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Abstract

Comparisons of DNA from archaic and modern humans show that these groups interbred, and in some cases received an
evolutionary advantage from doing so. This process—adaptive introgression—may lead to a faster rate of adaptation
than is predicted from models with mutation and selection alone. Within the last couple of years, a series of studies have
identified regions of the genome that are likely examples of adaptive introgression. In many cases, once a region was
ascertained as being introgressed, commonly used statistics based on both haplotype as well as allele frequency infor-
mation were employed to test for positive selection. Introgression by itself, however, changes both the haplotype struc-
ture and the distribution of allele frequencies, thus confounding traditional tests for detecting positive selection.
Therefore, patterns generated by introgression alone may lead to false inferences of positive selection. Here we explore
models involving both introgression and positive selection to investigate the behavior of various statistics under adaptive
introgression. In particular, we find that the number and allelic frequencies of sites that are uniquely shared between
archaic humans and specific present-day populations are particularly useful for detecting adaptive introgression. We
then examine the 1000 Genomes dataset to characterize the landscape of uniquely shared archaic alleles in human
populations. Finally, we identify regions that were likely subject to adaptive introgression and discuss some of the most
promising candidate genes located in these regions.
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Introduction
There is now a large body of evidence supporting the idea
that certain modern human populations admixed with ar-
chaic groups of humans after expanding out of Africa. In
particular, non-African populations have 1–2% Neanderthal
ancestry (Green et al. 2010; Prüfer et al. 2014), and
Melanesians and East Asians have 3% and 0.2% ancestry, re-
spectively, from Denisovans (Reich et al. 2010; Meyer et al.
2012; Prüfer et al. 2014).

Recently, it has become possible to identify the fragments
of the human genome that were introgressed and survive in
present-day individuals (Prüfer et al. 2014; Sankararaman et al.
2014; Vernot and Akey 2014; Sankararaman et al. 2016;
Vernot et al. 2016). Researchers have also detected which of
these introgressed regions are present at high frequencies in
certain present-day non-African populations. Some of these
regions are likely to have undergone positive selection in
those populations after they were introgressed, a phenome-
non known as adaptive introgression (AI). One particularly
striking example of AI is the gene EPAS1 (Hu et al. 2003)
which confers a selective advantage in Tibetans by making
them less prone to hypoxia at high altitudes (Beall et al. 2010;
Bigham et al. 2010; Yi et al. 2010; Peng et al. 2011; Wang et al.

2011; Xu et al. 2011; Jeong et al. 2014; Hackinger et al. 2016).
The selected Tibetan haplotype is likely to have been intro-
duced in the human gene pool by Denisovans or a population
closely related to them (Huerta-S�anchez et al. 2014; Huerta-
Sanchez and Casey 2015).

In this study, we first use simulations to assess the power to
detect AI using different exploratory summary statistics that
do not require the introgressed fragments to be identified a
priori. Some of these are inspired by the signatures observed
in EPAS1, which contains an elevated number of sites with
alleles uniquely shared between the Denisovan genome and
Tibetans. We then apply these statistics to real human geno-
mic data from phase 3 of the 1000 Genomes Project (Auton
et al. 2015), to detect AI in human populations, and find
candidate genes. While these statistics are sensitive to adap-
tive introgression, they may also be sensitive to other phe-
nomena that generate genomic patterns similar to those
generated by AI, like ancestral population structure and in-
complete lineage sorting. These processes, however, should
not generate long regions of the genome where haplotypes
from the source and the recipient population are highly sim-
ilar. As additional confirmation that the candidates we found
with our statistics are generated by AI, we explored the hap-
lotype structure of some of the most promising candidates,
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and used a probabilistic method (Seguin-Orlando et al. 2014)
that infers introgressed segments along the genome by look-
ing at the spatial arrangement of SNPs that are consistent
with introgression. This allows us to verify that the candidate
regions contain introgressed haplotypes at high frequencies: a
hallmark of AI.

Results

Statistics for Detecting AI
We began by evaluating the performance of various statistics
at detecting AI. In addition to testing statistics that have al-
ready been previously defined in the literature (D, fD, D0, r2, p),
we define three new types of statistics that we find are partic-
ularly powerful at detecting AI (table 1). We briefly describe
the new statistics here, but more extensive descriptions of all
tested statistics can be found in the “Methods” section below.

First, in a region under AI, one would expect the sequence
divergence between an individual from the source population
and an admixed individual to be smaller than the sequence
divergence between an individual from the source population
and a nonadmixed individual. Thus, we define RD as the av-
erage ratio of the sequence divergence between a panel from
the source population and a panel from the admixed popu-
lation, over the sequence divergence between the source
panel and a nonadmixed panel, computed in a window of
the genome.

Second, under AI we would expect a large number of sites
containing archaic alleles at high frequency in the admixed
population, but absent or at low frequency in a nonadmixed
population. Therefore, we define the statistic UA;B;Cðw; x; yÞ
to be equal to the number of sites within a genomic window
where a sample C from an archaic source population has a
particular allele at frequency y, and that allele is at a frequency
smaller than w in a panel A of a nonadmixed population but
larger than x in a panel B of an admixed population (fig. 1).
Throughout the text, we denote panels A, B and C as the
“outgroup”, “target”, and “bait” panels, respectively. If we have
samples from two different archaic populations (e.g., a
Neanderthal genome and a Denisova genome), we can define
UA;B;C;Dðw; x; y; zÞ as the number of sites where the archaic
sample C has a particular allele at frequency y and the archaic
sample D has that allele at frequency z. Additionally, at those
sites, the same allele should be at a frequency smaller than w
in an outgroup panel A and larger than x in a target panel B
(supplementary fig. S1, Supplementary Material online).

Finally, if we do not want to set a hard cutoff for what we
consider “high-frequency” archaic alleles, we can just com-
pute a summary statistic of the site-frequency spectrum in
the target panel, conditional on the archaic allele being at low
frequency in the outgroup. This statistic should be high when
a region contains many alleles at especially high frequencies in
the target. We therefore define Q95A;B;Cðw; yÞ to be equal to
the 95th percentile of derived frequencies in a target panel B

Table 1. Summary statistics mentioned in the main text.

Statistic Explanation References

D D-statistic: measures excess allele sharing between a test population and an outgroup using a
sister population that is more closely related to the test than the outgroup

(Green et al. 2010;
Durand et al. 2011)

fD Similar to the D-statistic, but serves to better control for local variation in diversity patterns if one
is interested in finding loci with excess ancestry from an admixing population.

(Martin et al. 2015)

RD Average ratio of the sequence divergence between an individual from the source population and
an individual from the admixed population, and the sequence divergence between an indi-
vidual from the source population and an individual from the non-admixed population. This is
computed by taking the average over all pairs of admixed and non-admixed individuals.

This study

UA;B;Cðw; x; yÞ Number of sites in which any allele is at a frequency lower than w in panel A, higher than x in panel
B and equal to y in panel C.

This study

UA;B;C;Dðw; x; y; zÞ Number of sites in which any allele is at a frequency lower than w in panel A, higher than x in panel
B, equal to y in panel C and equal to z in panel D.

This study

Q95A;B;Cðw; yÞ 95% quantile of the distribution of derived allele frequencies in panel B, for sites where the
derived allele is at a frequency lower than w in panel A and equal to y in panel C.

This study

Q95A;B;C;Dðw; y; zÞ 95% quantile of the distribution of derived allele frequencies in panel B, for sites where the
derived allele is at a frequency lower than w in panel A, equal to y in panel C and equal to z in
panel D.

This study

p Expected heterozygosity, measured as the average of 2pð1� pÞ over all sites in a window, where p
is the frequency of an arbitrarily chosen allele.

(Crow et al. 1970)

D0½intro� A measure of linkage disequilibrium. Computed as D=Dmax where D ¼ pXY � pXpY , pXY is the
frequency of haplotype XY, pX is the frequency of allele X, pY is the frequency of allele Y, and
Dmax is the maximum theoretical value that D can take. D0½intro� is computed only using
frequencies from the introgressed panel. When we compute this in a window, the value is
obtained by taking the average over all pairs of SNPs.

(Lewontin 1964)

D0½comb� D0 computed using haplotype and allele frequencies from the combination of the introgressed
and non-introgressed panels.

(Lewontin 1964)

r2½intro� A measure of linkage disequilibrium. Computed as D2=ðpXð1� pXÞpYð1� pYÞÞ. r2½intro� is
computed only using frequencies from the introgressed panel. When we compute this in a
window, the value is obtained by taking the average over all pairs of SNPs.

(Hill and Robertson 1968)

r2½comb� r2 computed using haplotype and allele frequencies from the combination of the introgressed
and non-introgressed panels.

(Hill and Robertson 1968)
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of all SNPs that have a derived allele frequency y in the bait
(archaic) panel C, but where the derived allele is at a fre-
quency smaller than w in an outgroup panel A from a nonad-
mixed population (fig. 1).

