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Summary

We propose an efficient way to sample from a class of structured multivariate Gaussian 

distributions. The proposed algorithm only requires matrix multiplications and linear system 

solutions. Its computational complexity grows linearly with the dimension, unlike existing 

algorithms that rely on Cholesky factorizations with cubic complexity. The algorithm is broadly 

applicable in settings where Gaussian scale mixture priors are used on high-dimensional 

parameters. Its effectiveness is illustrated through a high-dimensional regression problem with a 

horseshoe prior on the regression coefficients. Other potential applications are outlined.
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1. Introduction

Continuous shrinkage priors have recently received significant attention as a mechanism to 

induce approximate sparsity in high-dimensional parameters, and can mostly be expressed 

as global-local scale mixtures of Gaussian distributions (Polson & Scott, 2010; Bhattacharya 

et al., 2015). These global-local priors (Polson & Scott, 2010) aim to shrink noise 

coefficients while retaining any signal, thereby providing an approximation to the operating 

characteristics of discrete mixture priors (George & McCulloch, 1997; Scott & Berger, 

2010), which allow a subset of the parameters to be exactly zero.

A major attraction of global-local priors has been computational efficiency and simplicity. 

Posterior inference poses a stiff challenge for discrete mixture priors in moderate to high-

dimensional settings, but the scale-mixture representation of global-local priors allows 

parameters to be updated in blocks via a fairly automatic Gibbs sampler in a wide variety of 

problems. These include regression (Caron & Doucet, 2008; Armagan et al., 2013), variable 

selection (Hahn & Carvalho, 2015), wavelet denoising (Polson & Scott, 2010), factor models 

and covariance estimation (Bhattacharya & Dunson, 2011; Pati et al., 2014), and time series 

(Durante et al., 2014). Rapid mixing and convergence of the resulting Gibbs sampler for 

specific classes of priors has been recently established in the high-dimensional regression 

context by Khare & Hobert (2013) and Pal & Khare (2014). Moreover, recent results suggest 

that a subclass of global-local priors can achieve the same minimax rates of posterior 

concentration as the discrete mixture priors in high-dimensional estimation problems 

(Bhattacharya et al., 2015; van der Pas et al., 2014; Pati et al., 2014).
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In this article, we focus on computational aspects of global-local priors in the high-

dimensional linear regression setting

(1)

where X ∈ ℜn×p is a n × p matrix of covariates with the number of variables p potentially 

much larger than the sample size n. A global-local prior on β assumes that

(2)

(3)

(4)

where f, g and h are densities supported on (0, ∞). The λjs are usually referred to as local 

scale parameters while τ is a global scale parameter. Different choices of f and g lead to 

different classes of priors. For instance, a half-Cauchy distribution for f and g leads to the 

horseshoe prior of Carvalho et al. (2010). In the p ≫ n setting where most entries of β are 

assumed to be zero or close to zero, the choices of f and g play a key role in controlling the 

effective sparsity and concentration of the prior and posterior distributions (Polson & Scott, 

2010; Pati et al., 2014).

Exploiting the scale-mixture representation (2), it is straightforward in principle to formulate 

a Gibbs sampler: the conditional posterior of β given λ = (λ1, …, λp)T, τ and σ is given by

(5)

Further, the p local scale parameters λj have conditionally independent posteriors and hence 

λ = (λ1, …, λp)T can be updated in a block by slice sampling (Polson et al., 2014) if 

conditional posteriors are unavailable in closed form. However, unless care is exercised, 

sampling from (5) can be expensive for large values of p. Existing algorithms (Rue, 2001) to 

sample from (5) face a bottleneck for large p to perform a Cholesky decomposition of A at 

each iteration. One cannot resort to precomputing the Cholesky factors since the matrix Λ* 

in (5) changes at each iteration. In this article, we present an exact sampling algorithm for 

Gaussian distributions (5) which relies on data augmentation. We show that the 

computational complexity of the algorithm scales linearly in p.
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2. The algorithm

