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Abstract

Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic 

intervention, given the constant selective pressure towards drug resistance. Mathematical modeling 

from population genetics, evolutionary dynamics, and engineering perspectives are being 

increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, 

and rational drug scheduling and combinations design. In this review, we discuss promising 

opportunities these inter-disciplinary approaches hold for advances in cancer biology and 

treatment. We propose that quantitative modeling perspectives can complement emerging 

experimental technologies to facilitate enhanced understanding of disease progression and 

improved capabilities for therapeutic drug regimen designs.
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Quantitative Approach to Study Tumor Evolution and Therapeutic 

Response

Recent data from tumor sequencing has increased attention on the broad relevance of 

intratumoral heterogeneity in cancer patients and their treatment. In light of these studies, 

the tumor biology field now more than ever regards cancer as an ongoing evolutionary 

process. As such, a systematic and comprehensive understanding of this malignancy and its 

dynamics will require capitalizing on quantitative methods from population genetics, 
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evolution, and engineering. A number of excellent reviews on tumor heterogeneity1–4, drug 

resistance5–8, drug combinations design9–12 are available, so we aim here to integrate 

germane quantitative approaches, with a focus on recent developments and applications to 

understanding and predicting therapeutic effects. Whenever possible, we will refer readers to 

relevant existing reviews, but will also provide brief historical context, and most importantly 

will offer introduction to foundational mathematical frameworks.

Tumor Clonal Evolution and Intratumoral Heterogeneity

The notion of cancer as a clonal evolutionary process dates to seminal work in 1976 by 

Nowell13. A key consequence of tumor clonal evolution is intratumoral heterogeneity – as 

the founder clone develops successive alterations with fitness advantages subject to selection 

forces (e.g., tumor progression, metastasis, and drug resistance). Heterogeneity in tumor 

cells across different regions was indeed observed by pathologists as early as the 1800s, 

based on cell morphology and other cytological characteristics14. Cytogeneticists have since 

used chromosome G-banding, spectral karyotyping, and florescence in situ hybridization to 

further show distinct subpopulations with copy number variations and chromosomal 

rearrangements14. More recently, with the advent of high throughput technologies (e.g., SNP 

arrays, comparative genomic hybridization microarrays) and next-generation sequencing 

(NGS), the field has begun to realize at much greater resolution the complexity of tumor 

heterogeneity and clonal dynamics.

Clonal evolution may be conceptualized as progressing via accumulation of what many term 

‘driver’ and ‘passenger’ mutations. From an evolutionary perspective, drivers can be 

considered as genetic (or epigenetic) alterations that offer significant relative fitness 

advantage, while passengers are mutations appearing to present only weak or neutral 

influences. Numerous computational techniques have been developed to test for positive 

selection and identification of such ‘drivers’15. Drivers and passengers can also be context 

dependent, and complicated by potential epistatic interactions16 as well as passengers 

exposing additional cancer vulnerabilities17. Over time, evolutionary processes – genetic 

drift and Darwinian selection – play a critical role in the progression and fixation (i.e., 

establishment) of subclones with these various alterations. Specifically, if the supply rate of 

driver mutations is slower than the time it takes for the established subclone to selectively 

sweep through the population, a classical linear model of clonal evolution3,18 is followed. In 

contrast, however, tumor clonal architectures are often observed experimentally to be the 

consequence of a complex branched clonal process3, as originally described by Nowell. 

Here, multiple subclones may present and compete via clonal interference prior to fixation. 

Such branched clonal evolutionary processes have been observed in many tumor types, 

including leukemias19–21, renal-cell carcinoma22, pancreatic cancer23,24, amongst others. 

Recently a ‘big bang’ model of tumor evolution was observed in an analysis of 349 glands 

from 15 colorectal tumors – where a majority of alterations transpire early during 

transformation, resulting in tumor growth via concomitant single expansion of multiple 

mixed subclones without selective sweeps and with minimal selection pressures25. It should 

be emphasized, moreover, that heterogeneity is not restricted to genetic alterations, as 

epigenetic heterogeneities have also been reported26. In addition, for particular tumor types 
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such as chronic myeloid leukemia (CML), the population structure can be hierarchical with 

the overall tumor population supplied by a small number of cancer stem cells27.

Intratumoral heterogeneity may have functional roles beyond mere indication of tumor 

history. Studies in breast cancer xenograft models with component or combined mixed 

heterogeneous tumor populations suggest the importance of heterogeneity in tumor 

maintenance28. Drug treatment also can impose tremendous selective pressure on reshaping 

the clonal architecture, as will be discussed later in this review.

