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ABSTRACT
Because the incidence of cutaneous malignant melanoma (CMM) was reported to increase with
increasing terrestrial UVR (290–400 nm) doses in the US back in 1975 and a recent publication
showed no association exists with UVR exposure at all, we set out to fully elucidate the role of UVR
in CMM. To achieve this goal, we analyzed the CMM incidences over latitude and estimated the
average personal UVR dose in the US and numerous countries (> 50) on 5 continents around the
world. Using data from the International Agency for Research on Cancer in 2005, we performed
worldwide analysis of CMM over UVR dose by sex, age group (0–14, 15–29, 30–49, 50–69, 70–85C)
and Fitzpatrick skin types I-VI. Surprisingly, increasing UVR doses, which represent erythemally-
weighted doses comprised primarily of UVB (290–315 nm) radiation, did not significantly correlate
with increasing CMM incidence for people with any skin type anywhere in the world. Paradoxically,
we found significant correlations between increasing CMM and decreasing UVB dose in Europeans
with skin types I-IV. Both Europeans and Americans in some age groups have significant increasing
CMM incidences with decreasing UVB dose, which shows UVB is not the main driver in CMM and
suggests a possible role for lower cutaneous vitamin D3 levels and UVA (315–400 nm) radiation.
CMM may be initiated or promoted by UVA radiation because people are exposed to it indoors
through windows and outdoors through some sunscreen formulations. Thus, our findings may
explain why some broad-spectrum sunscreen formulations do not protect against getting CMM.
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Introduction

The incidence of cutaneous malignant melanoma
(CMM) has been exponentially increasing over the last
several decades in fair-skinned males and females
around the world.1,2 The exponential increase in CMM
may be due to the exponential spread of the Human
Papilloma Virus (HPV), the declining levels of vitamin
D over recent decades primarily from indoor work,
and the increasing UVA (315–400 nm) and visible light
(400–700 nm) exposures through windows and
sunscreens. HPV may explain the exponential increase
in CMM over recent decades because it has also been
increasing at an exponential rate3 while vitamin D lev-
els have decreased over the last 5 decades, as reflected
by the almost 10-fold increase in the inversely related

parathyroid hormone levels.4 Vitamin D is important
for a variety of reasons in reducing the risk for getting
CMM but one of the most essential is for T cell activa-
tion in order to kill virally infected and cancerous cells.5

Low cutaneous vitamin D3 levels can occur from inter-
mittent sun exposures and people’s perception of hav-
ing a tendency to burn,6,7 which leads to protective
behaviors like avoiding sun exposure and excessive use
of sunscreens that increase UVA and visible light doses.
Ironically, the sunscreen formulations in the United
States (US) that decrease UVB doses and successfully
prevent sunburn did not result in a decrease in the inci-
dence of CMM8 but rather they may have increased
CMM in a dose-dependent manner.9 Although contro-
versial, the reasons US sunscreens were not protective
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against CMM may be because they almost completely
annihilate vitamin D3 production using sun protection
factor of 15 or more10 and they allow people to stay out
in the sun longer resulting in higher doses of UVA
radiation and visible light. UVA is suspected to be the
driver in CMM because the US broad-spectrum
sunscreens did not provide enough protection in the
longer waveband regions of UVR (> 380 nm) and they
did not protect against getting CMM as did the Euro-
pean broad-spectrum sunscreens11 and the Australian
broad-spectrum sunscreens given to study participants
which did decrease the incidence of CMMby 50%.12

CMM has been exponentially increasing exclusively
in European-ancestry populations for over 5 decades
as revealed by worldwide temporal analysis by sex, age
(0–14, 15–29, 30–49, 50–69, 70–85C) and Fitzpatrick
skin types I-VI.13,14 The observed 2 orders of magni-
tude increase in the CMM incidence between the 2
youngest age groups, 0–14 and 15–29, exclusively in
European-ancestry populations indicates a hormonal
event occurs during puberty which dramatically
increases the incidence of CMM. Some scientists think
this might have occurred because children get 3 times
the UVR dose that adults get, but that assumption was
proven not to be true; in fact, people get about the
same exposures throughout their lives.15 So, one
important risk factor for CMM may be developing
androgenic body hair follicles that are immune privi-
leged sites16 of persistent HPV infection.17 Addition-
ally, the hormone estrogen, which is involved in hair
maintenance,18 evidently increases the risk for getting
CMM because only older women (>40 yr) exclusively
of European ancestry have an almost linear rather
than a power function increase in the CMM incidence
over their lifetime (unpublished results) possibly due
to loss of androgenic hair as they age.19

