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ABSTRACT. It is no longer necessary to demonstrate that ribosome is the central machinery of
protein synthesis. But it is less known that it is also key player of the protein folding process through
another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme
activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within
the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also
potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation.
In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world
hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein
chaperones involved in the appearance and propagation of prions and other amyloids in mammals.
Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active
against mammalian prion and other protein aggregation-based diseases, making PFAR a promising
therapeutic target for various human protein misfolding diseases.
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Present in every cell and mitochondria, ribo-
somes are composed of 2 subunits, which them-
selves are made up of ribosomal RNA (rRNA)
and proteins. Broadly, the small subunit ini-
tiates the translational process and ensures the
correct decoding of genetic information, while
the large subunit catalyzes the peptidyl trans-
ferase activity that covalently links amino acids
together. While the central role of the ribosome
in protein synthesis is well appreciated, little is
known about the second ribozyme activity of
the ribosome: its protein folding activity
(PFAR).

Since its discovery, the existence of PFAR
has been controversial and difficult to gain
acceptance within the scientific community.
Despite PFAR being first identified in 1994
by the group of C. Das Gupta1 and this
activity being corroborated by several other
teams,2 PFAR is often overlooked, as illus-
trated by its absence from reviews on non-
coding RNAs. However, once getting over
the initial surprise of the existence of such
an activity, it seems self-evident that the bio-
logical entity that has evolved to synthesize
proteins must also aid them achieve a proper
3-dimensional functional state before their
release. In addition, this is fully consistent
with the estimation that, apart from sponta-
neously folded proteins, only a fraction of
the total cellular proteins can be folded by
classical protein chaperones.3

Initially, PFAR was described in vitro for
bacterial ribosomes and was quickly shown to
be a conserved function of any ribosome,
whether from bacteria, eubacteria, eukaryotes
or even mitochondria.2 The conservation of the
protein folding capacity of the ribosome among
species is not a surprise when considering the
high rate of conservation of rRNA in the ribo-
some core throughout evolution.4 As one may
expect, PFAR is a versatile process that has
been demonstrated to be able to refold any pro-
tein challenged so far in vitro2 and in vivo.5-8

This folding activity appears to be inherent to
the conserved RNA domain that also harbors
the peptidyl transferase activity: domain V of
the rRNA of the large subunit of the ribosome
(23S for bacteria, 25S for yeast and 28S for
mammals). However, the nucleotides of

domain V involved in its protein folding activ-
ity are different from those involved in its pep-
tidyl transferase activity 9,10 (Fig. 1).

The protein folding mediated by domain
V is a 2-step post-translational process: the
neo-synthesized polypeptide is first folded by
the central loop of domain V (RNA1) and
remains associated to it until the intervention
of a second part of domain V (RNA2) which
is responsible for the release of the folded
protein.11 The nucleotides involved in PFAR
are localized at the interface of the
ribosome’s small and large subunits.9 Ribo-
somal subunits dissociate in the presence of
unfolded polypeptides, making them more
accessible to PFAR-involved nucleotides and
thus enhancing their folding ability.2 This is
in good agreement with the fact that protein
synthesis and protein folding are synchro-
nized: as long as the peptidyl transferase
activity continues, the protein folding activ-
ity of the ribosome is silenced and only
becomes operational when translation is
completed.12

In the midst of identifying new anti-prion
compounds, we identified anti-prion drugs
such as 6-aminophenanthridine (6AP13), gua-
nabenz (GA14) and imiquimod (IQ15) which
are active in vivo against yeast and mamma-
lian prions and that were amazingly identi-
fied as PFAR inhibitors. The discovery that
6AP and GA anti-prion drugs are also anti-
PFAR drugs led us naturally to suggest that
PFAR may be linked to prion propagation.
Although the primary role of protein chaper-
ones is to prevent protein misfolding and
aggregation, involvement of protein chaper-
ones like PFAR in the propagation of prion
conformation is self-evident, as amyloid-
forming proteins exist in several conforma-
tions and replication corresponds to propaga-
tion of differentially folded states.16 This
hypothesis has strong support as Hsp104p, a
yeast heat shock protein, has been shown for
a long time to be involved in yeast prion
propagation, together with Hsp70 and Hsp40.
Similarly to Hsp104p, PFAR misregulation
leads to a defect in the propagation of the
yeast prion [PSIC]6 (Fig. 2). The anti-PFAR
drugs we identified were the first of that
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kind: all the previous anti-PFAR drugs
described so far are antibiotics that also bind
to domain V and inhibit its peptidyl transfer-
ase activity.5,7 Of note, the fact that some
antibiotics specifically target PFAR is a fur-
ther indication of the central function of this
ribozyme activity.