Quantitative Approaches to Modeling Clonal Evolution

Mathematical modeling of tumor development and metastasis has been the subject of 

comprehensive reviews periodically over the past decade6,29. Building on these, here we will 

introduce vital fundamental tools from population genetics30 and evolutionary dynamics31 

as applied to cancer and then move to emphasize a view of clonal evolution based on fitness 

landscapes and focus on relation to therapy. Mathematical studies of cancer began as early 

as the 1950s, from works by Nordling32, Armitage and Doll33,34, Fisher35, and Knudson36 

on the age-incidence of cancer and the multistage theory of carcinogenesis. Since then, a 

large number of models have been based on well-mixed populations with the assumption of 

no cell-cell interaction. These models provide a tractable system to study cancer dynamics 

and serve as the foundation for additional model complexity. Several important evolutionary 

forces (i.e., genetic drift, selection, and mutation) underlie much of our observed tumor 

dynamics and are of differential importance under specific parameter regions (e.g., 

population size). In particular, selection is largely a deterministic process. Here, the same 

outcome will generally be achieved given the same initial conditions. On the other hand, in a 

stochastic process, the same initial condition can yield different outputs (as described by 

probability distributions) – a feature that is important in modeling processes such as genetic 

drift.

Stochastic models

Several tools from stochastic modeling have been utilized to analyze tumor evolution. These 

include Markov models, where a system’s future state depends only on the current state of 

the system (i.e., the Markov property)37. Specifically, a Markov chain consists of a series of 

probabilistic variables, satisfying the Markov property, with the transition between states 

described by the transition matrix of rate constants for movement of the variables between 

different values. A Markov chain is considered as a time-homogeneous process if the 

transition matrix stays the same after each step; otherwise the process is time-

nonhomogeneous. A Markov process can be further classified based on it being cast as 

discrete or continuous with respect to time, and on the ‘space’ of the system’s state being 

characterized by variables either discrete or continuous in nature. We provide a brief 

overview below of the Markov models that have been used, which can be broadly considered 

within two categories: finite constant and finite fluctuating population size models.

Assuming, on one hand, a constant population size, the Moran process and Fisher-Wright 

process have been classical and standard models in population genetics to study genetic drift 

(and hence changes in allele frequency over time in a population, with possible 
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incorporation of selection and/or mutation) (Box 1A). Moran process models have been used 

in a number of studies on tumor initiation and progression38–40, in understanding the 

incidence rates (and their dependence on fitness distributions), rates of allele inactivation/

activation, and stochastic tunneling. The Wright-Fisher process has also been used in the 

study of tumor progression41,42, clonal interference43, and intratumoral heterogeneity44. 

Both Moran and Fisher-Wright processes converge to same results under large population 

size and rescaling30,45. Fisher-Wright models are more often used given its computational 

efficiency in simulations.

On the other hand, assuming a fluctuating population size, the branching process (Box 1B) 

has been very widely used in the study of tumor heterogeneity and initiation/

progression6,46–50,16,51. For example, Bozic et al.46 studied the accumulation of driver and 

passenger mutations and the timing of these events in relation to epidemiologic and clinical 

observations. Parameterization to experimental data suggests that the selective advantage 

conferred by somatic mutations is very small. This model was later extended with 

consideration to epistasis16. Studies by birth/death models were also applied to studying the 

role of moderate deleterious passenger mutations on tumors and their effects in potentially 

alternating cancer progression and therapeutic response52,53. These mathematical models 

have also becoming increasingly used in studying effects of drug treatment (as further 

discussed in a later section).

An alternative to analyze stochastic processes that can be more tractable is with 

approximation using diffusion models (Box 2). The diffusion approximations are helpful in 

determining fixation probabilities and mean fixation times45. Recently, Tomasetti et al. used 

the diffusion approximation to the Moran process to estimate the expected number of 

passenger mutations, and their studies suggest that a substantial number of somatic 

mutations in tumors may have occurred prior to tumor initiation54.

Deterministic models

At sufficiently large population size, the population can be usefully modeled using 

deterministic models with difference or differential equations, especially if the goal is to also 

study average population behaviors. In addition, models used in evolutionary game 

dynamics have also been developed to describe selection and mutation of infinitely large 

populations (Box 3). Page and Nowak have provided a review on the relation among these 

different deterministic evolutionary dynamics models (e.g., quasi-species equation, 

replicator-mutator equation, replicator equation, Lotka-Volterra equation, Price equation, 

etc.)55. Deterministic models56 and hybrid of deterministic/stochastic models57 have been 

used in the study of CML dynamics under treatment. In the hybrid deterministic/stochastic 

model57, the deterministic model was used to model the wild-type cancer stem cells and 

branching process for the mutant cancer stem cells. The results were identical to a full 

stochastic model, yet usage of the deterministic models provide mathematical 

simplifications and more tractable investigations of different growth models. A wide range 

of differential equation based models has also been used for the study of drug scheduling 

(discussed later). Lastly, the quasi-species equation was used in the study of genetic 

instability during tumor progression58.
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Fitness Landscapes

The mathematical models discussed thus far lack connection of genotype to phenotype, and 

of either or both to parameters characterizing ‘fitness’ of the population under a given 

environment (e.g., drug treatment condition). This can be accomplished via description of a 

fitness landscape (also known as adaptive landscape)59,60 – a mapping of multidimensional 

genotype (and/or phenotype) space to its corresponding fitness. An idealized realization of 

this space may be seen in three dimensions (Fig 1A), with the xy plane representing the 

genotype space and the z-axis representing fitness. Fitness landscape was originally 

proposed by Wright in a seminal 1932 paper61 on ‘shifting balance’ theory. Later advances 

on understanding evolutionary adaptation followed (reviewed elsewhere60) with emphasis on 

a molecular basis of inheritance, first by Smith’s analysis of protein space62. Subsequently, 

Gillespie tried to investigate specifically the distribution of fitness values by proposing that 

these parameters are likely to be drawn from the extreme tail of the distribution, such that 

extreme value theory (EVT) can be applied to study the tails of distribution independent of 

knowing the distribution itself63.