Most of the risk factors for CMM were determined
by epidemiology studies which showed people with
fair skin (Fitzpatrick skin type I-III), numerous nevi,
and light hair have significantly higher incidences of
CMM.20 These fair-skinned people also have higher
incidences of non-melanoma skin cancers, which
unlike CMM occur exclusively on body sites that are
chronically exposed to the sun. For example, clinicians
have known for over 5 decades that 70–90% of non-
melanoma skin cancers occur primarily on body sites
chronically exposed to UVR, i.e., the head and neck;21

whereas, about 75% of CMM occur primarily on body
sites not chronically exposed to UVR.22 Males have

more CMM on their face, neck, and trunk than
females who have more CMM on their lower limbs,
which corresponds well with the distribution of
androgenic body hair23 that HPV can infect16 along
with nevi and CMM.24 Light hair color, especially red
hair and nevi are major risk factors for CMM20 proba-
bly because they both contain large amounts of pheo-
melanin and its early precursor molecules like
benzothiazine25 that absorb UVA1 radiation (341–
400 nm; λmax > 340 nm).

Because the incidence of CMM was reported to
increase with increasing terrestrial UVR doses in the US
back in 197526 and a recent report found no association
with UVR exposure at all,27 we set out to fully elucidate
the role of UVR in CMM. To achieve this goal, we ana-
lyzed the CMM incidences over latitude and estimated
the average personal UVB dose of males and females in
5 age groups (0–14, 15–29, 30–49, 50–69, 70–85C yr.)
with all skin types I-VI in the US and numerous coun-
tries (>50) on 5 continents around the world.

Materials and methods

Analysis of CMM incidence by sex, age, and skin type
over personal UVR dose

We analyzed the age-standardized CMM (ICD-10,
C43) incidence rates in 2005 (average of 2003–2007)
over estimated average personal UVB doses based on
indoor workers’ personal ambient exposures and resi-
dential latitudes of males and females around the
world. We segregated the data by sex and 5 age groups
(0–14, 15–29, 30–49, 50–69, 70–85C) with Fitzpa-
trick14 skin types I-III, III-IV, IV-V, and V-VI and
analyzed it using age-adjusted, world population nor-
malized data obtained from the International Agency
for Research on Cancer.28 White, non-Hispanic white
or Caucasian skin is primarily represented by Fitzpa-
trick skin type I-III; Asian, Latino, Hispanic, and Poly-
nesian skin is primarily represented by Fitzpatrick
skin type III-IV; brown to black or African American
skin is primarily represented by Fitzpatrick skin type
IV-VI;29 eastern Indian skin is primarily represented
by Fitzpatrick skin type IV-V;30 Mediterranean, olive
tone skin is primarily represented by Fitzpatrick skin
type III-IV.31 One possible limitation to this study is
that a Fitzpatrick skin type for the primary population
of each country had to be assigned if the IARC data
did not segregate the populations by skin type, e.g.,
white, non-Hispanic white, non-Maori, Maori, or
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black (African-American). We used data designated
as white, other white, or non-Hispanic white for
Fitzpatrick skin type I-III whenever available.

The data for the countries shown here are Australia,
the US (white, other white, or non-Hispanic white),
Europe (24 countries average shown for primarily
skin type I-III), China, Japan, South America (6 coun-
tries average shown), Italy, India, and the US African-
Americans.

We give the details of this analysis including the
countries, territories, regions, and states with corre-
sponding latitudes used to calculate the UVB doses in
reference 13.

