVj was plotted with the whole
scored time series (»1 h of sampling, N �300,000), and in
some cases we have found a power law f jDv jð Þ» jDv j ¡m:
The exponent m can be obtained by slope the straight lines on
scale log-log. According to L�evy flight model, when 1 < m < 3
the random variable has infinite variance,33,34 meaning that the
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data show scale invariance. Herein, in the cases when 1 < m <

3 was observed in the runs recorded under stimulation, we
have considered as an indicative for SOC behavior.
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