Several approaches exist for modeling fitness landscapes59, broadly falling into three 

categories: random field, sequence-structure, and phenotype-fitness models (Box 4). Aside 

from these mathematical models of fitness landscapes, there has been an increasing number 

of empirical landscapes derived based on evolutionary or systematic combinatorial 

experiments (reviewed elsewhere59,64). Recent developments using CRISPR/Cas9 have 

enabled saturation editing and analyses at the endogenous locus65, specifically applying this 

to genomic regions of BRCA1 and DBR1 and measured the functional impact/fitness of 

different alterations. It is conceivable that this technology will enable the detailed 

investigation in a native context the mapping between genotype and fitness. This is 

particularly of interest in cancer as in some cases, the resistance mechanisms are established 

via on-target point mutations that directly affect the binding affinity of the small molecule 

drug. This includes resistance-conferring mutations in the kinase domain of BCR-ABL1 in 

chronic myeloid leukemia/Ph+ acute lymphoblastic leukemia, ALK in non-small-cell lung 

cancer, or cKIT in gastrointestinal stromal tumor8. Saturation analyses would be important 

to empirically determine fitness of different genotypes as well as any epistatic interactions, 

and to thus get a general understanding on the topology of cancer fitness landscapes.

Traversing on the fitness landscape

Topology of landscapes is of particular importance as it provides information regarding 

evolutionary trajectories, predictability, or rate of adaptation. In particular, rugged 

landscapes (bearing multiple peaks and valleys) can occur as a result of sign epistasis, 

whereby the effects of a specific allele depend contextually on the genetic background at the 

other loci. This would cause certain paths along the fitness landscape to become 

inaccessible. Pathway inaccessibility in a rugged landscape can constrain evolutionary 

trajectories and consequently increases repeatability and predictability. Experimental 

evidence based on mutagenesis and fitness measurements (viz. drug resistance) suggest 

microbial evolution may be constrained with a large number of inaccessible mutational 

trajectories66,67. Additionally, several experimental studies also showed convergent and 
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parallel evolution when the populations (E. coli and S. cerevisiae) were independently 

evolved68–70. Evolutionary predictability and convergent evolution is of particular relevance 

as to our understanding of whether tumor clonal evolution has defined trajectories and 

potential forward predictions on how tumor responds to treatment. We have similarly 

observed convergent resistance paths in particular cancer types, with resistance mechanisms 

to targeted therapies being limited to on-target point mutations in kinase domains (e.g. BCR-

ABL1, ALK, cKIT, EGFR, etc.) or activation of compensatory/downstream pathways (e.g. 

IGF1R, PDGFR, FGFR, MET, KRAS, etc.)8. Nevertheless, stochastic processes can still 

present challenges in predictability even within these limited set of genotypes.

For analysis of evolutionary predictability, several parameters must be considered59,71: 

mutation rate, strength of selection, and population size. With a small population size, this is 

under a so-called strong-selection-weak-mutation (SSWM) regime, a condition considered 

and studied by Gillespie in his work on EVT and mutational landscapes. SSWM assumes the 

mutation supply rate is sufficiently low and selection is high. This leads to stochastic process 

playing a dominant role in driving evolution, and thus a challenge in predictability. With 

increasing population size, the population is likely to be more heterogeneous, and SSWM 

dynamics transitions to a ‘greedy’ adaptation dynamics, where different subclones compete 

and bias the selection of the fitter clones; correspondingly, predictability of system outcome 

is enhanced. At sufficiently large population sizes, clones possessing multiple mutations 

may be present, allowing passage along trajectories not previously accessible (i.e., enables 

valley crossing via ‘tunnels’ through intermediate states). This then generates greater 

stochasticity and accordingly decreased predictability71. Thus, predictability does not 

strictly scale linearly with population size, but can vary under distinct population size 

regimes. Furthermore, a trade-off exists between the rate of adaptation and eventual fitness 

level achieved. Here small population sizes can reach higher fitness (as stochasticity allows 

exploration of more diverse areas in a rugged landscape), whereas larger population sizes 

can remain trapped at the local fitness peak72–74.