Personal annual UVR dose calculations

We calculated estimates of the average personal UVR
dose after geometric conversion from planar to cylin-
der measurements32 using the equation derived from
the personal UVR doses known at various latitudes in
different countries: Sweden (60�N; 5,200 J/m2),
Denmark (55�N; 6,800 J/m2), the Netherlands
(52.5�N; 7,000 J/m2), and the US (44�N, 10,000 J/m2

and 34�N, 12,400 J/m2):

UVR doseD ¡ 280XC 22000

where X is the latitude.33 One can also use this equa-
tion to estimate the average personal UVR doses for
people in the southern hemisphere because their esti-
mated personal UVR doses are similar and fall on the
same trend line (see Fig. 3 in reference34). For exam-
ple, before geometric conversion, as in the above equa-
tion, the average Australian gets about 29,000 J/m2 of
erythemally-weighted UVR each year at 34�S and the
average US citizen gets about 28,000 J/m2 of erythe-
mally-weighted UVR each year at 34�N. In the US, we
used the population-centered latitudes for better accu-
racy, although they were not available for other coun-
tries like Australia. To get erythemally-weighted UVR
doses, the solar spectra in W/m2, wavelength for wave-
length from 290–400 nm, is multiplied by the erythe-
mal action spectrum,35 and then the summated value
is multiplied by the number of exposure seconds to
get the dose in J/m2,34 which are primarily UVB doses.
Note that the residential UVB doses do not include
vacations taken at random latitudes, but they give a
good estimate of the average populations’ dose.

Statistical analysis

For all the data, we conducted linear regression analy-
sis to compute correlations using Minitab 16.2.4 (Min-
itab Inc., State College, Pennsylvania) to evaluate the
association between personal UVR doses (indepen-
dent variable) and CMM incidence rate (dependent
variable). We consider data to be significance when
p < 0.05.

Results

In Table 1, we show the p values for all age groups and
skin type I-VI populations around the world. Signifi-
cance (p < 0.05) with CMM can correlate either with
increasing UVR dose (bold) or with decreasing UVR
dose (bold italicized). We observe a significant correla-
tion between increasing CMM and decreasing UVR
dose with increasing age of female Europeans, espe-
cially in male and female Italians over the age of 29.
Note that this is a linear regression analysis and that
we plotted the figures as semi-log for visual presenta-
tion only.

We began by analyzing the countries with primar-
ily fair-skinned type I-III populations as more UVB
radiation can penetrate deeply into their skin
increasing its biological effects. Fig. 1 shows the
CMM incidences over personal UVB dose (J/m2) for
the fair-skinned populated territories, states, and
countries’ on the continents of Australia (20–42�S;
left panels), North America (in the US, 21.31–
47.4�N; middle panels), and Europe (46–65�N; right
panels) for males and females in 5 age groups (0–14,
15–29, 30–49, 50–69, 70–85C yr.). The analysis
reveals only 2 possible significant correlations exist
between increasing CMM incidence and increasing
personal UVB dose in the southern hemisphere con-
tinent of Australia for males in age group 15–29 and
50–69 (Table 1). Note here that 1 in 20 p values
might show significance that is due to type I error.
The youngest age group in Australia (0–14 y.) does
not display a significant increase in the CMM inci-
dence with increasing UVB dose; it only appears that
way because the data point near the equator was
higher for both males (p D 0.204) and females (p D
0.132) and the missing 3–4 data points were zero. On
the North American continent in the US, no signifi-
cant correlation exists between increasing CMM inci-
dence and increasing personal UVB dose but it is
nearly significance in some age groups with
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decreasing personal UVB dose, i.e., males and
females ages 15–29 and females ages 30–49 (Table 1).
However, because there is no apparent trend, this
may be due to type I error. Ninety correlations were
computed in Table 1 so at the level of significance
0.05 one expects 4.5 type 1 errors and we have 2 posi-
tive and 14 negative correlations with UVB dose.

Thus, we have a preponderance of negative correla-
tions or increasing CMM with decreasing UVB dose.
In addition, the higher latitudinal countries on the
continent of Europe shows a p trend correlation
exists between increasing CMM incidences and
decreasing personal UVB doses for females in all age
groups over 29 y. (Table 1).