In this review, we consider the ancestral ori-
gin of PFAR and the relationship of this emerg-
ing ribosomal activity with the global protein
folding capacity of the cell. We also discuss
PFAR involvement in the propagation of prions
and other amyloids in mammals.

PFAR Activity: Another Relic of the
Ancient RNA World into Modern
Ribosomes?

In current living organisms, the newly syn-
thesized polypeptides undergo several matura-
tion mechanisms to be correctly processed and
translocated to achieve their functional folded
state. These maturation processes are often
linked to protein synthesis. They depend on
translational speed and on interactions of the

nascent polypeptide chain with the peptide exit
tunnel and with the nascent chain-interacting
protein factors, which are located on and
around the ribosomal tunnel exit area. Beyond,
a network of other cooperating chaperones act-
ing post-translationally in a coordinated ballet
are also involved during the latter stages of the
protein folding process.17 However, this system
brings the endless chicken-and-egg paradox
back into play: to get mature and functional
proteins, the cell needs. . . mature and func-
tional chaperoning factors! To address this par-
adox, one has to consider the evolution of the
protein folding process and how the ancient
foundations may have developed. In the ancient
RNA world hypothesis, earlier forms of life
may rely on the dual function of RNA that
simultaneously catalyzes enzymatic reactions
and store genetic information.18 This suggests
that RNA could be the main actor that per-
formed the chemical reactions allowing pro-
teins to gradually emerge and become more
complex due to the development of more and
more sophisticated protein folding capabilities.
Many molecular fossils of the ancient RNA
world are still present and sometimes still

FIGURE 1. The sites of major importance for PFAR activity are included within the PTC region. The
ribosomal large subunit is shown in light gray (Protein Data Bank code 4V6F). The yellow and blue
helices indicate the 2 helices part of the symmetrical region forming the PTC cavity. The nucleoti-
des involved in PFAR activity are numbered and represented as spheres (Thermus thermophilus
numbering). The core of the PTC is indicated by a red sphere (Adapted from ref. 9). Yeast nucleo-
tide U28926 corresponds to position 2492.
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active in modern organisms. Candidates must
be catalytic, ubiquitous, and/or central to some
aspect of metabolism.19 Accordingly, one of
the most significant piece of evidence to sup-
port that the first peptide bonding machines
emerged in an RNA world is the fact that the
modern ribosome is a ribozyme, or in other
words that only RNA performs its key role in
peptide bond formation.20 The peptidyl-trans-
ferase center (PTC) of the modern ribosome is
a universal and highly conserved RNA-only
structure located in the domain V of 23S rRNA
in bacteria or its equivalent parts in eukaryotic
ribosome. It forms a symmetrical pocket in the
heart of the large ribosomal subunit and

probably originated from the dimerization of 2
stem–elbow–stem motifs.21 The PTC is consid-
ered to be the first proto-ribosome dating from
the ancient RNA world since it was certainly
capable of triggering catalytic reactions by
itself. Strikingly, as supported by the binding
sites of its protein substrates or inhibitors,
PFAR activity is clustered within the PTC
binding pocket, surrounding the core where the
catalytic reaction takes place9,22 (Fig. 1).
Therefore, PFAR encompasses most criteria for
making it a perfect vestige of the ancient RNA
world as it is: i) part of another ribozyme, the
PTC, ii) as ancient as the PTC, iii) supported
by RNA only, iv) conserved from bacteria to

FIGURE 2. Interplay between protein folding activities of Hsp104p and ribosome in modulating
[PSIC] propagation (adapted from ref. 6). (A)- Hsp104p and PFAR both participate in [PSIC] propa-
gation. (B)- [PSIC] propagation is affected by enrichment or inhibition of Hsp104p and PFAR. (C)-
Hsp104p and PFAR interplay results in the compensation of the increase of one by the reduction of
the other, and vice versa. OE, overexpression. GuHCl, Hsp104p inhibitor guanidine hydrochloride.
ltv1D and yar1D, PFAR-enriched yeast strains deleted for LTV1 or YAR1 genes.6
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eukaryotes and v) capable of playing a key role
in modern protein synthesis. In this scenario,
the first PTCs (proto-PTCs) were formed by the
dimerization of short helical structures that cre-
ated the first random but fragile peptides alea-
tory using amino acids. In a process that might
be assimilated as “molecular Darwinism,”23