The concept of ‘evolutionary trap’ (Fig 1B) has been studied in microbial systems (e.g., S. 
cerevisiae, C. albicans) whereby karyotypically heterogeneous populations were driven by a 

first drug to a region of the fitness landscape with reduced diversity, followed by maximized 

kill using a second drug75. Specific regions of the fitness landscape with distinct 

vulnerability under different conditions have been also recently exploited using a concept of 

‘temporal collateral sensitivity’ in cancer (Fig 1C). Collateral sensitivity is a form of 

synthetic lethality, again studied frequently in bacterial evolution, for which due to 

evolutionary constraints and trade-offs, populations becoming resistant to one drug can be 

sensitized to other classes of drugs76–79. The difference between Panel C and Panel B in 

Figure 1 is with respect to chronology; Panel B represents fixation of a subpopulation to a 

final state (that also happens to be resistant to drug A in this case) that is sensitive to drug C, 

whereas Panel C represents treatment with drug D during a transient period as a 

subpopulation is starting to develop resistance to drug A but before establishment of the final 

emergent clone.

New work has begun to introduce this notion of temporal collateral sensitivity (Fig 1C) to 

understanding tumor evolution and drug responses, and especially to elucidating more 
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effective sequential combination treatments. In a series of drug selection and small molecule 

screening experiments using murine Ph+ acute lymphoblastic leukemia cells, the authors 

have shown that an intermediate stage during clonal evolution toward resistance to classical 

BCR-ABL1 inhibitors can be hyper-sensitized to non-classical BCR-ABL1 inhibitors80. 

This finding demonstrates potential opportunities on the utility of diverse small molecules 

for targeting distinct stages of clonal evolution as tumor transverse along a fitness landscape 

toward resistance. Nevertheless, broad applicability of these phenomenon in cancer remains 

to be seen. As such, it would be critical in also using different random fields models of 

fitness landscapes to gain insight on how topology can affect the predictability and success/

failure of drug combinations on resistance trajectories.

It should be noted that although the general assumption is that of a static landscape, actual 

evolution may also involve an ever-changing fitness landscape that varies with clonal 

evolution81,82. The advent of next-generation sequencing has increased capabilities for high-

resolution tracking of clonal evolution. In one study, high-resolution barcoding libraries 

(~500,000 barcodes) and sequencing enabled lineage tracing of S. cerevisiae evolution and 

evaluation of the dynamics of mutations and corresponding fitness83. In another evolution 

study using yeast, fluorophore-labeled competition assays combined with sequencing and 

mathematical modeling based on branching process models also explored the role of 

polyploidy on evolutionary adaptation84. Most importantly, these methods are translatable to 

cancer in its high-resolution tracking of tumor subclonal dynamics and their relative fitness, 

for a better understanding of the complexity of cancer fitness landscapes and how 

populations evolve in response to distinct selective pressures. Here it is also important to 

consider the physiological relevance of in vitro models and patient derived xenograft models 

and with respect to their context specific selective pressures.

Effects of drug treatment on clonal evolution

In parallel with the rising utility of NGS in studying intratumoral heterogeneity and tumor 

progression, analyses of matched biopsies of patients prior and post drug treatment have also 

revealed extensive clonal dynamics. The mechanisms by which resistance/relapse occurs can 

be via (i) de novo mutations (e.g. genotoxic chemotherapy that induces mutagenesis), (ii) 

selection of pre-existing resistant subclone with higher fitness, or (iii) tumor reduction and 

competitive release (whereby significant tumor reduction leads to a regime of small 

population size, followed by the outgrowth of a different subclone)1. Experimental and 

clinical evidence has been extensive and reviewed elsewhere1. Of central importance is the 

determination of pre-existing subpopulations that ultimately expand to dominance at 

relapse85,86 and thus reshape the underlying tumor population architecture. Polyclonal drug 

resistance can be particularly challenging as tumors with multiple resistance mechanisms 

can co-evolve independently87,88, complicating effective drug combinations design. Here, 

we will elaborate on the quantitative approaches taken (using many tools we have discussed 

in earlier sections) to interrogate the effects of therapeutic intervention through an 

evolutionary lens.
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Empirical drug combinations design

Much of the early clinical work on empirical combination chemotherapy design was 

initiated by Frei and Freireich in the early 1950s. These studies have led to some of the 

common drug regimens in existence even to this day. With the advent of targeted therapy 

(and now advances in immuno-oncology), we have a greater arsenal of drugs to attempt to 

rationally combine. Moreover, we can design drug combinations not only based on non-

overlapping toxicity, but also on mechanism of actions and resistance9,10. We will further 

emphasize this trend in light of other converging conceptual advances and methodologies 

discussed in our concluding remarks.