Figure 1. Age-standardized CMM cases per 100,000 people by personal UVB dose in J/m2 for males and females with Fitzpatrick skin
type I-III. Semi-log plots were chosen for visual presentation only.

Table 1. P values from the linear correlation of CMM with UVB dose for males and females in the 5 age groups in countries with differ-
ent Fitzpatrick skin types I-VI. We consider p values < 0.05 to be significant. Values in bold show significant correlations between
increasing UVB dose and increasing CMM, but those that are bold italicized have significant correlations between decreasing UVB dose
and increasing CMM incidence. ND D no data above zero to analyze.

Fig. 1 Australian US White European

Age Male Female Male Female Male Female

0–14 0.204 0.132 0.456 0.312 0.426 0.685
15–29 0.041 0.177 0.008 0.007 0.385 0.067
30–49 0.101 0.381 0.158 0.006 0.313 0.045
50–69 0.030 0.109 0.739 0.054 0.152 0.048
70–85 0.550 0.309 0.472 0.513 0.064 0.012

Fig. 2 Chinese Japanese South American
Age Male Female Male Female Male Female
0–14 ND ND ND 0.436 0.536 0.281
15–29 0.248 0.369 0.686 0.815 0.001 0.098
30–49 0.952 0.763 0.531 0.879 0.299 0.081
50–69 0.429 0.968 0.130 0.625 0.963 0.365
70–85 0.951 0.057 0.601 0.593 0.894 0.318

Fig. 3 Italian Indian US Black
Age Male Female Male Female Male Female
0–14 0.604 0.454 ND ND 0.606 0.526
15–29 0.113 0.087 0.664 0.473 0.406 0.140
30–49 <0.001 <0.001 0.779 0.675 0.188 0.013
50–69 <0.001 <0.001 0.224 0.725 0.056 0.172
70–85 <0.001 <0.001 0.248 0.600 0.778 0.074
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We continued the analysis of CMM incidence by
personal UVB dose in Asian and Latino countries
with primarily skin type III-IV populations. Figure 2
shows the results for the countries with primarily skin
type III-IV populations with yellow skin tone of males
and females of all ages and the p values in Table 1
reveal no correlation exists between CMM incidences
and UVB dose in China (22.2–45.7�N), Japan (32.8–
38.2�N), or South America (7.1�N-54�S). The only
possible correlation that may exist between decreasing
UVB dose and increasing CMM in South American
males of age group 15–29; however, again there is no
significant trend so this may be due to type I error.
These countries cover broad latitudinal ranges in both
the northern and southern hemispheres on the conti-
nents of Asia and South America.

We finished analysis of CMM incidence by per-
sonal UVB dose with the countries having primarily
skin type III-IV, IV-V, and IV-VI populations (Fig. 3).
The male and female skin type III-IV populations
with olive skin tone in Italy (36.9–46.4�N), like the
rest of Europe, show significant correlations exist
between increasing incidence of CMM and decreasing
personal UVB dose (based on residential latitude)
over the age of 29 (p<0.001; Table 1). But for darker
skin types, no significant correlation between the
CMM incidences and personal UVB dose exists for
people in India (8.5–28.7�N) having primarily

skin type IV-V or for African-Americans in the US
(27.8–44.7�N) with primarily skin type V-VI.

Discussion

For the first time, we provide comprehensive world-
wide analyses of CMM incidences over personal UVB
doses for males and females in 5 age groups (0–14,
15–29, 30–49, 50–69, 70–85C yr.) with all Fitzpatrick
skin types I-VI14 on 5 continents around the world.
Contrary to popular belief, no evidence exists for a sig-
nificant trend or correlation between the increasing
incidences of CMM and increasing personal UVB
dose for males or females of any age group or skin
type I-VI anywhere in the world (Fig. 1–3 and
Table 1). We did find an apparent correlation between
CMM incidence and UVB dose in the US back in
1975 (results not shown), in agreement with previous
findings.26 However, those observations may be mis-
leading because IARC only had data for 10 states in
1975 (12 regions; 3 in California) and the previous
study only analyzed data for 9 states compared with
our analysis here in 2005 for 44 out of 50 states, which
confirms another recent US analysis that used another
database and approach.27 Counter intuitively, in
Europe, we found a significant correlation exists
between decreasing UVB doses and increasing CMM
for fair-skinned, skin type I-III females over 29 y.