Suppose we aim to sample from Np(μ, Σ), with

(6)

where D ∈ ℜp×p is symmetric positive definite, Φ ∈ ℜn×p, and α ∈ ℜn×1; (5) is a special 

case of (6) with Φ = X/σ, D = σ2Λ* and α = y/σ. A similar sampling problem arises in all 

the applications mentioned in §1, and the proposed approach can be used in such settings. In 

the sequel, we do not require D to be diagonal, but we assume that D−1 is easy to calculate 

and that it is straightforward to sample from N(0, D). This is the case, for example, if D 
corresponds to the covariance matrix of an AR(q) process or a Gaussian Markov random 

field.

Letting Q = Σ−1 = (ΦTΦ + D−1) denote the precision, or inverse covariance, matrix and b = 

ΦTα, we can write μ = Q−1b. Rue (2001) proposed an efficient algorithm to sample from a 

N(Q−1b, Q−1) distribution that avoids explicitly calculating the inverse of Q, which is 

computationally expensive and numerically unstable. Instead, the algorithm in §3.1.2 of Rue 

(2001) performs a Cholesky decomposition of Q and uses the Cholesky factor to solve a 

series of linear systems to arrive at a sample from the desired Gaussian distribution. The 

original motivation was to efficiently sample from Gaussian Markov random fields where Q 
has a banded structure, so the Cholesky factor and the subsequent linear system solvers can 

be computed efficiently. Since Q = (ΦTΦ + D−1) does not have any special structure in the 

present setting, the Cholesky factorization has complexity O(p3) (Golub & van Loan, 1996, 

Chapter 4.2.3), and becomes prohibitive for large p. We present an alternative exact 

mechanism to sample from a Gaussian distribution with parameters as in (6) below:

Algorithm 1

i. Sample u ~ N(0, D) and δ ~ N(0, In) independently.

ii. Set v = Φu + δ.

iii. Solve (ΦDΦT + In)w = (α − v) to obtain w.

iv. Set θ = u + DΦTw.

Proposition 1—Suppose θ is obtained by following Algorithm 1. Then, θ ~ N(μ, Σ), 

where μ and Σ are as in (6).

Proof: By the Sherman–Morrison–Woodbury identity (Hager, 1989) and some algebra, μ = 

DΦT(ΦDΦT + In)−1α. By construction, v ~ N(0, ΦDΦT + In). Combining steps (iii) and (iv) 

of Algorithm 1, we have θ = u + DΦT(ΦDΦT + In)−1(α − v). Hence θ has a normal 

distribution with mean DΦT(ΦDΦT + In)−1α = μ. Since cov(u, v) = DΦT, we obtain cov(θ) = 

D − DΦT(ΦDΦT + In)−1ΦD = Σ, again by the Sherman–Morrison–Woodbury identity. This 

completes the proof; a constructive proof is given in the Appendix.
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While Algorithm 1 is valid for all n and p, the computational gains are biggest when p ≫ n 
and N(0, D) is easily sampled. Indeed, the primary motivation is to use data augmentation to 

cheaply sample ζ = (vT, uT)T ∈ ℜn+p and obtain a desired sample from (6) via linear 

transformations and marginalization. When D is diagonal, as in the case of global-local 

priors (2), the complexity of the proposed algorithm is O(n2p); the proof uses standard 

results about complexity of matrix multiplications and linear system solutions; see §1.3 & 

3.2 of Golub & van Loan (1996). For non-sparse D, calculating DΦT has a worst-case 

complexity of O(np2), which is the dominating term in the complexity calculations. In 

comparison to the O(p3) complexity of the competing algorithm in Rue (2001), Algorithm 1 

therefore offers huge gains when p ≫ n. For example, to run 6000 iterations of a Gibbs 

sampler for the horseshoe prior (Carvalho et al., 2010) with sample size n = 100 in 

MATLAB on a INTEL(E5-2690) 2.9 GHz machine with 64 GB DDR3 memory, Algorithm 

1 takes roughly the same time as Rue (2001) when p = 500 but offers a speed-up factor of 

over 250 when p = 5000. MATLAB code for the above comparison and subsequent 

simulations is available at https://github.com/antik015/Fast-Sampling-of-Gaussian-

Posteriors.git.