Stochastic and deterministic models

Early quantitative work on resistance was initiated by Luria and Delbrück in their classic 

phage resistance studies89 in 1943. The work demonstrated the use of fluctuation analysis to 

confirm the emergence of resistance via Darwinian selection and expansion of a pre-existing 

bacterial subpopulation, rather than via induction. Assuming deterministic exponential 

growth for both wild-type and mutant populations and probabilistic mutation, they derived a 

distribution (now known as the Luria-Delbrück distribution90) describing the number of 

resistant colonies. Tumor growth kinetics under therapy was studied soon after using murine 

L1210 leukemia cells, by Law (for antimetabolite resistance via selection and also showed 

superiority of drug combinations over single drug treatment)91,92 and by Skipper (for the 

Skipper-Schabel-Wilcox model on exponential tumor growth and log-kill tumor 

regression)93. Norton and Simon94,95 subsequently observed in the 1970s that some tumors 

follow Gompertz growth, which they modeled using differential equations to predict the 

superiority of dose dense drug combination schedule (e.g. drugs need to be given with as 

little ‘off’ intervals as possible between cycles). This result arises from the treatment 

typically having higher dose density along with integrated drug effects. Accordingly, dose 

intensification would prevent rapid leukemia cell regrowth under Gompertz growth kinetics. 

In the 1980s, Goldie and Coldman96–98 applied stochastic mathematical models (of growth 

dynamics and incorporated mutation) to predict that the most efficacious regimen is an 

alternating drug combination schedule that is given as early as possible to minimize chances 

of resistance. The concept of dose intensity has also been explored using an empirically-

derived equation to calculate a summation dose-intensity (SDI) of drug combinations, 

proposed by Hryniuk99,100.

Many of the mathematical models have since been extended and the issue of drug 

scheduling has been studied extensively (reviewed elsewhere5–7,101). In recent studies, a 

linear quadratic model was used to derive optimal radiotherapy scheduling for glioblastoma 

treatment, with demonstrated improved survival on mice102. The concept of ‘adaptive 

therapy’ was also recently proposed based on mathematical modeling to show potential 

efficacy in a modulated drug scheduling that controls a stable tumor burden, allowing a 

sensitive tumor subpopulation to suppress the outgrowth of the resistant 

subpopulation103,104. The differential fitness differences between resistant and sensitive 

subpopulations have been studied in other tumor models that provide rationales for drug 

holiday schedules. Here, if the resistant subpopulation has relative lower fitness in the 

absence of drug, this suggests that intermittent drug dosing will enable the alternating rise 
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and fall of the wild-type and resistant subpopulations, thus delaying resistance onset. This 

idea has been analyzed using stochastic birth/death process modeling with experimental 

validation in a non-small cell lung cancer (NSCLC) model in vitro and in vivo105. This was 

also corroborated in a recent experimental study in BRAF(V600E) melanoma models, where 

due to a fitness defect of the resistant subpopulation in the absence of drug, an intermittent 

dosing schedule was shown to be effective106.

In addition to drug scheduling, mathematical models have also been used in determining 

(and quantifying) the existence of resistant subpopulations prior to treatment. Due to the 

limit of detection of NGS technologies (at 0.1–1% due to its error rate)107 and other 

technical issues in the sequencing/computational analyses pipeline (e.g. sequencing 

coverage, depth, or limitations in aligners/mutation callers), detection of rare minor 

subpopulation is oftentimes a challenge. Although sophisticated barcoding methods have 

been developed with significant lower error rates108, these have yet to be widely adopted and 

implemented. However, several studies utilized mathematical modeling parameterized based 

on experimentally derived tumor dynamics data to indicate and estimate the minor 

subpopulation. Diaz et al. employed a branching process model to conclude the existence of 

rare KRAS-mutant cells prior to initiation of monotherapy with panitumumab in patients 

with colorectal cancer, based on observed clinical kinetics of resistance from circulating 

tumor DNA (ctDNA). This was similarly used in estimating the number of pre-existing 

BCR-ABL1 resistant mutants in vitro80,109. Other studies have similarly begun to address 

these questions in regards to pre-existence and risk of relapse110– 114.

Optimal control theory and combinatorial optimization

Besides the stochastic and deterministic models described earlier, complementary 

quantitative approaches from engineering disciplines have been applied to drug 

combinations and drug scheduling since the 1970s. Specifically, with dynamical systems 

modeled using deterministic differential equations, we can apply many concepts from 

optimal control theory in engineering to study the stability and control of cancer – with the 

goal of maximizing tumor kill and minimizing drug toxicity. Bahrami and Kim115 first 

reported applications of optimal control theory to minimize tumor growth (and used an 

example with vincristine against murine AKR leukemia). Swan and Vincent116 subsequently 

studied optimal control of chemotherapy in human IgG multiple myeloma. Since then, 

numerous studies have appeared117,118 (with many based on the control model formulated 

by Martin119) and have been solved analytically, using numerical methods (e.g. via 

formulation as a linear or nonlinear programming problem) or other heuristics methods (e.g. 

genetic algorithms, particle swarm optimization, simulated annealing, etc).

While the majority of the mathematical optimization contributions have centered on drug 

scheduling, analogous efforts have also been made to study the choice of drug combinations. 

These include theoretical analysis using integer programming to determine the minimal set 

of drugs that maximizes the coverage of molecular target variants based on drug-target 

binding affinity properties120. Recently, combinatorial and multi-objective optimization has 

also been applied to study how to design drug combinations in the context of intratumoral 

heterogeneity121,122. The results (with in vitro and in vivo validation in a Burkitt’s 
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lymphoma model) show that consideration of heterogeneity can at times lead to non-

intuitive optimal drug combinations. These approaches could be combined with different 

fitness landscape topologies in understanding how to best rationally design drug 

combinations with desirable trajectories and outcomes.