Figure 2. Age-standardized CMM cases per 100,000 people by personal UVB dose in J/m2 for males and females with Fitzpatrick skin
type III-IV. Semi-log plots were chosen for visual presentation only.

DERMATO-ENDOCRINOLOGY e1267077-5



(Fig. 1A right panels; p < 0.05, Table 1). In addition,
we found a very significant correlation exists between
decreasing UVB doses and increasing CMM for skin
type III-IV Italian males and females over 29 y. (Fig. 3
left panels; p< 0.001, Table 1). Our European findings
here are in agreement with our previous analysis for
the year 2000 where we found both sexes in all age
groups had a significant correlation between increas-
ing CMM incidence and decreasing UVB dose.1

Besides decreasing levels of vitamin D3 with decreas-
ing UVB dose or increasing latitude,1,2 another expla-
nation may be increasing red hair gene variants of
MC1R with increasing latitude. However, a significant
increasing CMM incidence with increasing latitude
only began to occur in Europe after 1960 with no cor-
responding change in the population’s hair distribu-
tion, so that decreasing vitamin D levels appears to be
a more feasible explanation for this observation.

The fact that we did not find a correlation between
increasing CMM and increasing UVB doses for males
or females in any age group or skin type I-VI on any
continent or country around the world suggests that
unlike non-melanoma skin cancers, UVB radiation
does not play an important role in the etiology of
human CMM. If UVB were responsible for initiating
melanoma, we would expect any sunscreen formula-
tion to protect against getting CMM because they all
prevent sunburn by screening out UVB, but we do not

observe this.11 Thus, our results in combination with
the sunscreen findings allows us to rule out a major
role for UVB radiation or sunburns initiating human
CMM, in agreement with other studies.27,36 However,
we cannot rule out a major role for UVA radiation,
for unlike UVB radiation that displays a steep latitudi-
nal gradient34 and is dramatically reduced by the
ozone layer,37 UVA radiation displays a shallow latitu-
dinal gradient36,38,39 because it is not reduced by the
ozone layer. Sunscreens offer less protection in the
longer waveband regions of the spectrum11 allowing
people to stay out longer and accumulate high doses
of UVA radiation and visible light and UVA may be
effective for initiating melanoma in humans, as first
suggested by an action spectrum in fish.40 Other stud-
ies using cell lines,41 mice,42 and opossums43 also sug-
gested a role for UVA initiating CMM and mounting
evidence has accumulated over recent years suggesting
that UVA may initiate or promote CMM in
humans.1,2,36,38,45,46

The mechanism by which UVA radiation initiates
or promotes CMM may occur via certain chromo-
phore molecules directly absorbing its energy resulting
in ROS or free radical molecules that can form adducts
with or crosslink chemicals such as 8-methoxypsora-
len (PUVA),47,48 furocumarins (in common foods),49

proteins,50 and amino acids like cysteine (sulfhydryl
group) to the thymine bases.51 Most importantly, the

Figure 3. Age-standardized CMM cases per 100,000 people by personal UVB dose in J/m2 for males and females with Fitzpatrick skin
type IV-VI. Semi-log plots were chosen for visual presentation only.
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preponderance of UVB signature transition muta-
tions, i.e., CC!TT, or the UVA signature transver-
sion mutations, i.e., G!T and C!A, or the oxidative
mutation AT!CG caused by eta polymerase’s incor-
poration of 8-hydroxy-2’-deoxyguanosine into the
DNA52 that are commonly found in non-melanoma
skin cancers are rarely found in CMM.53 Furthermore,
the so-called UVB mutation C!T found in CMM
may actually be a mutation caused by UVA because
UVA produces ROS that can oxidize cytosine, which
can subsequently deaminate resulting in a C!T tran-
sition mutation.54 HPV can also create these C!T
transition mutations via its E2 protein because it
causes production of ROS by adversely interacting
with the mitochondria.55 In addition to transition
mutations, clinicians find unique transversion muta-
tions from photoadduct formation47 in CMM after
therapeutic PUVA (8-methoxypsoralen and UVA).48