Simulations under AI
We use simulations to assess the performance of the statistics
mentioned above at detecting AI. Supplementary figures S3–
S5, Supplementary Material online show the distribution of
statistics that rely on patterns of shared allele configurations
between source and introgressed populations (p, D, fD,
UA;B;C; Q95A;B;C, and RD), for different choices of the selection
coefficient s, and under 2%, 10%, and 25% admixture rates,
respectively. For Q95A;B;Cðw; 100%Þ and UA;B;Cðw; x; 100%Þ,
we tested different choices of the outgroup cutoff w (1%,
10%) and the target cutoff x (0%, 20%, 50%, and 80%).

Some statistics, like Q95A;B;Cð1%; 100%Þ and fD show
strong separation between the selection regimes. For example,
with an admixture rate of 2%, Q95A;B;Cð1%; 100%Þ has 100%
sensitivity at a specificity of 99%, for both s¼ 0.1 and s¼ 0.01.
Some parameterizations of the U statistic are not as effective,
however. For example, UA;B;Cð1%; 0%; 100%Þ shows some
power when the admixture rate is low (2%), but almost no
power when the admixture rate is high (25%). This is because

setting the minimum frequency of the archaic allele in the test
population at x ¼ 0% means that any site with some archaic
allele in the test panel will be counted, regardless of the allele
frequency, so long as the archaic allele is at low frequency in
the outgroup panel. At high admixture rates, low- and
medium-frequency archaic alleles would naturally occur un-
der neutrality, so they would not be informative about AI.

We also evaluated the effectiveness of LD-based statistics
at detecting AI (supplementary fig. S6, Supplementary
Material online). We tested the performance of D0 and r2

by either computing each of these in the admixed panel
only (D0½intro�; r2½intro�) or in the combination of the ad-
mixed and nonadmixed panels (D0½comb�; r2½comb�).
Whereas D0½intro�; D0½comb� and r2½comb� are modestly in-
creased by AI, this is not the case with r2½intro� under strong
selection and admixture regimes. This is because r2 will tend
to decrease if the minor allele frequency is very small, which
will occur if this frequency is only measured in the population
undergoing AI. In general, these statistics are not as powerful
for detecting AI as allele configuration statistics like U or Q95.

To jointly explore the power and specificity of all these
statistics, we generated receiving operating characteristic
(ROC) curves under various selection and admixture regimes
(fig. 3 and supplementary fig. S7, Supplementary Material

FIG. 1. Schematic illustration of the way the UA;B;C and Q95A;B;C statistics are calculated.
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online). In general, Q95A;B;Cð1%; 100%Þ; Q95A;B;Cð10%; 100%Þ,
and fD are very powerful statistics for detecting AI under
strong (s¼ 0.1) and intermediate (s¼ 0.01) selection pres-
sures. The number of uniquely shared sites UA;B;Cðw; x; yÞ is
also powerful, so long as the population in the target panel
(B) is large. Additionally, for different choices of x, using w
¼ 1% yields a more powerful statistic than using w ¼ 10%.
We also tested AI scenarios with weak selection (s¼ 0.001),
in which all statistics performed rather poorly, with Q95
and fD performing comparably better than the rest (supple
mentary fig. S8, Supplementary Material online). However,
under these conditions, it is very unlikely that the selected
allele will reach appreciable frequencies (supplementary fig.
S2, Supplementary Material online), so the lack of sensitiv-
ity of all statistics here is largely a reflection of the fact that
in most simulations the selected allele is not successful,
especially when the probability of admixture is low.
Conditioning on survival of the allele should therefore in-
crease sensitivity.

We were also interested in the joint distribution of pairs
of these statistics. Supplementary figure S9, Supplementary
Material online shows the joint distribution of Q95A;B;Cð1%;
100%Þ in the y-axis and four other statistics (RD, p, D, and fD) in
the x-axis, under different admixture and selection regimes. One
can observe, for example, that whereas Q95A;B;Cð1%; 100%Þ

increases with increasing selection intensity and admixture
rates, p increases with increasing admixture rates, but decreases
with increasing selection intensity. Thus, under AI the two
forces cancel each other out, and we obtain a similar value of
p as under neutrality. Furthermore, the joint distributions of Q
95A;B;Cð1%; 100%Þ and fD or RD show particularly good sepa-
ration among the different AI scenarios.

Another joint distribution that is especially good at sepa-
rating different AI regimes is the combination of Q95A;B;Cðw;
100%Þ and UA;B;Cðw; x; 100%Þ. In figure 4, we show this joint
distribution, for different choices of w (1% and 10%) and
x (20% and 50%). Here, with increasing intensity of selection
and admixture, the number of uniquely shared sites and the
quantile statistic increase, but the quantile statistic tends to
only reach high values when selection is strong, even if ad-
mixture rates are low.

Alternative Demographic Scenarios
We evaluated the performance of our statistics under various
alternative demographic scenarios. First, we simulated a 5X
bottleneck occurring in population B 1600 generations before
the admixture event, and lasting 200 generations, to observe
its effects on the power of the statistics for detecting AI (fig.
2B). Though we observe a reduction in power—most evident
in the heterozygosity statistics—none of the statistics are very

FIG. 2. Demographic models described in the main text.
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strongly affected by this event (supplementary fig. S10,
Supplementary Material online). We also simulated a bottle-
neck of equal size but occurring after the admixture event—
starting 1,400 generations ago, and lasting 200 generations
(fig. 2C). In this case, the sensitivity of all the statistics is
strongly reduced when the admixture rate is low (supplemen
tary fig. S11, Supplementary Material online). For example,
when looking at the raw values of the UA;B;C and Q95A;B;C

statistics, we observe that for low admixture rates the distri-
bution under selection has a larger overlap with the

distribution under neutrality, which explains the low power
(supplementary figs. S12 and S13, Supplementary Material
online). Additionally, UA;B;C (but not Q95) seems to display
more elevated values under neutrality in the bottleneck
model than in the constant population size model.
However, the relative performance of each statistic with re-
spect to all the others does not appear to change substantially
(supplementary fig. S11, Supplementary Material online).

We next explored a model where the introgressed hap-
lotype was not immediately adaptive in the Eurasian

FIG. 3. Receiver operating characteristic curves for a scenario of adaptive introgression (s¼ 0.1) compared with a scenario of neutrality (s¼ 0),
using 1,000 simulations for each case. Populations A and B split from each other 4,000 generations ago, and their ancestral population split from
population C 16,000 generations ago. Population sizes were constant and set at 2N ¼ 20; 000. The admixture event occurred 1,600 generations ago
from population C to population B, at rate 2% (top panels) or 25% (bottom panels). The right panels are zoomed-in versions of the left panels.
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population, but instead underwent an intermediate period
of neutral drift, before it became advantageous (fig. 2D). In
such a situation, our power to detect AI is reduced, for all
statistics (supplementary fig. S14, Supplementary Material
online). This is particularly an issue when the admixture rate
is low, as in those cases the starting frequency of the selected
allele in the Eurasian population is low, so it is more likely to
drift to extinction during the neutral period, before it can
become advantageous.

We also evaluated the performance of our statistics under
selective scenarios that did not involve adaptive introgression,
to check which of them were sensitive to these models and
which were not. Under a model of selection from de novo
mutation (SDN, fig. 2E)—in which a single mutation appears
in the receiving population after the split time between it and
the nonadmixed population—the heterozygosity (p) and
linkage disequilbrium statistics (r2½intro� and D0½intro�) are

the most sensitive ones (supplementary fig. S15,
Supplementary Material online). This is expected, given that
classical selective sweeps are known to strongly affect patterns
of heterozygosity and linkage disequilibrium in the neighbor-
hood of the selected site (Barton 1998; Kim and Stephan 2002;
Kim and Nielsen 2004). Since all other statistics have very
poor sensitivity to detect SDN, we expect to be able to dis-
tinguish signatures generated from SDN and AI. One caveat
to this is the scenario in which a de novo selected mutation
occurs on an introgressed haplotype immediately after an
introgression event—before the haplotype has a chance to
expand and recombine in the population—in which case our
statistics will not be able to distinguish SDN from AI.

We also simulated a model of selection from standing var-
iation (fig. 2F), by randomly selecting 20% of haplotypes within
the introgressed population to be advantageous, after the split
time between it and the nonintrogressed population. In this

FIG. 4. Joint distribution of Q95A;B;Cðw; yÞ and UA;B;Cðw; x; yÞ for different choices of w (1%, 10%) and x (20%, 50%). We set y to 100% in all cases. 100
individuals were sampled from panel A, 100 from panel B, and 2 from panel C. The demographic parameters were the same as in figure 3.
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case, all statistics perform poorly, especially when admixture is
low. Interestingly, when admixture is high (supplementary fig.
S16, Supplementary Material online), Q95A;B;Cð1%; 100%Þ and
UA;B;Cð1%; 0%; 100%Þ are the best performing statistics. This is
likely because some of the haplotypes that are randomly cho-
sen to be selected also happen to be ancestrally polymorphic
and present in the archaic humans.