The first line of the proof implies that Algorithm 1 outputs μ if one sets u = 0, δ = 0 in step 

(i). The proof also indicates that the log-density of (6) can be efficiently calculated at any x 
∈ ℜp. Indeed, since Σ−1 is readily available, xTΣ−1x and xTΣ−1μ are cheaply calculated and 

log |Σ−1| can be calculated in O(n3) steps using the identity |Ir + AB| = |Is + BA| for A ∈ 
ℜr×s, B ∈ ℜs×r. Finally, from the proof, μTΣ−1μ = αTΦΣ−1ΦTα = αTΦ{D − DΦT(ΦDΦT + 

In)−1ΦD}ΦTα = αT{(ΦDΦT + In)−1ΦDΦT}α, which can be calculated in O(n3) operations.

3. Frequentist operating characteristics in high dimensions

The proposed algorithm provides an opportunity to compare the frequentist operating 

characteristics of shrinkage priors in high-dimensional regression problems. We compare 

various aspects of the horseshoe prior (Carvalho et al., 2010) to frequentist procedures and 

obtain highly promising results. We expect similar results for the Dirichlet–Laplace 

(Bhattacharya et al., 2015), normal-gamma (Griffin & Brown, 2010) and generalized 

double-Pareto (Armagan et al., 2013) priors, which we hope to report elsewhere.

We first report comparisons with smoothly clipped absolute deviation (Fan & Li, 2001) and 

minimax concave penalty (Zhang, 2010) methods. We considered model (1) with n = 200, p 
= 5000 and σ = 1.5. Letting xi denote the ith row of X, the xis were independently generated 

from Np(0, Σ), with (i) Σ = Ip and (ii) Σjj = 1, Σjj′ = 0.5 (j ≠ j′ = 1, …, p), compound 

symmetry. The true β0 had 5 non-zero entries in all cases, with the non-zero entries having 

magnitude (a) {1.5, 1.75, 2, 2.25, 2.5} and (b) {0.75, 1, 1.25, 1.5, 1.75}, multiplied by a 

random sign. For each case, we considered 100 simulation replicates. The frequentist 

penalization approaches were implemented using the R package ncvreg via 10-fold cross-

validation. For the horseshoe prior, we considered the posterior mean and the point-wise 

posterior median as point estimates. Figures 1 and 2 report boxplots for ℓ1, ||β̂ − β0||1, ℓ2, ||β̂ − 

β0||2, and prediction, ||Xβ̂ − Xβ0||2, errors across the 100 replicates for the two signal 

strengths. The horseshoe prior is highly competitive across all simulation settings, in 

particular when the signal strength is weaker. An interesting observation is the somewhat 
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superior performance of the pointwise median even under an ℓ2 loss; a similar fact has been 

observed about point mass mixture priors (Castillo & van der Vaart, 2012) in high 

dimensions. We repeated the simulation with p = 2500 with similar conclusions. Overall, out 

of the 24 settings, the horseshoe prior had the best average performance over the simulation 

replicates in 22 cases.

While there is now a huge literature on penalized point estimation, uncertainty 

characterization in p > n settings has received attention only recently (Zhang & Zhang, 

2014; van de Geer et al., 2014; Javanmard & Montanari, 2014). Although Bayesian 

procedures provide an automatic characterization of uncertainty, the resulting credible 

intervals may not possess the correct frequentist coverage in nonparametric/high-

dimensional problems (Szabó et al., 2015). This led us to investigate the frequentist coverage 

of shrinkage priors in p > n settings; it is trivial to obtain element-wise credible intervals for 

the βjs from the posterior samples. We compared the horseshoe prior with van de Geer et al. 