these proto-PTCs would then have evolved into
a stable PTC, able to better favor protection,
stability and activity of the peptides they syn-
thesized. While one can assume that the earliest
peptides were short, single domain and rapidly
selected for robust chaperone-independent fold-
ing, the emergence of a primitive PFAR cer-
tainly conferred a selective advantage to the
peptides. In turn, and resulting from the more
and more efficient peptides and proteins being
produced, the proto-PTC slowly co-evolved
into a proto-ribosome and finally into the mod-
ern ribosome we recognize today, likely by pro-
gressively integrating multiple small
ribonucleoprotein complexes into a much more
complex machinery.24 The traces of these
ancient times remain active RNAs such as
domain V harboring PTC and PFAR, still
embedded in contemporary ribosomes, and may
continue to play a role as part of the global pro-
tein folding capability of the cell.

Which Place PFAR Could Take in the
Array of Protein Chaperones?

Prion propagation in yeast has been shown to
be intimately linked to the expression and activ-
ity of a plethora of protein chaperones. We
recently showed that PFAR and Hsp104p par-
tially compensate each other for [PSIC] propaga-
tion in yeast (Fig. 2). We indeed observed that
PFAR up-modulation can compensate for the
partial loss of Hsp104p activity and that PFAR
partial down-modulation is also compensated by
Hsp104p increase.6 These results clearly indicate
that PFAR is linked to the cellular array of pro-
tein chaperones, at least through Hsp104p. To
this respect, PFAR participates to the very com-
plex network required for cell proteostasis, i.e.
the global protein quality control and the mainte-
nance of proteome homeostasis. Of note, polynu-
cleotides, and more particularly RNAs, have

been shown to exhibit potent chaperone activity
in vitro.25 Proteostasis involves hundreds of pro-
teins constituting a highly regulated and inte-
grated network.

One of the main challenges of the cellular
response to stress is to synthesize, under
adverse conditions, correctly folded proteins
essential for survival. Since the PTC and PFAR
are intimately linked, PFAR activity directly
depends upon the synthesis of proteins, thus
allowing the cell to establish a proper equilib-
rium between protein production and folding
activities. In this context, the link between the
PTC and PFAR can be seen as a strategy to
avoid the synthesis of a polypeptide in
the absence of efficient cellular folding
activities. Remarkably, in situations of cellular
stress, translation is strongly reduced, which
consequently increases the population of non-
translating ribosomes becoming available for
protein folding. As a consequence, the corre-
sponding misfolded proteins emerging from the
deficient ribosome will be more prone to prote-
olysis. Thus, PFAR could also participate to
proteostasis as a potential proofreading process
of the PTC activity.

While Hsp104, and now PFAR, are key
players in dictating the appearance and propa-
gation of naturally occurring amyloid-based
yeast prions, members of the cytosolic Hsp70
chaperone machinery, and associated co-chap-
erones, are important modulators of prion prop-
agation, and in some instances de novo prion
formation.16,26 The cytosolic Hsp70-Ssa [Stress
Seventy Sub-Family A] family members are
well characterized as playing an integral role in
modulating the propagation of a variety of
yeast prions,27,28 and the ribosome-associated
Hsp70-Ssb [Stress Seventy Sub-Family B] fam-
ily members are anti-prion in their action since
they repress the spontaneous appearance of
[PSIC].29 Of note, contrary to Hsp104p and
Hsp70 which expression is induced by stress,
PFAR is a ready-to-use protein folding source
immediately available in case of heatshock to
supplement Hsp104 or to compensate for its
absence, similarly to mammals where there is
no HSP104 homolog.

Where could PFAR “sit” among these other
cellular factors and how may they interact to

PFAR AND PRION PROPAGATION 93



influence prion propagation, or other protein
folding events in vivo? One possibility is that
some prion phenotypes consecutive to altera-
tions in PFAR activity could result from indi-
rect effects through alteration of chaperone
systems such as the cytosolic Hsp70 machin-
ery. However, such phenotypes are not due to
indirect effects on Hsp70 abundance6 and it is
unlikely that alterations in PFAR activity
could significantly disturb Hsp70 specific
functions, unless through indirect effect on
Hsp70 co-chaperone activities. PFAR could
possibly work in conjunction or in tandem
with Hsp70s or other chaperones and the asso-
ciation of Hsp70-Ssb and the interaction with
RAC [Ribosome Associated Complex] in
prion formation and propagation30 provides
the basis for such interactions to evolve. Chap-
erones often function as multi-complex
machines and it is conceivable that Hsp70 or
co-chaperones could be involved into the
delivery or processing of substrates acted upon
by PFAR, or that PFAR could process sub-
strates acted on by downstream chaperone
machinery. The construction and characteriza-
tion of yeast cells modified to alter PFAR
activity now provides the basis for a thorough
genetic assessment of interaction between
PFAR and an array of protein chaperone path-
ways. The involvement of PFAR in protein
homeostasis could extend well beyond prion
propagation and should it be the case, the inte-
gration with other chaperone networks is even
more likely.