When we set ancestral structure to be our null model, we
observe different behaviors depending on the strength of the
migration rates. When the migration rates are strong (supple
mentary fig. S17, Supplementary Material online), we have
excellent power to detect AI with several statistics, including
Q95A;B;Cð1%; 100%Þ, D, fD, RD, and UA;B;Cð1%; 50%; 100%Þ.
When the rates are of medium strength (supplementary fig.
S18, Supplementary Material online), the power is slightly
reduced, but the same statistics are the ones that perform
best. When the migration rates are weak—meaning ancestral
structure is very strong—Q95A;B;Cð1%; 100%Þ loses power,
and the best-performing statistics are RD, D, and fD (supple
mentary fig. S19, Supplementary Material online). We note,
though, that the genome-wide D observed under this last
ancestral structure model (D¼ 0.24) is much more extreme
than the genome-wide D observed empirically between any
Eurasian population and Neanderthals or Denisovans, sug-
gesting that if there was ancestral structure between archaic
and modern humans, it was likely not of this magnitude.

Global Features of Uniquely Shared Archaic Alleles
Before identifying candidate genes for adaptive introgres-
sion, we investigated the frequency and number of uniquely
shared alleles at the genome-wide level. Specifically, we
wanted to know whether human populations varied in
the number of sites with uniquely shared archaic alleles,
and whether they also varied in the frequency distribution
of these alleles. Therefore, we computed UA;B;Nea;Den

(1%,x,y,z) and Q95A;B;Nea;Den (1%,y,z) for different choices of
x, y, and z. We used different cutoffs for the frequency of the
archaic allele (x) in the target population B: 0%, 20%, and
50%. To look for alleles uniquely shared with the Altai
Neanderthal genome only, we set y ¼ 100% and z ¼ 0%.
To look for alleles uniquely shared with the Denisovan ge-
nome only, we set y ¼ 0% and z ¼ 100%. Finally, to look for
uniquely shared alleles matching both of the archaic ge-
nomes, we set y ¼ 100% and z ¼ 100%.

We used each of the non-African panels in the 1000
Genomes Project phase 3 data (Auton et al. 2015) as the
“target” panel (B), and chose the outgroup panel (A) to be
the combination of all African populations (YRI, LWK, GWD,
MSL, and ESN), excluding admixed African-Americans. We
note that this is a conservative reference panel, as some of
the African panels—like LWK—are from populations with a
substantial amount of Eurasian ancestry (Auton et al. 2015),
likely preventing the detection of introgressed segments at
some loci.

When setting x ¼ 0% (i.e., not imposing a frequency cutoff
in the target panel B), South Asians as a target population
show the largest number of archaic alleles (fig. 5A). However,
East Asians have a larger number of high-frequency uniquely

shared archaic alleles than Europeans and South Asians, for
both x ¼ 20% and x ¼ 50% (fig. 5B–C). Population-specific
D-statistics (using YRI as the nonadmixed population) also
follow this trend (supplementary fig. S20, Supplementary
Material online) and we observe this pattern when looking
only at the X chromosome as well (supplementary fig. S21,
Supplementary Material online). These results hold in com-
parisons with both archaic human genomes, but we observe a
stronger signal when looking at Neanderthal-specific shared
alleles. To correct for the fact that some panels have more
segregating sites than others (and may therefore have more
archaic-like segregating sites), we also scaled the number of
uniquely shared sites by the total number of segregating sites
per population panel (fig. 5D–F), and we see in general the
same patterns, with the exception of a Peruvian panel, which
we discuss further below. We also observe similar patterns
when calculating Q95A;B;Nea;Denð1%; y; zÞ genome-wide (sup
plementary fig. S22, Supplementary Material online). The el-
evation in UA;B;Nea;Den and Q95A;B;Nea;Den in East Asians may
possibly result from higher levels of archaic ancestry in East
Asians than in Europeans (Wall et al. 2013), which some
studies argue could be due to additional admixture events
occurring in East Asians (Kim and Lohmueller 2015; Vernot
and Akey 2015;).

Surprisingly, the Peruvians (PEL) harbor the largest amount
of high frequency mutations of archaic origin than any other
single population, especially when using Neanderthals as bait
(figs. 5B–C and supplementary fig. S21, Supplementary
Material online). It is unclear whether this signal is due to
increased drift or selection in this population. Skoglund and
Jakobsson (2011) argue via simulations that if one analyzes a
population with high amounts of recent genetic drift and
excludes SNPs where the minor allele is at low frequency,
some statistics that are meant to detect archaic ancestry—
like D—may be artificially inflated. Our filtering procedure to
select uniquely shared archaic alleles necessarily excludes sites
where the archaic allele is at low frequency in the target panel,
and the PEL panel comes from a population with a history of
low effective population sizes (high drift) relative to other non-
Africans (Auton et al. 2015), which could explain this pattern.
This could also explain why the effect is not seen when x¼ 0%
(fig. 5A), or when computing D-statistics (supplementary fig.
S20, Supplementary Material online), both of which include
sites with low-frequency alleles in their computation.
Additionally, scaling the uniquely shared sites by the total num-
ber of segregating sites per population panel mitigates (but
does not completely erase) this pattern. After scaling, PEL
shows levels of archaic allele sharing within the range of the
East Asian populations at x ¼ 20% (fig. 5E), but is still the panel
with the largest number of archaic sites at x ¼ 50% (fig. 5F).

Furthermore, we plotted the values of UAFR;X;Nea;Denð1%; x;
y; zÞ and Q95AFR;X;Nea;Denð1%; y; zÞ jointly for each population
X, under different frequency cutoffs x. When x ¼ 0%, there is
a generally inversely proportional relationship between the
two scores (supplementary fig. S23, Supplementary Material
online), but this becomes a directly proportional relationship
when x ¼ 20% (fig. 6) or x ¼ 50% (supplementary fig. S27,
Supplementary Material online). Here, we also clearly observe
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that PEL is an extreme panel with respect to both the number
and frequency of archaic shared derived alleles, and that East
Asian and American populations have more high-frequency
archaic shared alleles than Europeans.

We checked via simulations if the observed excess of high
frequency archaic derived mutations in Americans and espe-
cially Peruvians could be caused by genetic drift, as a conse-
quence of the bottleneck that occurred in the ancestors of
Native Americans as they crossed Beringia. We observe that if
the introgressed population B undergoes a bottleneck, this
can lead to a larger number of UA;B;Cðw; x; y; zÞ for large
values of x (supplementary figs. S12, S13, and S24,
Supplementary Material online). Indeed, population structure

analyses of the 1000 Genomes samples suggest that Peruvians
have the largest amount of Native American ancestry (Auton
et al. 2015) and show a bottleneck with a lack of recent
population growth, which could explain this pattern. We
also observe an increase in the variance of the distribution
of U and Q95 in the presence of a bottleneck, especially when
long and severe (supplementary figs. S25 and S26,
Supplementary Material online).

Candidate Regions for Adaptive Introgression
To identify adaptively introgressed regions of the genome, we
computed UA;B;C;Dðw; x; y; zÞ and Q95A;B;C;Dðw; y; zÞ in 40 kb
nonoverlapping windows along the genome, using the

FIG. 5. We computed the number of uniquely shared sites in the autosomes and the X chromosome between particular archaic humans and
different choices of present-day non-African panels X (x-axis) from phase 3 of the 1000 Genomes Project. We used a shared frequency cutoff of 0%
(A), 20% (B), and 50% (C). Nea-only¼ UAfr;X;Nea;Denð1%; 20%; 100%; 0%Þ. Den-only¼ UAfr;X;Nea;Denð1%; 20%; 0%; 100%Þ. Nea-all¼
UAfr;X;Neað1%; 20%; 100%Þ. Den-all¼ UAfr;X;Denð1%; 20%; 100%Þ. Both¼ UAfr;X;Nea;Denð1%; 20%; 100%; 100%Þ. Finally, we scaled each of the sta-
tistics from panels A to C by the number of segregating sites in each 1000 Genomes population panel, yielding panels D–F.
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low-coverage sequencing data from phase 3 of the 1000
Genomes Project (Auton et al. 2015). We used this window
size because the mean length of introgressed haplotypes in
Prüfer et al. (2014) was 44,078 bp (Supplementary
Information 13). Our motivation was to find regions under
AI in a particular panel B, using panel A as a nonintrogressed
outgroup (generally Africans, unless otherwise stated). We
used the high-coverage Altai Neanderthal genome (Prüfer
et al. 2014) as bait panel C and the high-coverage Denisova
genome (Meyer et al. 2012) as bait panel D. We deployed
these statistics in three ways: (a) to look for Neanderthal-
specific AI, we set y ¼ 100% and z ¼ 0%; (b) to look for
Denisova-specific AI, we set y ¼ 0% and z ¼ 100%; (c) to
look for AI matching both of the archaic genomes, we set
y ¼ 100% and z ¼ 100% (supplementary fig. S1 and table
S3, Supplementary Material online). To try to determine the
adaptive pressure behind the putative AI event, we obtained

all the CCDS-verified genes located inside each window
(Pruitt et al. 2009).