(2014) and Javanmard & Montanari (2014), which can be used to obtain asymptotically 

optimal elementwise confidence intervals for the βjs. We considered a similar simulation 

scenario as before. We let p ∈ {500, 1000}, and considered a Toeplitz structure, Σjj′ = 

0.9|j−j′|, for the covariate design (van de Geer et al., 2014) in addition to the independent and 

compound symmetry cases stated already. The first two rows of Table 1 report the average 

coverage percentages and 100×lengths of confidence intervals over 100 simulation 

replicates, averaged over the 5 signal variables. The last two rows report the same averaged 

over the (p − 5) noise variables.

Table 1 shows that the horseshoe prior gives superior performance. An attractive adaptive 

property of shrinkage priors emerges, where the lengths of the intervals automatically adapt 

between the signal and noise variables, maintaining the nominal coverage. The frequentist 

procedures seem to yield approximately equal sized intervals for the signals and noise 

variables. The default choice of the tuning parameter λ ≍(log p/n)1/2 suggested in van de 

Geer et al. (2014) seemed to provide substantially poorer coverage for the signal variables at 

the cost of improved coverage for the noise, and substantial tuning was required to arrive at 

the coverage probabilities reported. The default approach of Javanmard & Montanari (2014) 

produced better coverages for the signals compared to van de Geer et al. (2014). The 

horseshoe and other shrinkage priors are free of tuning parameters. The same procedure 

used for estimation automatically provides valid frequentist uncertainty characterization.

4. Discussion

Our numerical results warrant additional numerical and theoretical investigations into 

properties of shrinkage priors in high dimensions. The proposed algorithm can be used for 

essentially all the shrinkage priors in the literature and should prove useful in an exhaustive 

comparison of existing priors. Its scope extends well beyond linear regression. For example, 

extensions to logistic and probit regression are immediate using standard data augmentation 

tricks (Albert & Chib, 1993; Holmes & Held, 2006). Multivariate regression problems where 

one has a matrix of regression coefficients can be handled by block updating of the 

vectorized coefficient matrix; even if p < n, the number of regression coefficients may be 

large if the dimension of the response if moderate. Shrinkage priors have been used as a 
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prior of factor loadings in Bhattacharya & Dunson (2011), who update the p > n rows of the 

factor loadings independently, exploiting the assumption of independence in the 

idiyosyncratic components, but their algorithm does not extend to approximate factor 

models, where the idiyosyncratic errors are dependent. The proposed algorithm can be 

adapted to such situations by block updates of the vectorized loadings. Finally, we envision 

applications in high-dimensional additive models where each of a large number of functions 

is expanded in a basis, and the basis coefficients are updated in a block.
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Appendix

We provide a constructive proof of Proposition 1 as suggested by a reviewer. Without loss of 

generality let D = Ip since if z ~ N(ΣΦTα, Σ) then D1/2z ~ N(μ̃, Σ̃) where Σ̃ = (Φ̃TΦ̃ + Ip)−1 

and μ̃= Σ̃Φ̃Tα with Φ̃ = ΦD−1/2. Now using the Sherman–Morrison–Woodbury matrix 

identity we can write

Then, if u ~ N(0, Ip) and δ ~ N(0, In) are independent and we set

then θ has the desired distribution (6). Algorithm 1 follows from some straightforward 

algebra.
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Fig. 1. 
Boxplots of ℓ1, ℓ2 and prediction error across 100 simulation replicates. HSme and HSm 

respectively denote posterior point wise median and mean for the horeshoe prior. True β0 is 

5-sparse with nonzero entries ±{1.5, 1.75, 2, 2.25, 2.5}. Top row: Σ = Ip (independent). 

Bottom row: Σjj = 1, Σjj′ = 0.5, j ≠ j′ (compound symmetry).
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Fig. 2. 
Same setting as in Fig 1. True β0 is 5-sparse with non-zero entries ±{0.75, 1, 1.25, 1.5, 

1.75}.
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