Skip to main content
. 2016 Dec 10;93(1):fiw220. doi: 10.1093/femsec/fiw220

Table 1.

Thermodynamics of toluene oxidation under aerobic and anaerobic respiration and in syntrophya.

Electron acceptor ΔG
(oxidised/reduced) Stoichiometry [kJ (mol C7H8)−1]
O2 / H2O C7H8 + 9 O2 + 3 H2O → 7 HCO3 + 7 H+ −3790 kJ
NO3/N2 5 C7H8 + 36 NO3 + H+ → 35 HCO3 + 18 N2 + 3 H2O −3555 kJ
Fe(OH)3/FeCO3 C7H8 + 36 Fe(OH)3 + 29 HCO3 + 29 H+ → 36 FeCO3 + 87 H2O −1497 kJ
SO42/HS (complete)b 2 C7H8 + 9 SO42−+ 6 H2O → 14 HCO3 + 9 HS + 5 H+ −203 kJ
−45 kJ (mol SO42−)−1
SO42 HS (incomplete)b 2 C7H8 + 3 SO42−+6 H2O → 6 CH3COO + 2 HCO3 + 3 HS + 5 H+ −61 kJ
−41 kJ (mol SO42−)−1
CO2/CH4 (sum) 2 C7H8 + 15 H2O → 9 CH4 + 5 HCO3 + 5 H+ −130 kJ
 Fermenter 2 C7H8 + 18 H2O → 6 CH3COO + 2 HCO3 + 8 H+ + 12 H2 +166 kJ
 Hydrogenotroph 12 H2 + 3 HCO3 + 3 H+ → 3 CH4 + 9 H2O −203 kJ
 Acetotroph 6 CH3COO + 6 H2O → 6 CH4 + 6 HCO3 −93 kJ
a

Toluene is highlighted as representative BTEX compound here. The table has been adapted from Weelink et al. (2010) and Widdel et al. (2010).

b

Complete or incomplete oxidation of toluene.