For guidance as to how high a value of U and Q95, we
would expect under neutrality, we used the simulations from
figure 2 to obtain 95% empirical quantiles of the distribution
of these scores under neutrality. Supplementary tables S1 and
S2, Supplementary Material online show the 95% quantiles
for these two statistics under various models of adaptive in-
trogression and ancestral structure, for different choices of
parameter values (see “Methods” section). When examining
our candidates for AI below, we focused on windows whose
values for UA;B;Nea;Denðw; x; y; zÞ and Q95A;B;Nea;Denðw; y; zÞ
were both in the 99.9% quantile of their respective
genome-wide distributions. We verified via simulations that,
under a simple model of neutral admixture at a genome-wide
rate of 2%, the estimated probability of obtaining values as
high as these (or the false positive rate, FPR) was between

FIG. 6. For each population panel from the 1000 Genomes Project, we jointly plotted the U and Q95 statistics with an archaic frequency cutoff of
> 20% within each population. Nea-only¼ UAfr;X;Nea;Denð1%; 20%; 100%; 0%Þ and Q95Afr;X;Nea;Denð1%; 100%; 0%Þ. Den-only¼
UAfr;X;Nea;Denð1%; 20%; 0%; 100%Þ and Q95Afr;X;Nea;Denð1%; 0%; 100%Þ. Nea-all¼ UAfr;X;Neað1%; 20%; 100%Þ and Q95Afr;X;Neað1%; 100%Þ. Den-all¼
UAfr;X;Denð1%; 20%; 100%Þ and Q95Afr;X;Denð1%; 100%Þ. Both¼ UAfr;X;Nea;Denð1%; 20%; 100%; 100%Þ and Q95Afr;X;Nea;Denð1%; 100%; 100%Þ.
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10.6% and 0%, depending on the target population chosen.
The highest rates correspond to the African-American (ASW)
admixed panel, as this panel contains high proportions of
ancestry from the outgroup panel (unadmixed Africans)
and are therefore not well-suited for our statistics.
Excluding ASW, the highest estimated FPR was 5.5%.

We also calculated D and fD along the same windows
(using Africans as the nonadmixed population), and saw
good agreement with the new statistics presented here (sup
plementary table S3, Supplementary Material online). Finally,
we further validated the regions most likely to have been
adaptively introgressed by searching for archaic tracts of in-
trogression within them that were at high frequency, using a
Hidden Markov Model (see below).

Continental Populations
When focusing on adaptive introgression in continental pop-
ulations, we first looked for uniquely shared archaic alleles
specific to Europeans that were absent or almost absent
(< 1% frequency) in Africans and East Asians. In addition,
we also looked for uniquely shared archaic alleles in East
Asians, which were absent or almost absent in Africans and
Europeans. In this continental survey, we ignored Latin
American populations as they have high amounts of
European and African ancestry, which could confound our
analyses. Figure 7 shows the number of sites with uniquely
shared alleles for increasing frequency cutoffs in the intro-
gressed population, and for different types of archaic alleles
(Neanderthal-specific, Denisova-specific or common to both
archaic humans). In other words, we calculated
UAFR;EUR;Nea;Denð1%; x; y; zÞ and UAFR;EAS;Nea;Denð1%; x; y; zÞ
for different values of x (0%, 20%, 50%, and 80%) and different
choices of y and z, depending on which type of archaic alleles
we were looking for. We observe that the regions in the ex-
treme of the distributions for x ¼ 50% corresponded very
well to genes that had been previously found to be candidates
for adaptive introgression from archaic humans in these pop-
ulations, using more complex probabilistic methods
(Sankararaman et al. 2014; Vernot and Akey 2014) or gene-
centric approaches (Ding et al. 2013). These include BNC2
(involved in skin pigmentation [Vanhoutteghem and Djian
2006; Jacobs et al. 2013]), POU2F3 (involved in skin keratino-
cyte differentiation [Cabral et al. 2003; Takemoto et al. 2010]),
HYAL2 (involved in the response to UV radiation on human
keratinocytes [Ha�sov�a et al. 2011]), SIPA1L2 (involved in neu-
ronal signaling [Spilker and Kreutz 2010]), and CHMP1A (a
regulator of cerebellar development [Mochida et al. 2012]).
To be more rigorous in our search for adaptive introgression,
we looked at the joint distribution of the U statistic and the
Q95 statistic for the same choices of w, y, and z, and then
selected the regions that were in the 99.9% quantiles of the
distributions of both statistics (fig. 8, supplementary figs. S28
and S29, Supplementary Material online). We find that the
strongest candidates here are BNC2, POU2F3, SIPA1L2, and
the HYAL2 region.

We also scanned for regions of the genome where South
Asians (SAS) had uniquely shared archaic alleles at high

frequency, which were absent or almost absent in
Europeans, East Asians and Africans. In this case, we focused
on x ¼ 20% because we found that x ¼ 50% left us with no
candidate regions. Among the candidate regions sharing a
large number of high-frequency Neanderthal alleles in South
Asians, we find genes ASTN2, SFMBT1, MUSTN1 and MAML2
(supplementary fig. S30, Supplementary Material online).
ASTN2 is involved in neuronal migration (Wilson et al. 2010)
and is associated with schizophrenia (Vrijenhoek et al. 2008;
Wang et al. 2010). SFMBT1 is involved in myogenesis (Lin et al.
2013) and is associated with hydrocephalus (Kato et al. 2011).
MUSTN1 plays a role in the regeneration of the muscoskeletal
system (Krause et al. 2013). Finally, MAML2 codes for a signal-
ing protein (Lin et al. 2002; Wu et al. 2005), and is associated
with cutaneous carcinoma (Winnes et al. 2007) and lacrimal
gland cancer (Von Holstein et al. 2012).

Eurasia
We then looked for AI in all Eurasians (EUA¼ EURþ
SASþ EAS, ignoring American populations) using Africans
as the nonadmixed population (AFR, ignoring admixed
African-Americans). Figure 8 shows the extreme outlier re-
gions that are in the 99.9% quantiles for both UEUA;AFR;Nea;Den

ð1%; 20%; y; zÞ and Q95EUA;AFR;Nea;Denð1%; y; zÞ, whereas sup
plementary figure S31, Supplementary Material online shows
the entire distribution. We focused on x ¼ 20% because we
found that x ¼ 50% left us with almost no candidate regions.
In this case, the region with by far the largest number of
uniquely shared archaic alleles is the one containing genes
OAS1 and OAS3, involved in innate immunity (Knapp et al.
2003; Hamano et al. 2005; Fedetz et al. 2006; Lim et al. 2009).
This region was previously identified as a candidate for AI
from Neanderthals in non-Africans (Mendez et al. 2013).
Another region that we recover and was previously identified
as a candidate for AI is the one containing genes TLR1 and
TLR6 (Dannemann et al. 2016; Deschamps et al. 2016). These
genes are also involved in innate immunity and have been
shown to be under positive selection in some non-African
populations (Akira et al. 2006; Barreiro et al. 2009).

Interestingly, we find that a very strong candidate region in
Eurasia contains genes TBX15 and WARS2. This region has
been associated with a variety of traits, including adipose
tissue differentiation (Gburcik et al. 2012), body fat distribu-
tion (Heid et al. 2010; Liu et al., 2013, 2014; Shungin et al.
2015), hair pigmentation (Candille et al. 2004) facial morphol-
ogy (Lausch et al. 2008; Pallares et al. 2015), ear morphology
(Curry 1959), stature (Lausch et al. 2008), and skeletal devel-
opment (Singh et al. 2005; Lausch et al. 2008). It was previ-
ously identified as being under positive selection in
Greenlanders (Fumagalli et al. 2015), and it shows particularly
striking signatures of adaptive introgression, so we devote a
separate study to its analysis (Racimo et al. 2016).

Population-Specific Signals of Adaptive Introgression
To identify population-specific signals of AI, we looked for
archaic alleles at high frequency in a particular non-African
panel X, which were also at less than 1% frequency in all other
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FIG. 7. We partitioned the genome into non-overlapping windows of 40 kb. Within each window, we computed UOut;EUR;Nea;Denð1%; x; y; zÞ and
UOut;EAS;Nea;Denð1%; x; y; zÞ, where Out¼ EASþAFR for EUR as the target introgressed population, and Out¼ EURþAFR for EAS as the target
introgressed population. We searched for Neanderthal-specific alleles (y ¼ 100%; z ¼ 0%), Denisovan-specific alleles (y ¼ 0%; z ¼ 100%) and
alleles present in both archaic genomes (y ¼ 100%; z ¼ 100%) that were uniquely shared with either EUR or EAS at frequencies above different
cutoffs (x¼ 0%, x¼ 20%, x¼ 50%, and x¼ 80%). Windows that fall within the upper tail of the distribution for each modern-archaic population
pair are colored in red (P< 0.001/number of pairs tested) and those that do not are colored in blue, except for those in the X chromosome, which
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non-African and African panels, excluding panel X (supplemen
tary table S3, Supplementary Material online). This is a very
restrictive requirement, and indeed, we only find a few win-
dows in a single panel (PEL) with archaic alleles at more than
20% frequency. One of the regions with the largest number of
uniquely shared Neanderthal sites in PEL contains gene CHD2,
which codes for a DNA helicase (Woodage et al. 1997) in-
volved in myogenesis (UniProtKB by similarity), and that is
associated with epilepsy (Rauch et al. 2012; Carvill et al. 2013).
We note, however, that the presence of these extreme regions
could be due to the global elevation in the U statistic caused by
higher levels of drift in Peruvians, as explained above.