Concluding remarks

With our increased focus on viewing cancer through the evolutionary lens, we necessarily 

have to equip ourselves with the quantitative tools from population genetics, evolutionary 

dynamics, and engineering to understand how cancer evolves and respond to treatment. 

Here, we have presented an overview of the quantitative approaches (Fig 2) that are 

becoming increasingly used in cancer research. Coupled with the enabling technology of 

high-throughput next-generation sequencing, several themes are starting to emerge that 

address the critical questions of: 1) how can we predict evolutionary trajectories of tumor 

progression? and 2) how do we tackle drug resistance? (see Outstanding Questions for more 

detailed questions).

First, the advent of NGS will enable a much greater resolution of lineage tracking and at 

finer time scales in studying tumor clonal evolution. Although population genetic studies 

have benefited from evolution experiments and sequencing of lower organisms in yeast and 

bacteria, the utility of NGS specifically to study tumor evolutionary dynamics in vitro and in 
vivo at the desired level of resolution in regards to lineage complexity and time has been 

lacking. NGS efforts on studying patient biopsies have thus far provided greater 

understanding of the tumor clonal complexity and architecture. However, experiments need 

to be designed that capitalize on the availability of high complexity barcoding libraries and 

finer time resolution to specifically address questions on tumor evolutionary dynamics. 

These include the dynamics and distribution of beneficial, passenger, and deleterious 

mutations that arise (and go on to fixation or extinction) and their associated fitness effects. 

Mathematical modeling from population genetics is critical in parameterizing 

experimentally observed dynamics and in estimating parameters such as mutation rate, 

selection coefficients, time to fixation, and regimes of dominance between genetic drift vs 

selection. Additionally, an understanding of the clonal trajectories will also enable us to 

visualize (based on parameterized fitness landscape models and/or conceptually) the 

underlying fitness landscape (static or dynamic) as the tumor evolves over time. This will 

directly address our questions in regards to how rugged such landscapes are and how 

constrained are tumor evolutionary trajectories. As we have discussed in this review, 

knowledge of the fitness terrain would have direct implications on our understanding of 

repeatability and predictability of the tumor clonal evolutionary process. This is particularly 

important in regimes where stochastic process play a role and thus knowledge of the drivers 

and clonal distribution would be inefficient for perfect predictability and utility of 

mathematical models can inform probabilistically the different trajectories and outcomes.

Viewing and understanding cancer through the evolutionary perspective also provides fresh 

opportunities for rational therapeutic intervention. As a particular fitness landscape can 

consist of peaks and valleys (and can be viewed as source and sinks in a vector field), this 

begs the question of whether we can control (or drive) the tumor toward particular desirable 
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states. As we have discussed that some experimental models have started to address these 

questions, classical engineering approaches in control theory are one such approach to 

address the controllability of a given system. Alternatively, aside from control, our insight 

into the natural trajectories of tumor clonal evolution may reveal distinct stages along this 

path – beyond our current focus on terminal states – that are vulnerable for therapeutic 

intervention. These perturbations will no doubt have effects on the subsequent trajectories of 

tumor evolution. As such, exploring these trajectories using stochastic/deterministic 

mathematical models will be critical to explore these outcome scenarios. Furthermore, the 

search space for the choice and scheduling of drug to be utilized for these interventions are 

vast (including perhaps repurposing of drugs against non-classical targets), and optimization 

methodologies will facilitate the discovery of optimal solution (or solution sets) given a 

particular outcome scenario we desire. Taken together, we believe these new waves of 

enabling technologies and methodologies will be an important part of our toolset to advance 

our understanding in cancer research.
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Glossary

Selection
a process that drives changes in allele frequency based on their relative fitness in the 

population.

Mutation
a process that generates new genetic variations in a population.

Genetic drift
a process that describes the random sampling of an allele in a population, as a result of 

random birth and death events.

Deterministic process
a deterministic process will always yield the same result given the same initial condition.

Stochastic process
as opposed to a deterministic process, a stochastic process captures intrinsic randomness of 

event occurrence and will yield different results given the same initial condition.

Fitness landscape
a way to visualize the mapping of genotype/phenotype to fitness.

Ruggedness
a measure of the complexity of fitness landscapes. A highly rugged landscape corresponds to 

many peaks and valleys, and affects the trajectory and predictability of the evolving 

population.
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Epistasis
genetic interaction where the effect of one genetic alteration depends on the presence of one 

or more other alterations (genetic background).

Sign epistasis
a classification of epistasis where the genetic interaction affects the sign of the effect, i.e. the 

genetic alteration can be either beneficial or deleterious depending on the genetic 

background.

Stochastic tunneling
a phenomenon of fitness valley crossing, whereby two alterations arise without the 

appearance of an intermediate state (at the connecting peak between the two valleys).

Exponential growth
a growth model where the growth rate of the cells is proportional to population size.