CMM’s UV nonsignature transversion T!A muta-
tion53 in BRAFV600E may also be UVA-induced from
photoadduct formation between a red-pigment pheo-
melanin precursor molecule like benzothiazine
(λmax>340 nm) crosslinking to a thymine base, similar
to how adduct formation occurs during PUVA.47,48

Besides the DNA damage caused by chemical cross-
links forming photoadducts and ROS causing deami-
nation of cytosines, epigenetic events like methylation
of cytosines can also result in deamination leading to
C!T transition mutations.54 Other than the UV non-
signature transversion T!A mutation in BRAFV600E,
CMM somatic mutations consist almost entirely of
C!T transition mutations occurring predominately
at NpCpG trinucleotide sites, which are signature
mutations shared with cervical cancer.57 HPV causes
cervical cancer, which is associated with its own signa-
ture mutations, specifically the APOBEC3B-mediated
cytosine deaminations leading to C!T (or G) muta-
tions.58 These C!T transition mutations are specific
for HPVC tumors as they are only found in cervical
and HPVC oropharyngeal cancers; they are not found
in HPV- oropharyngeal cancer or liver cancers associ-
ated with Hepatitis B or C. HPV causes deamination
of methylated cytosines leading to C!T transition
mutations in CDKN2A, a gene that codes for the
tumor suppressor proteins p16 and p14arf, which is
associated with HPVC oropharyngeal and cervical
cancers.59,60 Intriguingly, a C!T polymorphism in
CDKN2A is also methylated in CMM.61 These C!T
transition mutations appear to be increasing over time

exclusively in the European-ancestry germline.62 UVR
cannot penetrate deeply enough to result in germline
mutations while viruses can; and scientists find HPV
in sperm.63 Thus, the so-called UVB signature muta-
tions found in CMM that are almost always C!T
transition mutations may actually be created by ROS
produced during pheomelanin synthesis, UVA/Visible
exposure, or HPV infection, the latter of which can
also cause methylation of cytosines resulting in deami-
nation of cytosine and C!T mutations.

Animal studies showing UVB radiation initiates
CMM may be deceiving due to the superficial location
of their follicular melanocytes (epidermal thickness of
about 20mm) compared with human (epidermal
thickness of about 80mm)64 allowing UVB to irradiate
their bulge regions but not the human follicular mela-
nocytes located between 362mm for vellus and
1,161mm for terminal bulge regions.65 However, about
1% of the incident UVA1 radiation (341–400 nm) can
penetrate into the subcutaneous layer of the skin irra-
diating all follicular regions including the root bulb of
terminal hair (1,000–5,000mm).66 Thus, if UVR plays
any significant role in human CMM, it has to be UVA
rather than UVB radiation.

In order to help elucidate the potential role of UVA
in CMM, we surveyed epidemiology studies for clues.
Most epidemiology studies found light haired, espe-
cially red-haired people have significantly higher inci-
dences of CMM than darker-haired people do, which
meta-analysis confirmed.20 A recent epidemiology
study revealed a significant increase in the CMM risk
exists between European people with light blond/red
hair and European people with dark brown/black hair
(p D 5.96 £ 10¡6).67 Meta-analysis of the melanocor-
tin-1-receptor and CMM risk revealed 3 variants asso-
ciated with only red hair that gave significant
increased risks for CMM with odds ratios ranging
from 2.99 to 8.10.68 Moreover, in the absence of UVR
exposure, regardless of their epidermal melanocyte
status ( § ), black and albino C57BL/6 mice on a
mutated BRAFV600E background developed similarly
low rates of CMM after a long latency period, whereas
over half the mice with red hair developed melanomas
after only a year.69 Recently, scientists confirmed the
human variants of the MC1R red hair gene dramati-
cally increase the risk for getting CMM independent
of UVR exposure.70 Furthermore, both homozygote
and heterozygote red hair melanocortin-1-receptor
variants are sensitive to UVR exposure71 and have
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eumelanin to pheomelanin ratios of only 1.46 and
4.44, respectively, while wild types have 5.81
(p < 0.001).72 These findings highlight the fact that
people with dark hair and certain melanocortin-1-
receptor variants can also get CMM.73 Pheomelanin
has been detected in normal unexposed skin and its
synthesis is markedly increased in dysplastic melano-
cytic nevi and melanoma cells to the point where high
levels of its metabolites have been detected in patients’
urine.25 Unlike eumelanin synthesis, pheomelanin
synthesis produces ROS and its cysteine-related pre-
cursors like benzothiazine, benzothiazinylalanine and
similar precursor molecules that absorb UVA1 radia-
tion (λmax>340 nm)74 probably also play significant
roles in the etiology of CMM.