Shared Signals among Populations
In the previous section, we focused on regions where archaic
alleles were uniquely at high frequencies in particular popu-
lations, but at low frequencies in all other populations. This
precludes us from detecting AI regions that are shared across
more than one non-African population. To address this, we
conditioned on observing the archaic allele at less than 1%

frequency in a nonadmixed outgroup panel composed of all
the African panels (YRI, LWK, GWD, MSL, and ESN), exclud-
ing African-Americans, and then looked for archaic alleles at
high frequency in particular non-African populations. Unlike
the previous section, we did not condition on the archaic
allele being at low frequency in other non-African popula-
tions as well. The whole joint distributions of U and Q95 for
this choice of parameters for each non-African panel are
shown in supplementary figs. S32–S50, Supplementary
Material online whereas regions in the 99.9% quantile for
both statistics are shown in figure 8.

Here, we recapitulate many of the findings from our
Eurasian and continental-specific analyses above, like TLR1/
TLR6, BNC2, OAS1/OAS3, POU2F3, LIPA, and TBX15/WARS2
(fig. 8). For example, just as we found that POU2F3 was an
extreme region in the East Asian (EAS) continental panel, we
separately find that almost all populations composing that
panel (CHB, KHV, CHS, CDX, and JPT) have archaic alleles in
that region at disproportionately high frequency, relative to
their frequency in Africans. Additionally, we can learn things

FIG. 7. Continued
are in green. Ovals drawn around multiple points contain multiple windows with uniquely shared alleles that are contiguous. For comparison, the
number of high frequency uniquely shared sites between Denisova and Tibetans is also shown (Huerta-S�anchez et al. 2014), although Tibetans are
not included in the 1000 Genomes data and the region is 32 kb long, so this may be an underestimate.

FIG. 8. We plotted the 40kb regions in the 99.9% highest quantiles of both the Q95Out;Pop;Nea;Denð1%; y; zÞ and UOut;Pop;Nea;Denð1%; x; y; zÞ statistics
for different choices of target introgressed population (Pop) and outgroup non-introgressed population (Out), and different archaic allele
frequency cutoffs within the target population (x). (A) We plotted the extreme regions for continental populations EUR (Out¼ EASþAFR),
EAS (Out¼ EURþAFR), and Eurasians (EUA, Out¼AFR), using a target population archaic allele frequency cutoff x of 20%. (B) We plotted the
extreme regions from the same statistics as in panel A, but with a more stringent target population archaic allele frequency cutoff x of 50%. (C) We
plotted the extreme regions for individual non-African populations within the 1000 Genomes data, using all African populations (excluding
African-Americans) as the outgroup, and a cutoff x of 20%. (D) We plotted the extreme regions from the same statistics as in panel C, but with a
more stringent target population archaic allele frequency cutoff x of 50%. Nea-only¼ UOut;Pop;Nea;Denð1%; x; 100%; 0%Þ and
Q95Out;Pop;Nea;Denð1%; 100%; 0%Þ. Den-only¼ UOut;Pop;Nea;Denð1%; x; 0%; 100%Þ and Q95Out;Pop;Nea;Denð1%; 0%; 100%Þ. Both¼
UOut;Pop;Nea;Denð1%; x; 100%; 100%Þ and Q95Out;Pop;Nea;Denð1%; 100%; 100%Þ.
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we would not have detected at the continental level. For
example, the Bengali from Bangladesh (BEB)—a South
Asian population—also have archaic alleles at very high fre-
quencies in the same genomic region.

We detected several genes that appear to show signatures of
AI across various populations (fig. 8). One of the most extreme
examples is a 120 kb region containing the LARS gene, with 76
uniquely shared Neanderthal alleles at < 1% frequency in
Africans and > 50% frequency in Peruvians, which are also
at > 20% frequency in Mexicans. LARS codes for a leucin-
tRNA synthetase (Giles et al. 1980), and is associated with liver
failure syndrome (Casey et al. 2012). Additionally, a region con-
taining the gene ZFHX3 displays an elevated number of
uniquely shared Neanderthal sites in PEL, and we also observe
this when looking more broadly at East Asians (EAS) and—
based on the patterns of inferred introgressed tracts (see be-
low)—in various American (AMR) populations as well. ZFHX3
is involved in the inhibition of estrogen receptor-mediated
transcription (Dong et al. 2010) and has been associated with
prostate cancer (Sun et al. 2005).

We also find several Neanderthal-specific uniquely shared
sites in American panels (PEL, CLM, MXL) in a region previ-
ously identified as harboring a risk haplotype for type 2 dia-
betes (chr17:6880001–6960000) (Sigma Type 2 Diabetes
Consortium 2014). This is consistent with previous findings
suggesting the risk haplotype was introgressed from
Neanderthals and is specifically present at high frequencies
in Latin Americans (Sigma Type 2 Diabetes Consortium
2014). The region contains gene SLC16A11, whose expression
is known to alter lipid metabolism (Sigma Type 2 Diabetes
Consortium 2014). We also find that the genes FAP/IFIH1
have signals consistent with AI, particularly in PEL. This region
has been previously associated with type 1 diabetes (Qu et al.
2008; Liu et al. 2009). A previous analysis of this region has
suggested that the divergent haplotypes in it resulted from
ancestral structure or balancing selection in Africa, followed
by local episodes of positive selection in Europe, Asia, and the
Americas (Fumagalli et al. 2010). A more recent analysis has
found this as a region of archaic AI in Melanesians as well
(Vernot et al. 2016).

Another interesting candidate region contains two genes
involved in lipid metabolism: LIPA and CH25H. We find a
40 kb region with 11 uniquely shared Denisovan alleles that
are at low (< 1%) frequency in Africans and at very high
(> 50%) frequency in various South and East Asian popula-
tions (JPT, KHV, CHB, CHS, CDX, and BEB). The Q95 and D
statistics in this region are also high across all of these pop-
ulations, and we also find this region to have extreme values
of these statistics in our broader Eurasian scan. The LIPA gene
codes for a lipase (Warner et al. 1980) and is associated with
cholesterol ester storage disease (Klima et al. 1993) and
Wolman disease (Aslanidis et al. 1996). In turn, the CH25H
gene codes for a membrane hydroxylase involved in the me-
tabolism of cholesterol (Lund et al. 1998) and associated with
Alzheimer’s disease (Shibata et al. 2006) and antiviral activity
(Liu et al. 2013).

Finally, we find a region harboring between 3 and 10
uniquely shared Neanderthal alleles (depending on the panel

used) in various non-African populations. This region was
identified earlier by Sankararaman et al. (2014) and contains
genes PPDPF, PTK6 and HELZ2. PPDPF codes for a probable
regulator of pancreas development (UniProtKB by similarity).
PTK6 codes for an epithelial signal transducer (Kamalati et al.
1996) and HELZ2 codes for a helicase that works as a tran-
scriptional coactivator for nuclear receptors (Surapureddi
et al. 2002; Tomaru et al. 2006).

The X Chromosome
Previous studies have observed lower levels of archaic intro-
gression in the X chromosome relative to the autosomes
(Sankararaman et al. 2014; Vernot and Akey 2014). Here,
we observe a similar trend: compared with the autosomes,
the X chromosome contains a smaller number of windows
with sites that are uniquely shared with archaic humans (fig.
7). For example, for w ¼ 1% and x ¼ 20%, we observe that,
in Europeans, 0.4% of all windows in the autosomes have at
least one uniquely shared site with Neanderthals or
Denisovans, whereas only 0.05% of all windows in the X chro-
mosome have at least one uniquely shared site
( P ¼ 4:985� 10�4, chi-squared test assuming indepen-
dence between windows). The same pattern is observed in
East Asians (P ¼ 1:852� 10�8).

Nevertheless, we do identify some regions in the X chro-
mosome exhibiting high values for both UA;B;C;Dðw; x; y; zÞ
and Q95A;B;C;Dðw; y; zÞ. For example, a region containing
gene DHRSX contains a uniquely shared site where a
Neanderthal allele is at < 1% frequency in Africans, but at
> 50% frequency in a British panel (GBR). The site is also at
high frequency (29%–47%) in the other European panels, but
never as high as in GBR (55%). It is also surrounded by five
neighboring SNPs that have intermediate Neanderthal allele
frequencies (24%–41%) in GBR. Another region contains the
gene DMD and harbors two uniquely shared sites where two
archaic (Denisovan/Neanderthal) alleles are also at low
(< 1%) frequency in Africans but at > 50% frequency in
Peruvians. DHRSX codes for an oxidoreductase enzyme
(Persson et al. 2009) whereas DMD is a well-known gene
because mutations in it cause muscular dystrophy (Wood
et al. 1987), and was also previously identified as having sig-
natures of archaic introgression in non-Africans (Yotova et al.
2011). We note, however, that our simulations do not ac-
count for the particular inheritance and recombination pat-
terns of the X chromosome, so caution should be taken when
calling these regions as under AI.