Gompertz growth
a growth model where the growth rate slows (and eventually plateau) at larger population 

size. Gompertz growth are used for modeling tumors growing in confined space with limited 

nutrients, where ultimate depletion of nutrients will eventually slow tumor growth.

Control theory
studies the behavior of dynamical systems (e.g. electronics, mechanics, tumor population) in 

response to varying inputs, with the goal of developing ways to control the system and 

desired output responses.

Mathematical optimization
methods in selecting a set of input values (e.g. set of drugs) to maximize/minimize an 

objective (e.g. tumor killing) while satisfying defined constraints (e.g. non-overlapping 

toxicity). Additional constraints on the input value types (e.g. as real numbers or integers) 

and objective function (e.g. as linear or nonlinear) further subdivide methods into linear, 

integer, quadratic programming (amongst many others).

Multiobjective optimization
methods of finding solutions that maximize/minimize multiple objectives while satisfying 

defined constraints. In multi-objective optimization, because of multiple competing 

objectives, the solution is a solution set (or Pareto optimal set) instead of a single optimal 

solution
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Trends

• Cancer is largely viewed as a clonal evolution process, and this view has 

implications on our understanding of tumor progression and occurrence of 

relapse.

• Mathematical models from population genetics, evolutionary dynamics, and 

engineering are increasingly used to study tumor dynamics during 

progression and in response to treatment.

• Enabling technologies including next-generation sequencing are providing 

opportunities for high-resolution lineage tracing in clonal evolution 

experiments.

• Mathematical models, combinatorial optimization, and engineering 

approaches are increasingly used to complement experiments for rational 

design of drug combinations and drug scheduling.
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Box 1

Stochastic models of finite constant and fluctuating population size

Panel A. Finite constant population size.

A Moran process is a discrete-time Markov chain (specifically a birth/death process)31 

with overlapping generations. We suppose a total fixed population size N and two cell 

types (A and B) and corresponding fitness fA and fB. At each generation (time step), a 

random cell is selected to replicate with probability proportional to its fitness, and 

another cell uniformly selected to die. As such, this constitutes a birth/death pair event 

with constant overall population size and two absorbing states (i = 0 or i = N). Under 

neutral drift (where fA = fB), the fixation probability of cell type A with i cells is given 

by,

Under selection with relative fitness r (i.e. suppose cell type B has fitness of 1 and cell 

type A has fitness of r), the fixation probability of cell type A with i cells is given by,

With a large population (N ≫ 1) and advantageous mutation for A (r > 1), the fixation 

probability a single new cell type A is x = 1 − 1/r. This means large population size does 

not guarantee fixation. Mutation can also be incorporated, such that with a mutation rate 

u, the rate of evolution from a shift of the entire population being A to B is given by

Under neutral drift, the equation simplifies to R = u, meaning that the rate of neutral 

evolution is simply the mutation rate.

In a Wright-Fisher process, the entire population is sampled at each generation (instead 

of just a single birth/death pair event), and as such assumes non-overlapping generations. 

To stay with the two-cell type example above, a Wright-Fisher process here involves 

given a total fixed population size N, we sample with replacement from the current 

population pool to derive the population composition at the next generation. Thus, the 

probability of cell type A with j cells in the current generation to contain i cells at the 

next generation simply follows the binomial distribution,

Zhao et al. Page 19

Trends Cancer. Author manuscript; available in PMC 2017 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The association between the two processes is apparent, as one generation in the Wright-

Fisher process corresponds to N generations in the Moran process. In the limit of large 

population size and with rescaling, both models lead to similar results (e.g. fixation 

probabilities)30,45. Other evolutionary forces such as selection and mutation can also be 

incorporated, and with multi-type subpopulations, in which case a multinomial 

distribution would be used. Although Moran model has more benefits with regards to 

exact analyses, Wright-Fisher process is much more computationally efficient, 

particularly for large population sizes. It is also of note that Wright-Fisher process and 

Moran process have been used with modifications for an exponential growing tumor 

population size41,123.

Panel B. Finite fluctuating population size.

With a finite fluctuating population size, branching process124 has been widely used for 

the study of tumor evolution and dynamics with exponential growth. The basic premise is 

that each cell in a population independently gives rise to a random number of offspring 

accordingly to a probability distribution at some later time. The simplest branching 

process is that of a single-type discrete-time Bienaymé-Galton-Watson process, which 

can be defined as,

where Xn refers to the population size at the nth generation and each  is an 

independently and identically distributed random variable describing the offspring 

distribution for the jth cell at the nth generation. Probability generating functions are the 

primary tool used in the analysis of these processes.