The most important evidence that some kind of
melanin is crucial for developing melanoma comes
from studies showing albino blacks almost exclusively
do not get CMM while they do get numerous, early
onset non-melanoma skin cancers and they also sun-
burn easily.75,76 Albino blacks with white skin and
white hair have the same number of melanocytes as
normal people with pigmented skin and hair but they
do not usually produce any melanin or its precursor
molecules revealing 2 important risk factors involved
in non-melanoma skin cancers are not involved in

CMM, i.e., skin color and conventional UVR-induced
DNA damage such as cyclobutane pyrimidine dimers
and 8-hydroxy-2’-deoxyguanosine. Like whites, albino
blacks get the same UV-induced DNA damage that
keratinocytes accumulate, as shown by their higher
rates of non-melanoma skin cancer at younger ages,
but those DNA lesions do not transform their melano-
cytes. The fact that all 4 types of albinos, OCA1
(A&B), OCA2, OCA3, and OCA4 have drastically
reduced production of melanin and its precursors76

and have an almost non-existent incidence of CMM
suggests that either melanin or its precursors are prob-
ably required for initiating melanoma. Strong evidence
that melanoma initiation relies upon melanin content
comes from the fact that the action spectrum for mela-
noma in a fish model (Xiphophorus) is identical to the
action spectrum for photosensitized radicals that are
only produced by the pigmented fish.77

Conclusions

A working hypothesis must explain why the incidence
of CMM is similar between outdoor and indoor work-
ers when the former gets 3–10 times the UVR dose
that the latter gets (see Fig. 4). Unlike indoor workers,
who are only exposed to UVA radiation through

Figure 4. The consequences of DNA photoproduct damage from exposure to outdoor UVA and UVB radiation versus indoor UVA radia-
tion. Outdoor sunshine has both UVA and UVB radiation vs. indoor sunshine that has only UVA radiation because, unlike UVB, it can
pass through window glass. The outdoor UVB radiation causes efficient pyrimidine dimer formation and UVA makes benzothiazine or
benzothiazinylalanine and other radicals (λmax >340 nm) that cannot react with the pyrimidine dimers formed outdoors because the
covalent bonds block the available reaction sites (competitive reaction); whereas, indoor UVA forms few dimers so that many pyrimidine
sites are available to react with the benzothiazine radicals it forms. Besides UVA creating ROS that oxidizes deoxyguanosine to 8-oxodG
(G D O in diagram), UVA can create ONOO- radicals that can also make CPD in the dark for several hours post exposure [80].
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windows,2 along with visible light, outdoor workers
are exposed to UVA and UVB as well as visible light.
Because UVB immediately crosslinks adjacent thy-
mine bases, it prevents UVA from crosslinking other
molecules like benzothiazine to the thymine bases,
which is similar to PUVA’s 8-methoxypsoralen bulky
adduct that is difficult to repair. Thus, to prevent skin
cancer, and especially melanoma, we apparently need
sunscreens with not only UVB protection but with
better broad-spectrum protection in the UVA and
even in the visible waveband region.78,79

Abbreviations
CMM cutaneous malignant melanoma
HPV Human Papilloma Virus
PUVA 8-methoxypsoralen and UVA
ROS reactive oxygen species
US United States
UVR Ultraviolet Radiation (290–400 nm)
UVA Ultraviolet-A (316–400 nm)
UVAI (341–400 nm)
UVA2 (316–340 nm)
UVB Ultraviolet-B (290–315 nm)
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