Introgressed Haplotypes in Candidate Loci
We inspected the haplotype patterns of candidate loci with
support in favor of AI. We display the haplotypes for selected
populations at seven regions: POU2F3 (fig. 9A), BNC2 (fig. 9B),
LARS (fig. 9C), FAP/IFIH1 (fig. 9D), OAS1 (fig. 9E), LIPA (fig. 9F),
and SLC16A11 (supplementary fig. S51C, Supplementary
Material online). We included continental populations that
show a large number of uniquely shared archaic alleles, and
included YRI as a representative African population. We then
clustered and ordered the haplotypes by similarity to the
closest archaic genome (Altai Neanderthal or Denisova) (fig.
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9). As can be observed, all these regions tend to show sharp
distinctions between the putatively introgressed haplotypes
and the nonintrogressed ones. This is also evident when look-
ing at the cumulative number of differences of each haplo-
type to the closest archaic haplotype, where we see a sharp
rise in the number of differences, indicating strong differen-
tiation between the two sets of haplotypes. Additionally, the
YRI haplotypes tend to predominantly belong to the non-
introgressed group, as expected.

Consequences of Relaxing the Outgroup Frequency Cutoff
When using a more lenient cutoff for the outgroup panel
(10% maximum frequency, rather than 1%), we find a few
genes that display values of the U statistic that are suggestive
of AI, and that have been previously found to be under strong
positive selection in particular human populations (Voight
et al. 2006; Pickrell et al. 2009). The most striking examples are

TYRP1 in EUR (using EASþAFR as outgroup) and OCA2 in
EAS (using EURþAFR as outgroup) (supplementary table S3,
Supplementary Material online). Both of these genes are in-
volved in pigmentation. We caution, however, that the reason
why they carry archaic alleles at high frequency may simply be
because their respective selective sweeps pushed an allele that
was segregating in both archaic and modern humans to high
frequency in modern humans, but not necessarily via
introgression.

In fact, TYRP1 only stands out as an extreme region for the
number of archaic shared alleles in EUR when using the le-
nient 10% cutoff, but not when using the more stringent 1%
cutoff. When looking at these SNPs in more detail, we find
that their allele frequency in Africans (�20%) is even higher
than in East Asians (�1%), largely reflecting population dif-
ferentiation across Eurasia due to positive selection (Pickrell
et al. 2009), rather than adaptive introgression. When

FIG. 9. We explored the haplotype structure of six candidate regions with strong evidence for AI. For each region, we applied a clustering algorithm
to the haplotypes of particular human populations and then ordered the clusters by decreasing similarity to the archaic human genome with the
larger number of uniquely shared sites (see “Methods” Section). We also plotted the number of differences to the archaic genome for each human
haplotype and sorted them simply by decreasing similarity. In the latter case, no clustering was performed, so the rows in the cumulative difference
plots do not necessarily correspond to the rows in the adjacent haplotype structure plots. POU2F3: chr11:120120001–120200000. BNC2:
chr9:16720001–16760000. LARS: chr5:145480001–145520000. FAP/IFIH1: chr2:163040001–163120000. OAS1: chr12:113360001–113400000.
LIPA: chr10:90920001–90980000.
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exploring the haplotype structure of this gene (supplemen
tary fig. S51B, Supplementary Material online), we find one
haplotype that shows similarities to archaic humans but is at
low frequency. In the combined YRIþ EUR panel, just 6.37%
of all haplotypes have 36 or less differences to the
Neanderthal genome, and this number is roughly the point
of transition between the archaic-like and the nonarchaic-like
haplotypes (supplementary fig. S51B, Supplementary Material
online). There is a second—more frequent—haplotype that is
more distinct from archaic humans but present at high fre-
quency in Europeans. The uniquely shared sites obtained us-
ing the lenient (< 10%) allele frequency outgroup cutoff are
tagging both haplotypes together, rather than just the highly
differentiated archaic-like haplotype.

OCA2 has several sites with uniquely shared alleles in EAS
(AFRþ EUR as outgroup) when using the lenient 10% cutoff,
but only a few (2) shared archaic sites when using the < 1%
outgroup frequency cutoff. When exploring the haplotype
structure of this gene, we fail to find a clear-cut differentiation
between putatively introgressed and nonintrogressed haplo-
types, so the evidence for adaptive introgression in this region
is also weak. A close inspection of its haplotype structure
shows that OCA2 does not show a large number of differences
between the haplotype classes that are closer and those that
are distant from the archaic humans (supplementary fig.
S51A, Supplementary Material online).

Finally, using the lenient outgroup cutoff of < 10% and a
target cutoff of >20%, we find the gene with the highest
number of uniquely shared sites among all the populations
and cutoffs we tested: MUC19. This region is rather impressive
in containing 115 sites where the archaic alleles are shared
between the Mexican panel (MXL) and the Denisovan ge-
nome at more than 20% frequency, when using all popula-
tions that are not MXL as the outgroup. However, the actual
proportion of individuals that contain a Denisova-like haplo-
type (though highly differentiated from the rest of present-day
human haplotypes) is very small. Only 11.86% of haplotypes in
the combined YRIþAMR panel show 69 differences or less to
the closest archaic genome (Denisova), and the next closest
haplotype has 134 differences (supplementary fig. S51D,
Supplementary Material online).

Overall, a finer investigation of these three cases suggests
that using a lenient outgroup frequency cutoff may lead to
misleading inferences. Nevertheless, the haplotype structure
of these genes and their relationship to their archaic human
counterparts are quite unusual. It remains to be determined
whether these patterns could be caused by either positive
selection or introgression alone, or whether a combination of
these or other demographic forces is required to explain
them.

Inferred Introgressed Tracts
We used an HMM (Seguin-Orlando et al. 2014) to verify that
the strongest candidate regions effectively contained archaic
segments of a length that would be consistent with introgres-
sion after the population divergence between archaic and
modern humans. For each region, we used the closest archaic
genome (Altai Neanderthal or Denisova) as the putative

source of introgression. We then plotted the inferred seg-
ments in non-African continental populations for genes
with strong evidence for AI. Among these, genes with
Neanderthal as the closest source (supplementary figs. S52–
S59, Supplementary Material online) include: POU2F3
(EAS,SAS), BNC2 (EUR), OAS1 (Eurasians), LARS (AMR),
FAP/IFIH1 (PEL), CHD2 (PEL), TLR1-6 (EAS), and ZFHX3
(PEL). Genes with Denisova as the closest source (supplemen
tary figs. S60 and S61, Supplementary Material online) include:
LIPA (EAS, SAS, and AMR) and MUSTN1 (SAS).

Testing for Enrichment in Genic Regions
We aimed to test whether uniquely shared archaic alleles at
high frequencies were enriched in genic regions of the ge-
nome. We looked at archaic alleles at high frequency in any of
the non-African panels that were also at low frequency
(< 1%) in Africans. As background, we used all archaic alleles
that were at any frequency larger than 0 in the same non-
African populations, and that were also at low frequency in
Africans. We then tested whether the high-frequency archaic
alleles tended to occur in genic regions more often than
expected.

SNPs in introgressed blocks will tend to cluster together
and have similar allele frequencies, which could cause a spu-
rious enrichment signal. To correct for the fact that SNPs at
similar allele frequencies will cluster together (as they will
tend to co-occur in the same haplotypes), we performed
linkage disequilibrium (LD) pruning using two methods. In
one (called “LD-1”), we downloaded the approximately inde-
pendent European LD blocks published in Berisa and Pickrell
(2016). For each set of high frequency derived sites, we ran-
domly sampled one SNP from each block. In a different ap-
proach (called “LD-2”), for each set of high frequency derived
sites, we subsampled SNPs such that each SNP was at least
200 kb apart from each other. We then tested these two types
of LD-pruned SNP sets against 1,000 SNP sets of equal length
that were also LD-pruned and that were obtained random-
izing frequencies and collecting SNPs in the same ways as
described above.

Regardless of which LD method we used, we find no sig-
nificant enrichment in genic regions for high-frequency
(>50%) Neanderthal alleles (LD-1 P¼ 0.352, LD-2
P¼ 0.161) or Denisovan alleles (LD-1 P¼ 0.348, LD-2
P¼ 0.192). Similarly, we find no enrichment for medium-to-
high-frequency (>20%) Neanderthal alleles (LD-1 P¼ 0.553,
LD-2 P¼ 0.874) or Denisovan alleles (LD-1 P¼ 0.838, LD-2
P¼ 0.44).