PFAR: Mammalian Prion Propagation
and Beyond?

How could drugs targeting the protein fold-
ing activity of the ribosome, which mainly lies
in the cytoplasm, be active against mammalian
prion PrPSc, which is believed to be modified
mostly at the cell surface or on endocytic
compartments? Addressing this question
emphasizes our lack of precise knowledge
regarding the cellular compartments where
prion conversion and subsequent accumula-
tion occur. This is partly due to the fact that
direct and dynamic visualization in cells

remains a highly challenging issue, notably
because tagging the cellular form of the prion
protein (PrPC) most often prevents its conver-
sion into the disease-specific isoform PrPSc. In
many differentiated cell types, a major propor-
tion of PrPC is detected in lipid rafts at the cell
surface, being anchored by a GPI moiety (for
review31). PrPC expression at the cell surface
is required for conversion into misfolded
PrPSc,32,33 and this process may occur rap-
idly.32 Several reports also indicate that a sub-
stantial fraction of PrPC cycles constitutively
between the plasma membrane and endocytic
compartments and that conversion can also
occur in several intracellular compartments all
along the endocytic pathway.34-36 A minor
proportion of PrPC can be found in the cytosol
or in contact with the cytosol, due to retro-
translocation from the endoplasmic reticulum
(or escape before translocation) or transmem-
brane anchoring, respectively (for review37).
In physiological conditions, these forms are
rapidly cleared by quality control processes
(ERAD (Endoplasmic-reticulum-associated
protein degradation), aggresomes). However,
in the prion disease state, or with mutated PrP
mimicking familial forms of prion diseases,
the levels of cytosolic PrP are increased.37,38

The exact contribution of these variants to
prion pathology remains unknown. PrPC is
also involved in many cellular processes and
signaling pathways. These processes include
response to oxidative stress, ER stress, apopto-
sis, proliferation and differentiation (reviewed
in39-41). Certain stress can even trigger
unusual localization of PrPC into the
nucleus.42 Late stages of prion pathogenesis
involve over-activation of the PERK (protein
kinase RNA-like endoplasmic reticulum
kinase) pathway of the unfolded protein
response in experimental mouse models.43

Such pathways and the deregulation of the
PrP-dependent physiological pathways, or a
yet to discover PFAR-dependent proteostatic
pathway in mammals,44 provide plenty of
scope for direct or indirect interactions with
PFAR to occur.

PFAR involvement goes most probably
further than prion-based diseases such as
Creutzfeldt-Jakob disease. There is indeed
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growing evidence that amyloid-based diseases
like OPMD (Oculopharyngeal muscular
dystrophy), Alzheimer’s, Parkinson’s and
Huntington’s diseases share key biophysical
and biochemical characteristics with priono-
pathies: they involve accumulation of aggre-
gates of misfolded host-encoded proteins
through prion-like processes of seeded poly-
merisation.45-47 As metazoa have no Hsp104p
ortholog, the protein folding activity of
domain V of the ribosome might thus corre-
spond to the Hsp104-like activity responsible
for amyloid handling that is absent in these
organisms. This original hypothesis makes
sense in light of our recent findings that
some anti-prion compounds with anti-PFAR
activity, like 6AP, GA and IQ, are also
active in models of other protein aggregation-
based diseases like Huntington’s disease,
Parkinson’s disease (unpublished data) and
OPMD.48 Our data thus indicate that PFAR
involvement in amyloid handling may be
shared by several human protein misfolding-
based diseases, hence making PFAR a poten-
tial therapeutic target for human protein
misfolding diseases. Despite the central role
of PFAR in the proteostasis of the cell, it is
still a promising therapeutic target to treat
this class of diseases, either as a sole target
or as part of a collaborative strategy targeting
more than one cellular chaperone system.
Indeed, its mild inhibition, together with
other therapeutics, may help overcome
the progression of these invariably fatal
pathologies.
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