Several special cases exist. If Galton-Watson process follows a Poisson offspring 

distribution conditioned at a constant population size, we can obtain the Wright-Fisher 

process as described above124. If each cell divides (into two offspring) or dies with a 

specific birth or death rate, then this branching process is a nonhomogeneous continuous-

time birth/death process. Note that birth/death processes are a special case of continuous-

time Markov chains. In general, continuous-time Markov chains can be simulated with 

the Gillespie algorithm (or with modified methods such as tau-leaping for computational 

efficiency).
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Box 2

Stochastic models (diffusion approximation)

Fokker-Planck (Kolmogorov forward) equation models the time evolution of a 

probability distribution density φ(p, t) for allele frequency p and time t of a Markov 

process as

where M(p) and V(p) represents the mean and variance of the Markov process, and 

models directional (e.g. selection) and non-directional (e.g. genetic drift) processes, 

respectively.
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Box 3

Deterministic models (evolutionary dynamics)

In evolutionary game dynamics, the quasispecies equation (formulated by Eigen and 

Schuster for the study of molecular evolution) have been used to describe selection and 

mutation of an infinitely large population31. Given xi as the frequency of genotype i with 

fitness fi and a mutation matrix Q, we can describe the derivative of xi as,

where ϕ(x) is average population fitness and defined as,

The quasispecies equation is a special case of the replicator-mutator equation, which also 

accounts for frequency-dependent selection (where each fitness value fi depends on the 

frequency of other cells in the population).
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Box 4

Fitness landscapes (random fields model)

Random field models59,64 are utilized to generate theoretical fitness landscapes with 

different size of loci and epistatic interactions, to study how these terms affect the 

topology and accessibility of paths of fitness landscapes. Comparison of these fitness 

landscapes to empirical data can thus provide inference to the likely fitness landscapes 

under investigation. The random fields models include the Kauffman’s NK model125, 

which for a system with N total number of loci and K number of interactions between 

loci, the fitness for particular genotype x is defined as,

where fi is a fitness function (also known as fitness contribution) and defined as an 

independent and identically distributed random variable. The choice of the K interaction 

partners can be chosen at random uniformly. By tuning the N and K parameter values, 

one can achieve fitness landscapes with different ruggedness. When K = K − 1, the 

genotypes become uncorrelated and is known as the House of Cards (HoC) model126. 

When K= 0, the landscape is additive and non-epistatic and is known as Mount Fuji 

model. The Rough Mount Fuji (RMF) model127 is an additive landscape with added 

noise. Sequence-structure models128 describe explicit mapping of sequence or structure 

(e.g. RNA, DNA, protein) to predicted fitness metrics (e.g. stability, affinity, etc). Lastly, 

phenotype-fitness models include heuristic phenotype-based landscapes loosely based 

on Fisher’s geometric model60.
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Outstanding questions

• How rugged is the underlying fitness landscape for cancer?

• Related to the above question, how constrained are the clonal evolutionary 

trajectories in tumor progression and development of drug resistance? 

Answers to the question will provide insight into how repeatable/predictable 

are tumor evolutionary processes.

• How do we best rationally schedule drug regimens to account for tumor 

evolutionary dynamics and fitness tradeoffs of diverse subclones to maximize 

long-term survival?

• How can we best exploit vulnerabilities during tumor progression and known 

likely trajectories for forward prediction and drug regimen design?

• Can we capitalize on repurposing of existing chemotherapeutics and targeted 

therapies into our drug combinations design?
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Figure 1. Fitness landscapes and transversion upon drug treatments
(A) An illustration of a fitness landscape in 3-D space, with the x and y plane representing 

genotype space and the z axis representing fitness. The white asterisk indicates a possible 

initial genotype of the tumor population. The fitness landscape with the corresponding peaks 

and valleys is one possible realization of the fitness under drug A. Upon selection with drug 

A, the likely evolutionary trajectory is shown in blue. Alternatively, upon selection with drug 

B, the population can transverse the fitness landscape with a different trajectory and terminal 

state (shown in red). These drug selection perturbations open opportunities for rational 

design of subsequent treatment strategies (e.g. I vs II). (B) In strategy I (‘evolutionary 

trap’)75, drug B can be used to drive the tumor toward a specific state such that the resulting 

tumor genotype state will be vulnerable to another drug C. The corresponding fitness 

landscape under drug C is shown. (C) In strategy II (‘temporal collateral sensitivity’)80, by 

understanding the propensity and trajectories of tumor evolution under the canonical drug A 

selection, there may exists vulnerabilities at intermediate stages of clonal evolution we can 

exploit. Based on the fitness landscape shown for same genotype space under drug D, we see 

that we can switch to drug D when the tumor is evolving (under drug A) at a particular 

intermediate state for maximized kill.
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Figure 2. Outlook of using enabling technologies and quantitative approaches to study cancer
Cancer is currently viewed as an evolutionary process. This necessitates the design of 

empirical studies to specifically address cancer evolution as we have done in population 

genetics studies – including evolution experiments with high-resolution lineage tracing and 

mutagenesis/saturation analyses to systemically understand the fitness of specific alterations. 

Fitness landscapes provide one way to gain insight into how genotype or phenotype are 

mapped to fitness under different conditions. This information will be invaluable for the 

effective and rational design of optimal drug scheduling and drug combinations. Critical to 

these studies are the use of quantitative approaches rooted in population genetics, 

evolutionary biology, and engineering.
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