Discussion
Here, we carried out one of the first investigations into the
joint dynamics of archaic introgression and positive selection,
to develop statistics that are informative of AI. We find that
one of the most powerful ways to detect AI is to look at both
the number and allele frequency of mutations that are
uniquely shared between the introgressed and the archaic
populations. Such mutations should be abundant and at
high frequencies in the introgressed population if AI occurred.
In particular, we identified two novel summaries of the data
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that capture this pattern quite well: the statistics Q95 and U.
These statistics can recover loci under AI and are easy to
compute from genomic data, as they do not require phasing.

We have also studied the general landscape of archaic
alleles and their frequencies in present-day human popula-
tions. By scanning the present-day human genomes from
phase 3 of the 1000 Genomes Project (Auton et al. 2015)
using these and other summary statistics, we were able to
recapitulate previous AI findings (like the TLR [Dannemann
et al. 2016; Deschamps et al. 2016] and OAS regions [Mendez
et al. 2013]) as well as identify new candidate regions for AI
in Eurasia (like the LIPA gene and the FAP/IFIH1 region).
These mostly include genes involved in lipid metabolism,
pigmentation and innate immunity, as observed in previous
studies (Khrameeva et al. 2014; Sankararaman et al. 2014;
Vernot and Akey 2014). Phenotypic changes in these sys-
tems may have allowed archaic humans to survive in Eurasia
during the Pleistocene, and may have been passed on to
present-day human populations during their expansion out
of Africa.

When using more lenient definitions of what we consider
to be “uniquely shared archaic alleles” we find sites contain-
ing these alleles in genes that have been previously found to
be under positive selection (like OCA2 and TYRP1) but not
necessarily under adaptive introgression. Whereas these do
not show as strong signatures of adaptive introgression as
genes like BNC2 and POU2F3, their curious haplotype pat-
terns and their relationship to archaic genomes warrants
further exploration.

We tested whether uniquely shared archaic alleles at high
frequencies in non-Africans were significantly more likely to
be found in genic regions, relative to all shared archaic alleles,
but did not find a significant enrichment. Though this sug-
gests archaic haplotypes subject to AI may not be preferen-
tially found near or inside genes, it may also be a product of a
lack of power, or of the fact that not all uniquely shared
archaic alleles may be truly introgressed. As mentioned be-
fore, some of these alleles may be present due to incomplete
lineage sorting, which could add noise to the test signal. A
more rigorous—and possibly more powerful—test could
involve testing whether HMM-inferred introgressed archaic
segments at high frequency tend to be found in genic re-
gions, relative to all inferred introgressed archaic segments,
controlling for features like the length of introgressed seg-
ments and the sensitivity of the HMM to different regions of
the genome. However, we did not pursue this line of re-
search further.

In this study, we have mostly focused on positive selection
for archaic alleles. One should remember, though, that a
larger proportion of introgressed genetic material was likely
maladaptive to modern humans, and therefore selected
against. Indeed, two recent studies have shown that negative
selection on archaic haplotypes may have reduced the initial
proportion of archaic material present in modern humans
immediately after the hybridization event(s) (Harris and
Nielsen 2015; Juric et al. 2015).

Another caveat is that some regions of the genome display
patterns that could be consistent with multiple introgression

events, followed by positive selection on one or more distinct
archaic haplotypes (Dannemann et al. 2016). In this study, we
have simply focused on models with a single pulse of admix-
ture—followed immediately by selection or with an interme-
diate neutrality period in the introgressed population. We have
not considered complex scenarios with multiple sources of
introgression. Additionally, the currently limited availability
of high-coverage archaic human genomes may prevent us
from detecting AI events for which the source may not have
been closely related to the sequenced Denisovan or Altai
Neanderthal genomes. This may include other Neanderthal
or Denisovan subpopulations, or other (as yet unsampled)
archaic groups that may have lived in Africa and Eurasia.

It is also worth noting that positive selection for archaic
haplotypes may be due to heterosis, rather than adaptation
to particular environments (Harris and Nielsen 2015). That is,
archaic alleles may not have been intrinsically beneficial, but
simply protective against deleterious recessive modern hu-
man alleles, and therefore selected after their introduction
into the modern human gene pool. The degree of dominance
of deleterious alleles in humans remains elusive, so it is
unclear how applicable this model would be to archaic ad-
mixture in humans.

Many of the statistics we introduced in this study have their
drawbacks: notably, they depend on simulations to assess sig-
nificance and some—like U—may be sensitive to local varia-
tion in mutation rates across the genome. Nevertheless, they
serve as useful exploratory tools, as they highlight a character-
istic signature left by AI in present-day human genomes. Future
avenues of research could involve developing ways to incorpo-
rate uniquely shared sites into a robust test of selection that
specifically targets regions under AI. For example, one could
think about modifying statistics based on local between-
population population differentiation, like PBS (Yi et al.
2010), so that they are only sensitive to allele frequency differ-
ences at sites that show signatures of archaic introgression.

Finally, whereas this study has largely focused on human
AI, several other species also show suggestive signatures of AI
(Hedrick 2013). Assessing the extent and prevalence of AI and
uniquely shared sites in other biological systems could pro-
vide new insights into their biology and evolutionary history.
This may also serve to better understand how populations of
organisms respond to introgression events, and to derive
general principles about the interplay between admixture
and natural selection.

Methods

Summary Statistics Sensitive to Adaptive
Introgression
Several statistics have been previously deployed to detect AI
events (reviewed in Racimo et al. [Racimo et al. 2015]). We
briefly describe these below, as well as three new statistics
tailored specifically to find this signal (table 1). One of the
simplest approaches consists of applying the D statistic
(Green et al. 2010; Durand et al. 2011) locally over windows
of the genome. The D statistic was originally applied to com-
pare a single human genome against another human
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genome, so as to detect excess shared ancestry between one
of the genomes and a genome from an outgroup population.
Application of this statistic comparing non-Africans and
Africans served as one of the pieces of evidence in support
of Neanderthal admixture into non-Africans. However, it can
also be computed from large panels of multiple individuals
instead of single genomes. This form of the D statistic has
been applied locally over windows of the genome to detect
regions of excess shared ancestry between an admixed pop-
ulation and a source population (Kronforst et al. 2013; Smith
and Kronforst 2013).

The D statistic, however, can be confounded by local pat-
terns of diversity, as regions of low diversity may artificially
inflate the statistic even when a region was not adaptively
introgressed. To correct for this, Martin et al. (2015) devel-
oped a similar statistic called fD which is less sensitive to dif-
ferences in diversity along the genome. Both of these patterns
exploit the excess relatedness between the admixed and the
source population.

AI is also expected to increase linkage disequilibrium (LD), as
an introgressed fragment that rises in frequency in the popu-
lation will have several closely linked loci that together will be
segregating at different frequencies than they were in the re-
cipient population before admixture. Thus, two well-known
statistics that are informative about the amount of LD in a
region—D0 and r2—could also be informative about adaptive
introgression. To apply them over regions of the genome, we
can take the average of each of the two statistics over all SNP
pairs in a window. In the section below, we calculate these
statistics in two ways: (a) using the introgressed panel only
(D0½intro� and r2½intro�), and (b) using the combination of
the introgressed and the nonintrogressed panels (D0½comb�
and r2½comb�). The first way (intro) should capture patterns
of within-population LD in the introgressed population under
AI, whereas the second way (comb) should capture patterns of
global LD across both populations. If the introgressed popula-
tion has a particular set of archaic haplotypes at high frequency
that are highly differentiated from the nonarchaic haplotypes
in the nonintrogressed panel, we expect the second way to be
more powerful at distinguishing AI from neutrality.

We also introduce three new statistics that one would
expect, a priori, to be particularly effective at identifying win-
dows of the genome that are likely to have undergone adap-
tive introgression: RD, U and Q95. RD is computed by
calculating—in a window of the genome—the ratio of the
sequence divergence between an individual from the source
population and an admixed individual, and the sequence di-
vergence between an individual from the source population
and a nonadmixed individual. One can then take the average
of this ratio over all individuals in the admixed and nonad-
mixed panels. This average should be larger if the introgressed
haplotype is present in a large number of individuals of the
admixed population. We call this statistic RD.

Second, for a window of arbitrary size, let UA;B;Cðw; x; yÞ be
defined as the number of sites where a sample C (the “bait”)
from an archaic source population (which could be as small as a
single diploid individual) has a particular allele at frequency y,
and that allele is at a frequency smaller than w in a sample A

(the “outgroup”) of a population but larger than x in a sample B
(the “target”) of another population (fig. 1). In other words, we
are looking for sites that contain alleles shared between an
archaic human genome and a test population, but absent or
at very low frequencies in an outgroup (usually nonadmixed)
population. For example, suppose we are looking for
Neanderthal adaptive introgression in the Han Chinese (CHB).
In that case, we can consider CHB as our target panel, and use
Africans as the outgroup panel and a single Neanderthal ge-
nome as the bait. If UAFR;CHB;Neað1%; 20%; 100%Þ ¼ 4 in a win-
dow of the genome, that means there are four sites in that
window where the Neanderthal genome is homozygous for a
particular allele and that allele is present at a frequency smaller
than 1% in Africans but larger than 20% in Han Chinese. In
other words, there are four sites that are uniquely shared at
more than 20% frequency between Han Chinese and
Neanderthal, but not with Africans.

This statistic can be further parametrized if we have sam-
ples from two different archaic populations (e.g., a
Neanderthal genome and a Denisova genome). In that case,
we can define UA;B;C;Dðw; x; y; zÞ as the number of sites where
the archaic sample C has a particular allele at frequency y
and the archaic sample D has that allele at frequency z. In
addition, the same allele should be at a frequency smaller
than w in an outgroup panel A and larger than x in a target
panel B (supplementary fig. S1, Supplementary Material on-
line). For example, if we were interested in looking for
Neanderthal-specific AI, we could set y ¼ 100% and
z ¼ 0%, to find alleles uniquely shared with Neanderthal,
but not Denisova. If we were interested in archaic alleles
shared with both Neanderthal and Denisova, we could set y
¼ 100% and z ¼ 100%.

Another statistic that we found to be useful for finding AI
events is Q95A;B;Cðw; yÞ, and is here defined as the 95th per-
centile of derived frequencies in an admixed sample B of all
SNPs that have a derived allele frequency y in the archaic
sample C, but where the derived allele is at a frequency
smaller than w in a sample A of a nonadmixed population
(fig. 1). For example, Q95AFR;CHB;Neað1%; 100%Þ ¼ 0:65 means
that if one computes the 95% quantile of all the Han Chinese
derived allele frequencies of SNPs where the Neanderthal ge-
nome is homozygous derived and the derived allele has fre-
quency smaller than 1% in Africans, that quantile will be
equal to 0.65. The motivation for this statistic is that AI will
produce archaic SNPs at high frequencies in the introgressed
population. The 95th percentile should be an effective way of
summarizing the frequencies of these SNPs while down-
weighting other SNPs that may also share the same allelic
state as the archaic genomes, but that are segregating at low
frequencies in the target panel and are therefore not infor-
mative about AI. In other words, it is a summary of the allele
frequency spectrum in the introgressed population, condi-
tional on only looking at alleles uniquely shared with the
source population and at low frequency in the nonadmixed
population. As before, we can generalize this statistic if we
have a sample D from a second archaic population. Then, Q
95A;B;C;Dðw; y; zÞ is the 95th percentile of derived frequencies
in the sample B of all SNPs that have a derived allele frequency
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y in the archaic sample C and derived allele frequency z in the
archaic sample D, but where the derived allele is at a fre-
quency smaller than w in the sample A (supplementary fig.
S1, Supplementary Material online).

A common statistic that is indicative of population varia-
tion—expected heterozygosity (p)— was previously found to
be affected by archaic introgression in a serial founder model of
human history (DeGiorgio et al. 2009). We measured p as the
average of 2 * p *(1� p) over all sites in a window, where p is the
sample derived allele frequency in the introgressed population.

Simulations
None of these statistics have been explicitly vetted under
scenarios of AI so far, though the performance of D and fD
has been previously evaluated for detecting local introgres-
sion (Martin et al. 2015). Therefore, we aimed to test how
each of the statistics described above performed in detecting
AI in a 40 kb window. We chose this window size because the
mean length of introgressed haplotypes in Prüfer et al. (2014)
was 44,078 bp (supplementary information S13,
Supplementary Material online) and because 40kb is well
above the length needed to reject incomplete lineage sorting
for regions with moderate recombination rates (Huerta-
S�anchez et al. 2014). We began by simulating a three popu-
lation tree in Slim (Messer 2013) with constant Ne ¼ 10; 000,
mutation rate equal to 1:5� 10�8 per bp per generation,
recombination rate equal to 10�8 per bp per generation, and
split times emulating the African-Eurasian and Neanderthal-
modern human split times (4,000 and 16,000 generations ago,
respectively). We allowed for admixture between the most
distantly diverged population and one of the closely related
sister populations, at different rates: 2%, 10%, and 25% (fig.
2A). We use the lower (2%) rate to represent the Neanderthal
genome-wide admixture into Eurasians, with Africans as the
nonadmixed population. The higher (10% and 25%) rates are
meant to represent cases when a researcher is focusing on a
particular region of the genome that has some a priori evi-
dence for having been introgressed, thus pushing the local
probability of introgression to high values, even though the
genome-wide rate may be lower. Under each of the three
admixture rate scenarios, we simulated regions that were
evolving neutrally, regions where the central SNP was under
weak positive additive selection (s¼ 0.01) and regions with a
central SNP under strong selection (s¼ 0.1). We required the
selected allele to be fixed in the archaic population prior to
introgression, but allowed the allele to rise or decrease in
frequency in the introgressed population, as determined by
the strength of selection, its probability of entering the intro-
gressed population and its starting frequency after introgres-
sion. Supplementary figure S2, Supplementary Material online
shows the distributions of frequencies of the selected alleles in
the introgressed population in the present.

We also tested how the statistics perform at detecting
adaptive introgression when the alternative model is not a
neutral introgression model, but a neutral model with ances-
tral structure (fig. 2G). We followed a model described in
Huerta-S�anchez et al. (2014) and simulated a population in
which an African population splits from archaic humans

before Eurasians, but is allowed to exchange migrants with
them. Afterwards, we split Eurasians and archaic humans. At
that point, we stop the previous migration and only allow for
migration between the Eurasian and African populations un-
til the present, at double the previous rate. This is meant to
generate loci where Eurasians and archaic humans share a
more recent common ancestor with each other than with
Africans, but because of ancient shared ancestry, not recent
introgression. We simulated three scenarios, in which we set
the per-generation ancient migration rate to be 0.01, 0.001,
and 0.0001, respectively, and the recent migration rate to be
0.02, 0.002, and 0.0002, respectively. We call these the strong-,
medium-, and weak-migration scenarios, respectively. The
stronger the migration, the weaker the ancestral structure,
as archaic-shared segments in Eurasians will tend to be re-
moved by migration with Africans.

Plotting Haplotype Structure
The Haplostrips software (Marnetto et al. in prep.) was used
to produce plots of haplotypes at candidate regions for AI.
This software displays each SNP within a predefined region as
a column, and each row represents a phased haplotype. Each
haplotype is labeled with a color that corresponds to the 1000
Genomes panel of its carrier individual. The haplotypes were
first hierarchically clustered via the single agglomerative
method based on Manhattan distances, using the stats library
in R. The resulting dendrogram of haplotypes was then re-
ordered by decreasing similarity to a reference sequence con-
structed so that it contains all the derived alleles found in the
archaic genome (Altai Neanderthal or Denisova). The reor-
dering is performed using the minimum distance method, so
that haplotypes with more derived alleles shared with the
archaic population are at the top of the plot. Derived alleles
are represented as black spots and ancestral alleles are repre-
sented as white spots. Variant positions were filtered out
when the site in the archaic genome had mapping quality
less than 30 or genotype quality less than 40, or if the minor
allele had a population frequency smaller than 5% in each of
the present-day human populations included in the plot.

Hidden Markov Model
As haplotypes could look archaic simply because of ancestral
structure or incomplete lineage sorting, we used a Hidden
Markov Model (HMM) described in Seguin-Orlando et al.
(2014) (which assumes an exponential distribution of admix-
ture tract lengths [Pool and Nielsen 2009; Gravel 2012]), in
order to verify that our candidate regions truly had archaic
introgressed segments. This procedure also allowed us to
confirm which of the archaic genomes was closest to the
original source of introgression, as using a distant archaic
source as input (e.g., the Denisova genome when the true
source is closest to the Neanderthal genome) produced
shorter or less frequent inferred segments in the HMM out-
put than when using the closer source genome.

The HMM we used requires us to specify a prior for the
admixture rate. We tried two priors: 2% and 50%. The first
was chosen because it is consistent with the genome-wide
admixture rate for Neanderthals into Eurasians. The second,
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larger, value was chosen because each candidate region
should a priori have a larger probability of being admixed,
as they were found using statistics that are indicative of ad-
mixture in the first place. We observe almost no differences in
the number of haplotypes inferred using either value. For
example, for BNC2—a well-known candidate for AI
(Sankararaman et al. 2014; Vernot and Akey 2014)—the fre-
quency of sequences in EUR with inferred introgressed hap-
lotypes under the 2% prior is 92.5%, whereas it is 93.1% under
the 50% prior. However, the larger prior leads to longer and
less fragmented introgressed chunks, as the HMM is less likely
to transition into a nonintrogressed state between two intro-
gressed states. Therefore, all figures we show below were ob-
tained using a 50% admixture prior. The admixture time was
set to 1,900 generations ago and the recombination rate pa-
rameter was set to the local recombination rate in each re-
gion, following the recombination rate map in Myers et al.
(2005). A tract was called as introgressed if the posterior
probability for introgression was higher than 90%. Under
these parameters, the HMM has a specificity of 99.56%, a
sensitivity of 36.07% and a false discovery rate of 1.15%.

Supplementary Material
Supplementary figures S1–S61 and tables S1–S3 are available
at Molecular Biology and Evolution online.
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